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Optimum transport in systems with time-dependent drive and short-ranged interactions
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We consider a one-dimensional lattice gas model of hardcore particles with nearest-neighbor interaction in
presence of a time-periodic external potential. We investigate how attractive or repulsive interaction affects
particle transport and determine the conditions for optimum transport, i.e., the conditions for which the maximum
dc particle current is achieved in the system. We find that the attractive interaction in fact hinders the transport,
while the repulsive interaction generally enhances it. The net dc current is a result of the competition between the
current induced by the periodic external drive and the diffusive current present in the system. When the diffusive
current is negligible, particle transport in the limit of low particle density is optimized for the strongest possible
repulsion. But when the particle density is large, very strong repulsion makes particle movement difficult in an
overcrowded environment and, in that case, the optimal transport is obtained for somewhat weaker repulsive
interaction. Our numerical simulations show reasonable agreement with our mean-field calculations. When
the diffusive current is significantly large, the particle transport is still facilitated by repulsive interaction, but
the conditions for optimality change. Our numerical simulations show that the optimal transport occurs at the
strongest repulsive interaction for large particle density and at a weaker repulsion for small particle density.
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I. INTRODUCTION

The ability to manipulate colloidal-particle motion in nar-
row channels using time-varying optical potential has opened
up new research avenues in driven diffusive systems [1–5].
These studies have provided valuable insights into a vari-
ety of important aspects of nonequilibrium systems, such as
verification and applicability of fluctuation relations, among
other things. For example, experiments with colloidal parti-
cles driven by an optical trap [6,7] have previously established
the validity of a class of fluctuation-dissipation theorem,
which predicts entropy production over a finite time interval
and that of a generalized Einstein relation [8]. Additionally,
the violation of the second law of thermodynamics has also
been experimentally demonstrated for small systems over
short timescales [9]; see Ref. [10] for review. Recently, a
particularly promising research direction that has received a
lot of attention is the characterization of particle transport in
a periodically driven many-particle system [1,11–13]. These
systems find application in a wide range of situations. For
example, stochastic pumps [14–17], in which the time-varying
external parameters drive the systems away from equilibrium,
can thus generate a directed particle flow; also consider the
thermal ratchets [18–20], where nonequilibrium fluctuations
can induce a directed particle current. Indeed, much attention
has been focused on, and significant progress has been made,
in understanding the underlying mechanism of directed flow
in thermal ratchets and molecular pumps [14].

Notably, the characterization of particle transport in time-
varying external potential is important also in the context
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of driven fluids in confined geometry, leading to the iden-
tification of a number of unexpected consequences, such as
negative differential resistance and absolute negative mobility
among others [12,13,21–26]. In the past, particle transport
in colloidal suspensions in narrow channels have motivated
studies of noninteracting particles, driven by a moving poten-
tial barrier, using dynamic density functional theory [12,13].
Eventually, several many-particle models were also put forth
in an effort to theoretically understand the role of hardcore
interactions in these systems [27]. One particularly important
question here is whether the system can support a nonzero dc
(time-averaged) current when it is driven by a time-periodic
driving force. Although the presence of an external forcing
would typically suggest the presence of a current in the sys-
tem, the periodic nature of the driving, however, means that
the net force acting on the system over a time period is zero. In
that case, do such systems still carry a dc current? If so, then
in what direction does the current flow? Another intriguing
question is whether it is possible to optimize the particle
current by tuning various control parameters.

In order to address the above questions, a series of works
[27–29] considered the paradigmatic models of simple ex-
clusion processes [30], in which the interaction among the
particles was assumed to be of the simplest possible form,
i.e., of hardcore exclusion. The motion of the particles were
described on a lattice where particles hop from one site
to a neighboring unoccupied site; in that case, the peri-
odic external potential was simply represented by space- and
time-dependent hopping rates. Depending on whether the
time-varying hopping rates were present only on particular
sites or were present throughout the system, it was shown
through numerical simulations and a perturbative approach
that the dc current flowing through such a system could either
vanish (inversely with system size) or have a finite value.

2470-0045/2023/108(3)/034107(16) 034107-1 ©2023 American Physical Society

https://orcid.org/0000-0002-1314-2951
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.034107&domain=pdf&date_stamp=2023-09-07
https://doi.org/10.1103/PhysRevE.108.034107


DAS, PRADHAN, AND CHATTERJEE PHYSICAL REVIEW E 108, 034107 (2023)

Furthermore, the dc current was found to exhibit nonmono-
tonic dependence on the time period of the drive. Several
interesting features such as current reversal and system-size-
dependent transport were observed [29] in the case when
time-varying potential maintains a position-dependent phase
relation among sites that results in a nonzero dc current.

Subsequently, in another study of a many-particle lattice
model [31], our group developed a new simple method of
modeling a periodically moving drive in a system of hard-
core particles diffusing on a one-dimensional ring. Motivated
by experiments where particle movements are controlled by
moving optical potential, we studied a system with an on-
site potential that moves along the ring with velocity v,
spending a residence time 1/v at each site. Such a localized
delta potential, that was termed as a “defect,” modifies the
particle transition rates at its current position. For simplic-
ity, we considered a delta potential with a positive strength,
corresponding to a strongly localized infinite potential bar-
rier. Using numerical simulation and a mean-field theory, we
observed that, in the time-periodic steady state, a density
inhomogeneity is created around the defect, resulting in a dc
current that scales as 1/L with system size L. The direction
and magnitude of the dc current was controlled by tuning the
defect velocity, particle density, and the bulk diffusivity of
particles. Moreover, in the presence of multiple defect sites
[32], an interesting collective behavior was observed when
the defect sites were close enough so that their respective
density patterns generated by each of the defects overlap with
each other. Interestingly, reversal of current has also been
observed in a slightly different setup [33] in the context of
a single particle, which diffuses in a two-dimensional channel
of varying width and is driven by a force having a random
orientation across the channel; in this case, the current reversal
happens by tuning both the transverse and the longitudinal
drive.

So far, in the above-mentioned studies of many-particle
lattice models in the presence of time-varying drive, the type
of interaction considered between the particles was simply
hardcore exclusion. However, in real systems, particles can
also experience short-ranged attraction or repulsion and the
interplay between external drive and interparticle interactions
are expected to give rise to nontrivial effects. In order to
investigate this scenario, in the present work we consider
paradigmatic Ising-like lattice gases on a ring of L sites, where
hardcore particles diffuse and interact via nearest-neighbor
attractive or repulsive potential. In other words, in addition
to the hardcore exclusion, a particle, in the case of repulsive
(attractive) interaction, now prefers to have its neighboring
site empty (occupied). Here we are primarily interested in
exploring how the strength of the interaction potential affects
the particle current in the system. Does the system still support
current reversal? Is there an optimum interaction strength for
which magnitude of the current in either direction is largest?

In this paper, by performing Monte Carlo simulations and
analytical calculations within mean-field theory, we demon-
strate that the system does, in fact, support a dc current in
such scenario. We characterize how attractive or repulsive
interaction among the particles affect the transport and de-
termine the conditions for achieving optimal transport in the
system. We show that a moving defect (a “delta” potential

barrier) always induces current in the negative direction, i.e.,
along the direction opposite to the defect movement. But, due
to the density inhomogeneity produced by the defect move-
ment, the diffusive current in the system flows in the positive
direction. As a result, when the bulk diffusion in the system
is negligibly small, we find current in the negative direction.
However, as the bulk diffusion becomes stronger, the current
changes sign and becomes positive. By varying the interaction
strength, particle density and the defect velocity, we determine
the parameter regime that yields the optimum current in the
system in either direction.

It turns out that an attractive interaction among the parti-
cles hinders transport, while a repulsive interaction enhances
it. For negligible diffusion, the current in the limit of low
particle density is maximized for the strongest possible re-
pulsive strength. However, when the density is high, very
strong repulsion blocks certain transitions in the overcrowded
system and optimal current is obtained for a relatively weaker
repulsion. Our analytical calculations based on mean-field
theory support these conclusions and qualitatively explain
our simulation data. For finite diffusive current, we have not
been able to perform analytical calculations. Our simulations
for this case show that the interplay between defect-induced
current and diffusive current changes the optimality condi-
tions significantly. For large particle density, defect induced
current wins over the diffusive current, which makes the net
current negative. We find strongest repulsion is most suitable
for optimal transport in this regime. For small density, dif-
fusive current dominates and the net current is positive. Our
simulations show a weaker repulsive interaction maximizes
this current.

The organization of the paper is as follows: We describe the
model in Sec. II. In Sec. III, we describe the simplest possible
case, where dynamics in the bulk of the system is absent (i.e.,
when the barrier velocity is sufficiently larger than the rate
of bulk diffusion). Analytical formalism corresponding to that
case is presented in Secs. III A and III B while the results are
shown and discussed in Sec. III C. In Sec. IV, we discuss the
case when bulk dynamics can be compared to the other rates
in the system. Our conclusions are presented in Sec. V.

II. THE MODEL

We consider paradigmatic Ising-like [34] lattice gases con-
sisting of hardcore particles, which diffuse on a ring of L sites
and interact through nearest-neighbor pair potentials. In the
absence of any drive (i.e., corresponding to equilibrium), the
system is governed by standard stochastic Kawasaki dynam-
ics. The drive is applied through an external potential barrier,
which moves periodically on the ring, and it essentially modi-
fies the local particle hopping rates, satisfying a local detailed
balance condition [35]. As a result, the transition or particle
hop rates, unlike in equilibrium, are now time dependent.
More specifically, we incorporate such a time-dependent drive
by introducing “defect” sites, where a delta potential barrier
is present. The rest of the sites in the system are called bulk
sites. Consequently the particle hopping rates at the “defect”
sites will differ from the bulk sites. Each defect resides at a
site for a time duration τ = 1/v, before moving to the right
[31,32]. The model is shown in Fig. 1. The energy function

034107-2



OPTIMUM TRANSPORT IN SYSTEMS WITH … PHYSICAL REVIEW E 108, 034107 (2023)

FIG. 1. Schematic diagram of the model. Red solid ellipses rep-
resent occupied defect sites while the blue solid (empty) circles
are occupied (empty) bulk sites. A particle can jump to one of its
neighboring site provided the destination site is empty. The transition
rates depend on the local configurations around the departure site, as
specified in Eq. (3).

for the system can be written as

H = −K

2

∑
i, j

〈i, j〉

η
{αk}
i η

{αk}
j +

∑
i

η
{αk}
i Vi, (1)

where η
{αk}
i , taking value 0 or 1, denotes occupancy of site

i and −∞ < K < ∞ is the interaction strength; here the in-
dices {αk} ≡ {α1, α2, . . . , αN } are a set of N elements with
the kth element, αk , being the position of the kth defect and
〈i, j〉 denotes that sites i and j are the nearest-neighbor ones.
The quantity Vi = ∑

k V0δi,αk is the external potential at site i
with V0 representing the height of the onsite potential barrier.
It is convenient to map from the interaction strength K to
an equivalent dimensionless parameter ε [36] through the
following relation,

e−βK = (1 + ε)

(1 − ε)
, (2)

where |ε| � 1 as 0 � e−βK < ∞, with β being the inverse
temperature. Note that the case with ε > 0, ε < 0, and ε = 0
correspond to repulsive, attractive, and simply hardcore inter-
actions, respectively. Depending on the local transition rate,
a particle can move to its immediate left (right) site provided
that the site is empty. Such transitions can happen in four pos-
sible ways and corresponding rates for leftward and rightward
transitions can be as follows:

0010
c−−−⇀↽−−−

ce−βVi

0100 0100
c−−−⇀↽−−−

ce−βVi

0010

1010
c(1−ε)−−−−−−⇀↽−−−−−−

c(1+ε)e−βVi

1100 0101
c(1−ε)−−−−−−⇀↽−−−−−−

c(1+ε)e−βVi

0011

0011
c(1+ε)−−−−−−⇀↽−−−−−−

c(1−ε)e−βVi

0101 1100
c(1+ε)−−−−−−⇀↽−−−−−−

c(1−ε)e−βVi

1010

1011
c−−−⇀↽−−−

ce−βVi

1101 1101
c−−−⇀↽−−−

ce−βVi

1011,

(3)

where c = 1/2 or q/2 if the departure site is a defect site
or a bulk site, respectively. Indeed, for defect velocity v = 0,
the transition rates satisfy detailed balance condition and, in
that case, the system in the long-time limit is governed by the
equilibrium Boltzmann-Gibbs distribution with respect to the
energy function given in Eq. (1). For simplicity, in this study,
we have considered a single moving defect, which represents
an infinite (delta) potential barrier with V0 = ∞, periodically
moving over the ring with velocity v; consequently, no particle
can enter the defect site.

III. q = 0: NO DYNAMICS IN THE BULK

A. Analytical formalism for a periodically moving defect

In this section, we develop an exact theoretical framework
to deal with the simplest (but, still driven and thus nontrivial)
case when the inverse hopping rate is much larger compared
to the typical residence timescale of the defect. That is, we
assume the bulk hopping rate q = 0, implying the dynamics
in the bulk is completely frozen. In that case, a particle can
hop during an infinitesimal time interval dt only if its position
coincides with the position of the defect denoted by α. Starting
from an initial configuration, the system eventually reaches
a time-periodic steady state, given that sufficient time has
passed. The density profile of the system has a form of a
traveling wave moving over the lattice with the same velocity
v as that of the moving defect. The defect spends time τ at
a particular site before moving on to the next site, where τ =
1/v is the residence time of the defect. When the defect spends
one Monte Carlo step on each lattice site, v is measured as
1. We have measured density profile at time steps t = nτ just
before the defect moves on to the next site, after spending time
τ at the previous site, with n = 0, 1, 2, . . . ,∞. Therefore we
can write the discrete time evolution equation [31] for density
ρ

(α)
i (t ) = 〈η(α)

i (t )〉 as

〈ρ (α+1)(t + τ )| = 〈ρ (α)(t )|W (α+1), (4)

where 〈ρ (α)(t )| ≡ {ρ (α)
1 (t ), . . . , ρ (α)

i (t ), . . . , ρ (α)
L (t )} is a row

vector of length L, with ith element being ρ
(α)
i (t ) and α

denoting the position of the defect. The operator W (α+1) is
the transition matrix when the defect site is located at α + 1,
i.e., its structure, (explicitly shown in Appendix A), depends
on the position of the defect site. Elements of W (α+1) involve
a+(a−), the conditional probabilities that, given the defect
site is occupied, a particle from the defect site moves to its
unoccupied right (left) neighboring site during the residence
time τ . Starting from microscopic dynamics, we can have
their expressions as follows:

a+ =
6∑

m=1

C+
m ω+

m , a− =
6∑

n=1

C−
n ω−

n , (5)

where C+
m , C−

n are the conditional probabilities of different
local configurations favorable for right and left hopping re-
spectively during the residence time τ , given the defect site
is occupied. The quantities ω+

m and ω−
n denote the transition

probabilities for right and left hopping, respectively, from an
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occupied defect site during time τ . For example, we can write
the conditional probabilities,

C+
1 = P

(
001̂01|η(α)

α+1 = 1
)

=
〈[

1 − η
(α)
α−1

][
1 − η(α)

α

]
η

(α)
α+1

[
1 − η

(α)
α+2

]
η

(α)
α+3

〉
〈
η

(α)
α+1

〉 , (6)

C−
1 = P

(
101̂00|η(α)

α+1 = 1
)

=
〈
η

(α)
α−1

[
1 − η(α)

α

]
η

(α)
α+1

[
1 − η

(α)
α+2

][
1 − η

(α)
α+3

]〉
〈
η

(α)
α+1

〉 , (7)

and the corresponding transition rates,

ω+
1 = ω−

1 = 1 − ε

2 − ε

[
1 − e−(2−ε)/4v

]
, (8)

where C+
1 and C−

1 represent the conditional probabilities for
local configurations 001̂01 and 101̂00, respectively, given
that the defect site is occupied. In that case, the quantities
ω+

1 and ω−
1 denote the transition probabilities corresponding

to configuration 001̂01 and 101̂00, respectively, during the
residence time τ with 1̂(0̂) denoting an occupied (unoccu-
pied) defect site (see Appendix B for details). Due to the
time-periodic structure of the steady state, the density profile
comes back to itself each time the defect moves across the
ring and completes a cycle. So the time-evolution operator
W (α+1) · · ·W (L)W (1) · · ·W (α−1)W (α) over a full time period
must have an eigenvector 〈ρ (α)

st | with eigenvalue unity. Then
the steady-state density at ith site satisfies the following con-
dition:

ρ
(α+1)
st,i = ρ

(α)
st,i−1, (9)

which follows from the time-periodic structure of the steady-
state density and from Eq. (4). To solve for the density profile
in a time-periodic steady state, we find that, at the time of
measurement, the defect site α registers lower density com-
pared to the bulk as particles cannot hop into the defect site.
Rather they can only hop out of the defect site. For q = 0
the neighboring sites (α ± 1) can only receive particles from
the defect site without any loss. The site (α + 1) thus has a
higher density compared to that at the bulk. On the other hand,
the site (α − 1) which was previously occupied by the defect
and has already registered lower density could only receive
particle from the defect site α and its density goes back to
the bulk level. Therefore regarding the structure of the density
profile as a function of position, an ansatz [31] can be written
in the form of a traveling density wave, which moves with the
defect α. That is, we have

ρ
(α)
st,i = ρ− for i = α

ρ
(α)
st,i = ρ+ for i = α + 1

ρ
(α)
st,i = ρ otherwise. (10)

The above ansatz can be now used in Eqs. (4) and (9) to obtain
the following condition:

ρ+a− + ρ− = ρb, (11)

ρ+a+ + ρb = ρ+, (12)

where ρb is the bulk density. The above set of equations can
be readily solved by using particle-number conservation

condition ρ+ + ρ− + (L − 2)ρb = Lρ, and we obtain the ex-
act densities,

ρb = (1 − a+)L

2 − a+ − a− + (1 − a+)(L − 2)
ρ � ρ, (13)

ρ+ � 1

1 − a+
ρ, (14)

ρ− � 1 − a+ − a−
1 − a+

ρ, (15)

in the limit of large system size (L � 1). Then, from Eqs. (14)
and (15), it is evident that ρ+ > ρ and ρ− < ρ, i.e., a peak
and a trough are formed in front of and at the defect site,
respectively.

Indeed, size of the trough and the peak formed around the
defect site are different, thus resulting in a nonzero particle
current in the system as explained below. Note that, for q = 0,
the contribution to the net particle current comes from only
the two bonds adjacent to the defect site as no hopping takes
place across any other bonds in the system. Thus in this case,
the particle current consists of two components J+ and J−,
defined to be the time rate of rightward and leftward move-
ment of particles, respectively, from the defect site. The total
current is then simply the algebraic sum of them. As the defect
visits a particular site with rate v/L, the expression for the dc
particle current can be written as

J = J+ + J− = v

L

[〈
η

(α)
α+1

〉
a+ − 〈

η
(α)
α+1

〉
a−

]
, (16)

which can be written in terms of ρ± from Eq. (14) and (15) as

J = v

L
[(ρ+ − ρ) + (ρ− − ρ)] = v

L
(ρ+ + ρ− − 2ρ), (17)

where the positive and negative contributions to the net current
is given by

J+ = v

L

[〈
η

(α)
α+1

〉
a+

] = v

L
(ρ+ − ρ), (18)

and

J− = − v

L

〈
η

(α)
α+1

〉
a− = v

L
(ρ− − ρ), (19)

respectively.

B. Mean-field theory

The exact expressions for the conditional probabilities a+
and a− are given in Eq. (5) [for details, see Eqs. (B1) to (B17)
in Appendix B]. However, we note that these conditional
probabilities involve calculations of multipoint correlation
functions, which are difficult to obtain exactly. Therefore,
to write a+ and a− as explicit functions of the system pa-
rameters ε, ρ, and v, we proceed further by resorting to
mean-field approximations, where multipoint correlations C+

m
and C−

n (where m, n = 1, 2, . . . , 6) are simply assumed to be
factorized and we thus have the following expressions of the
above-mentioned quantities:

C+
1 = C−

1 = ρ(1 − ρ−)(1 − ρ)2, (20)
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etc., and

a+ = (1 − ρ)[(1 − ρ)(1 − ρ−)ρω+
1

+ ρ2(1 − ρ−)ω+
2 + (1 − ρ)2(1 − ρ−)ω+

3

+ ρ(1 − ρ−)(1 − ρ)ω+
4 + ρ−(1 − ρ)ω+

5 + ρ−ρω+
6 ]
(21)

and

a− = (1 − ρ−)[ρ(1 − ρ)2ω−
1 + ρ2(1 − ρ)ω−

2 + (1 − ρ)3ω−
3

+ ρ(1 − ρ)2ω−
4 + ρ(1 − ρ)ω−

5 + ρ2ω−
6 ]. (22)

Now by combining Eqs. (14) and (15), we have the following
equation:

(ρ− − ρ)(1 − a+) + a−ρ = 0, (23)

which should now be solved as a function of the parameters ε,
ρ, and v. Indeed, if expressions for a+ and a− from Eqs. (21)
and (22) are substituted into Eq. (23), then we obtain the
following quadratic equation for ρ−:

(ρ− − ρ)[1 − (1 − ρ){(1 − ρ)(1 − ρ−)ρω+
1

+ ρ2(1 − ρ−)ω+
2 + (1 − ρ)2(1 − ρ−)ω+

3

+ ρ(1 − ρ−)(1 − ρ)ω+
4 + ρ−(1 − ρ)ω+

5 + ρ−ρω+
6 }]

+ ρ(1 − ρ−)[ρ(1 − ρ)2ω−
1

+ ρ2(1 − ρ)ω−
2 + (1 − ρ)3ω−

3 + ρ(1 − ρ)2ω−
4

+ ρ(1 − ρ)ω−
5 + ρ2ω−

6 ] = 0. (24)

The explicit analytic solution of the above quadratic equa-
tion is quite cumbersome and we therefore numerically solve
it using Mathematica, where we retain only the physically
acceptable root (i.e., not larger than unity), leading to a nu-
merical solution of ρ+ and ρ−. Consequently, the mean-field
expression for the particle current can be obtained using
Eqs. (21) and (22) [also see Eqs. (B1) to (B17) in Appendix B
for details] as follows:

J = v

L
ρ+(ρ− − ρ){(1 − ρ)[1 − e−(1+ε)/4v] + ρ(1 − e−1/4v )}.

(25)

In the limit of small and large ρ, the solutions for ρ±, and
hence for particle current J , however, take simple forms as we
write a± in the leading order of ρ and (1 − ρ), respectively.
For small ρ, we retain leading order terms in ρ in its functions
and we immediately obtain

a+ ≈ ρ−[ρ(3ω3 − ω1 − ω4 − 2ω5 + ω6) − (ω3 − ω5)]

+ ρ(ω1 − 3ω3 + ω4) + ω3 (26)

and

a− ≈ ρ−[ρ(3ω3 − ω1 − ω4 − ω5) − ω3]

+ ρ(ω1 − 3ω3 + ω4 + ω5) + ω3. (27)

Substituting Eqs. (26) and (27) into Eq. (23), we have trough
density,

ρ− = 1 − 2ω3

1 − ω3
ρ (28)

and

ρ+ = ρ

1 − ω3
. (29)

Now the scaled current JL can be straightforwardly written as

JL = vω5(1 − 2ω3)ρ2

(1 − ω3)2
, (30)

which is interestingly quadratic in ρ. On the other hand, for
large ρ, we retain terms in leading order of (1 − ρ) and thus
obtain

a+ ≈ ω6(1 − ρ) + (ω2 − ω6)(1 − ρ)(1 − ρ−) (31)

and

a− ≈ ω6(1 − ρ−) + (ω2 + ω5 − 2ω6)(1 − ρ)(1 − ρ−).
(32)

Finally substituting Eqs. (31) and (32) into Eq. (23), we have
the trough density

ρ− = 1 − (1 − 2ω2 − 2ω5 + 3ω6)

(1 − ω2 − ω5 + ω6)2
(1 − ρ), (33)

the peak density

ρ+ = 1 − (1 − ω6)(1 − ρ), (34)

and consequently the scaled particle current can be written as

JL = vω6

ω6 − 1
(1 − ρ), (35)

which are in fact linear in (1 − ρ).

C. Simulation results and comparison with mean-field theory

In this section, we present results obtained from simu-
lations and then we compare them with analytical results
from mean-field theory. We have used system size L = 512
throughout. As predicted by our analytical formalism de-
veloped in Sec. III A, we indeed find a density peak and a
density trough around the defect site. Since we are primarily
interested to know the effect of interparticle interaction on
the system, first we study variation of size of the density
peak ρ+ − ρ and size of the density trough ρ − ρ− against
interaction strength ε. The system often behaves differently
for small and large values of bulk density. So, we have shown
data for both of the cases. Then the variation of the net particle
current J is studied against interaction strength ε, bulk density
ρ, and defect velocity v. For small or moderate values of
bulk hopping rate q, we find that magnitude of the particle
current is maximum around v � 0.16 and this particular value
is not too sensitive on the choice of ρ or ε. Since we are
interested in optimum particle transport, we perform most
of our measurements at this particular v value only, unless
explicitly mentioned otherwise.

In Fig. 2, we plot the size of density peak ρ+ − ρ and
that of density trough ρ − ρ− as a function of the interaction
strength ε. We find that, as ε increases from negative to pos-
itive values, the density differences (ρ+ − ρ) and (ρ − ρ−)
also increase. The variation in both these quantities against
ε are interestingly nonmonotonic with a peak at moderately
large positive ε values. Our mean-field calculation also cap-
tures this nonmonotonic behavior but does not provide good
quantitative agreement with the simulation data.
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FIG. 2. Size of the density peak and trough, (ρ+ − ρ) and (ρ − ρ−) are plotted against ε in panels (a) and (b). Mean-field results are
presented by solid and dotted lines, respectively. It is evident from both the panels that depth of the trough is always greater than height of the
peak. Nonmonotonic variation against ε can be seen in both the quantities which is more pronounced for (ρ − ρ−) with a maximum at a large
positive ε. Mean-field theory can qualitatively capture such behavior in the repulsive region, while it fails in the region of attractive interaction.
Points, simulations; lines, mean-field theory.

Now, in the remaining part of this subsection, we show the
variation of particle current as a function of various system
parameters, emphasizing on how such variations are affected
by the interaction strengths. To be concise, in Table I, we list
the parameter values we have used in our study and include a
brief discussion justifying our choices. In our study of particle
current J as a function of ε, we find qualitatively different
nature of variations at small and large ρ. To show this effect,
we present J vs ε data for five different ρ, spanning from low
to high values (see Table I). As we discuss in details below,
the J vs ρ characteristic curve shows a dramatic dependence
on the interaction strength. To highlight this aspect, we show
data for a wide range of ε, starting from strong attraction
to strong repulsion; the corresponding values are listed in
Table I. For J vs v characteristics, we separately show how the
curve changes with ε for low- and high-density cases, since
the mechanism of optimum transport is different in these two
cases. We have used one representative values of ε for attrac-
tive, noninteracting, repulsive cases each, and also ε = 1, the
case for the strongest repulsion, which is quite relevant for
optimal transport.

In Fig. 3, the variation of scaled particle current JL with
ε has been shown for different ρ values. At ε = −1, because
of strong attractive interaction among the particles, the sys-

TABLE I. Parameter values used for the studies of current
variation.

J vs ε J vs ρ J vs v

ρ v ε v ε ρ

0.2 −0.9
0.29 −0.5 −0.6
0.4 0.16 0 0.16 0 0.29
0.75 0.5 0.6 0.75
0.85 0.97 1

1

tem supports one single cluster, containing all the particles.
Therefore, quite expectedly, the particle current vanishes in
this particular limit. As ε increases, a density profile consist-
ing of a peak and a trough as shown in Fig. 12 is formed
around the defect site and consequently the current becomes
nonzero. As ε increases further, the density peak and trough
become more pronounced (as shown in Fig. 2), thus resulting
in larger current magnitude. However, for positive ε, current
shows qualitatively different behavior for small and large ρ.
For small ρ values, the current remains almost constant over
a large range of ε before showing a rather mild increase near
ε = 1.

This behavior can be explained from our data in Fig. 2(a),
where the difference between the two curves (red square and
blue diamond), which represent the asymmetry between the
sizes of density peak and trough, remains unchanged for a
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ρ=0.29
ρ=0.4
ρ=0.75
ρ=0.85

FIG. 3. Scaled current are plotted against epsilon along with
mean-field results (presented by dotted line (ρ = 0.2), short-dashed
line (ρ = 0.29), dot-dashed line (ρ = 0.4), solid line (ρ = 0.75), and
dashed line (ρ = 0.85). Current vanishes at ε = −1 and remains
negative elsewhere. For small and intermediate ρ current is largest
for ε = 1, while for large ρ it shows a peak at a slightly smaller ε

value.
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FIG. 4. Scaled current vs density for various interaction
strengths. Discrete points show simulation data and lines show mean-
field calculations. We have used dotted (ε = −0.9), short-dashed
(ε = −0.5), dashed (ε = 0), solid (ε = 0.5), dot-dashed (ε = 0.97),
and a dot-dot-dashed line (ε = 1). For all epsilon values, current
shows nonmonotonic variation with density. For attractive interaction
and moderate repulsive interaction, current shows a single peak at
a density >1/2. However, as repulsion becomes stronger, current
shows two peaks, separated by a minimum at ρ = 1/2. Although
mean-field theory fails to capture the double peak, we offer an alter-
native simple explanation in the text.

significant range of positive ε but increases when ε is close to
1. Note that this asymmetry is directly related to the current as
shown in Eq. (17). For large ρ, on the other hand, the current
shows a peak at ε � 0.7 and then gradually decreases beyond
that. This behavior is consistent with our simulation data
presented in Fig. 2(b), where the two curves are seen farthest
apart at that particular ε. Note that the mean-field theory can
qualitatively capture the peak current for large ρ, but, for small
ρ, it is unable to reproduce the upswing shown by our data
near ε = 1. We find similar disagreement in Fig. 2(a) as well
where mean-field theory does not quite capture the variation
of the peak size.

In Fig. 4, we plot the scaled current JL as a function of bulk
density ρ for various ε values. In the dilute ρ → 0 and dense
ρ → 1 limits, the particle current vanishes for all ε as ex-
pected. We have been able to analytically show [see Eqs. (30)
and (35)] that, in the small density limit, the current ∼ρ2

varies quadratically with ρ, while, in the large-density limit,
the current ∼(1 − ρ) is, however, linear. This limiting be-
havior agree quite well with the simulation data. We observe
that for an intermediate density ρ∗, the particle current shows
a maximum. However, when ε takes large negative value,
the overall magnitude of the current becomes vanishingly
small because of the strong attractive interaction among the
particles, enhancing cluster formation that leads to decrease
in particle mobility. As the particle attraction weakens, the
current also increases and the peak at ρ∗ gets higher. Our
mean-field results successfully capture this trend, although
ρ∗ from mean-field shows dependence on ε unlike a nearly
constant ρ∗ � 0.75 obtained from numerics for all ε. As ε

changes sign and becomes positive, the repulsive interaction
does not favor successive occupied sites, thus giving rise to
a special point at ρ = 0.5 and ε = 1 when the only allowed

configuration is that with the alternate sites occupied by par-
ticles. No transitions are possible from this configuration and
hence the current vanishes. This is verified from simulations
where the current sharply becomes zero at ρ = 0.5 for ε = 1.
Thus the nearest-neighbor exclusion generates another peak in
the current at a somewhat lower density value ρ < 0.5. How-
ever, even as ε falls slightly below unity, this effect weakens
and the zero of current at half-filled density is replaced by a
mild minimum. Our mean-field calculations are unable to cap-
ture this particular effect induced by strong nearest-neighbor
repulsion and simply predicts a single peak for current for
all ε; notably the mean-field theory shows good agreement
with the numerical data for moderate repulsive interaction
strengths.

In Fig. 5, we depict variation of current with defect velocity
v for different interaction strengths and two different ρ values.

In all cases, the limit v → 0 corresponds to the equilibrium
case when the current vanishes which is expected. For very
large v, the defect movement becomes too fast for the particles
to respond and the current vanishes here, too. An interme-
diate v therefore maximizes the current which can be seen
both from simulation data and mean-field calculations. As ε

increases from negative to positive values, the peak current
increases monotonically for ρ = 0.29 [Fig. 5(a)], while, for
ρ = 0.75, the peak current shows a nonmonotonic variation
for positive ε [Fig. 5(b)]. This is indeed consistent with the
variation observed in Fig. 3.

In Figs. 3–5, we plot current as a function of one of the
three variables ε, ρ, and v, keeping the other two constant.
To understand the condition of optimum transport, we need to
identify how ρ, ε, and v should be chosen such that the current
in the system is maximized. To this end, in Fig. 6, we present
heat-maps, where we simultaneously vary ε and v for a fixed
ρ. Our simulation data are presented in Figs. 6(a) and 6(b) and
our mean-field calculations appear in Figs. 6(c) and 6(d).

These plots clearly demonstrate that the repulsive inter-
action in fact facilitates particle transport in the system.
For smaller density, current always increases as ε increases
and, quite interestingly, largest current is obtained at ε = 1
(nearest-neighbor exclusion), when the repulsion is strongest.
For larger density, on the other hand, very strong repul-
sion makes certain transitions energetically unfavorable. This
hinders particle transport. Therefore, in this case, optimum
current is obtained at an intermediate ε value. Our mean-field
calculations manage to correctly reproduce this optimality as
seen in Fig. 6(d), but they do not work so well as seen in
Fig. 6(c). Note that the scale used to present the current for low
density is widely different from that in the high density. This
means that, when the density is low, for a particular density
optimum transport can be achieved, but the magnitude of the
current is far smaller than that obtained in the optimum regime
at high density. This is seen more clearly in Fig. 7.

In Fig. 7, we depict through the heat-maps the variation of
particle current when ε and ρ are varied by keeping v constant.
Apart from the usual choice of v = 0.16, here we have also
presented data for v = 1. These plots show that, to obtain the
optimum transport, ρ needs to be sufficiently high. Since, in
the high density regime, an intermediate strength of repulsive
interaction gives the maximum current, the optimum transport
happens away from ε = 1. Note that, even in this figure, the
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(a) ρ = 0.29 (b) ρ = 0.75

FIG. 5. Scaled current JL plotted against defect velocity v along with mean-field results (represented by dotted (ε = −0.6), short-dashed
(ε = 0), solid (ε = 0.6), and dot-dashed line (ε = 1)) in panels (a) and (b). Current vanishes in the small v and large v limit and shows a peak
in between. The peak height increases as interaction changes from attraction to repulsion. Largest peak is obtained for a large positive value of
ε. Mean-field theory explains the numerical data qualitatively.

(a) ρ = 0.29 (b) ρ = 0.75

(c) ρ = 0.29 (d) ρ = 0.75

FIG. 6. Scaled particle current JL is plotted against ε and v. Panels (a) and (b) represent numerical data while panels (c) and (d) show
mean-field results. The heat-maps help to trace out the region of ε and v corresponding to the optimum transport in the system. Panel (a) shows
that for small ρ, current is maximum for strongest repulsion ε = 1, while panel (b) shows that for large ρ a positive ε < 1 optimizes the
transport. Note however, the scales chosen for left and right panels show that the magnitude of the optimum current is much larger when ρ is
large. Mean-field results work reasonably well for large ρ, but fail to capture the optimum transport regime for small ρ.
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(a) v = 0.16 (b) v = 1.0

(c) v = 0.16 (d) v = 1.0

FIG. 7. Numerical results for particle current JL is plotted against ε and ρ in panels (a) and (b) while mean-field results are represented in
panels (c) and (d). The heat-maps trace out the optimum region for particle current in ε-ρ plane. The region corresponds to large ρ and a high
positive ε. Magnitude of optimum current is higher in left panels where intermediate v value is used.

actual value of maximum current is much higher for v = 0.16
as compared to v = 1.

IV. NONZERO BULK-HOPPING RATE: q �= 0

In the previous section, we considered the case when the
only possible transition in the system is particle hopping out
of the defect site. In the present section we consider q �= 0,
which allows for movement of particles in the bulk of the
system. We are interested to find out how the bulk dynamics
affects the current. As expected, for small q, our results are
quite similar to what we had presented in the previous sec-
tion. As q becomes moderate, the presence of bulk diffusion
significantly affects the current. We argue below that the bulk
dynamics is expected to make a positive contribution to the
current. Since the density profile remains homogeneous at
sites far away from the defect site, the nonvanishing contribu-
tion to the particle current comes from the dynamics around
the defect site. For moderate q values, a significant amount of
diffusive current flows between the site with density ρ− and

its left neighbor with density ρ. Since ρ− < ρ, this current
will be in the positive direction. Therefore, the presence of the
bulk dynamics must add a positive component to the overall
particle current. We do not have a mean-field theory for this
case to support the numerical data. In the studies below, we
consider, for simplicity, only the small and moderate q values.

In Fig. 8, we plot scaled particle current JL vs ε for a fixed
v and different ρ values. For small bulk diffusion, say, for
q = 0.1, the behavior is very similar to the trend observed
in Fig. 3. As q increases, the contribution from the positive
diffusive component in JL becomes enhanced as explained
above. For a moderate q value, when the particle density
is small, the diffusive current, that principally arises due to
the nonhomogeneous density profile about the defect site,
dominates over the defect-induced current, resulting in a net
current that shows a positive peak at a high value of ε. How-
ever, for large particle densities, since JL has large negative
values for q = 0, it remains negative even when q becomes
moderately large, although its magnitude decreases because
of larger positive contribution coming from bulk dynamics.
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FIG. 8. Scaled current JL is plotted against epsilon for several ρ and two different q values. (a) For small q, current is throughout negative
and larger in magnitude for repulsive interaction compared to attractive ones. (b) For moderate q, when the density is low, current reverses sign
and becomes positive, while for large density it remains negative.

At large densities, the defect induced negative current wins
over the diffusive current and the net negative current becomes
maximum at the strongest possible repulsive strength. Such
dependence of the system current on interaction strength can
be observed in Figs. 9 and 10 as well. Figure 9(a) depicts the
variation of JL with ρ for small q showing similar qualitative
behavior as observed in Fig. 4. But, for larger q, the current
reverses its direction [see Fig. 9(b)] as the density increases,
showing a positive peak at a small ρ along with a negative
maximum at a large ρ. Figure 10 also captures the nonmono-
tonic dependence of magnitude of the current maxima on the
interaction strength for small particle density and moderate
bulk diffusion, which is consistent with Fig. 8.

To identify the parameter regime for optimal transport, we
show the heatmap in Fig. 11. We have four relevant parameters
here: ε, ρ, v, and q. For ρ = 0.29, we show the variation of
current in ε-v plane for two different q values. For q = 0.1,
particle current has both positive and negative peaks, i.e.,
the optimum current can flow in the direction of the defect
movement or in the opposite direction. For any v, the current
attains its highest value as ε assumes a high positive value.

This can be clearly seen from Fig. 11(a). For q = 0.5 however,
due to the presence of large diffusive current in the system,
only positive current is observed and the optimum transport
always happens in the direction of defect movement as ob-
served in Fig. 11(b). The heatmaps also highlight the fact that
the positive peaks for any q occur at ε < 1, consistent with
Fig. 8.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have studied Ising-like lattice gases with
nearest-neighbor interactions, where the system is driven by
a localized (delta) potential barrier, referred to as a “defect,”
moving on a ring. We find that the interparticle interac-
tion is crucial in controlling the particle transport in the
system: in the presence of an attractive interaction, the time-
averaged dc current decreases, whereas a repulsive interaction
enhances the current quite significantly, thus resulting in
a rich interaction-dominated regime of particle transport in
the system and consequently current reversal on tuning var-
ious parameters such as the bulk density, defect velocity
and interaction strength. The precise mechanism behind the
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FIG. 9. Variation of scaled current JL with density ρ is shown for different ε and two q values. For small q, current shows similar behavior
as in q = 0 case both for attractive and repulsive interaction. For moderate q, current shows a positive peak at small density and a negative
peak at large density. For ε = 1 current crosses zero exactly at ρ = 0.5.
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FIG. 10. Scaled current JL is plotted against defect velocity v for different ε. For small q current remains almost flat at small v and reverses
its direction at an intermediate v, while for moderate q it remains positive throughout for all ε.

characteristics of the dc particle current can be understood
physically as explained below. The moving potential barrier
(defect) creates a traveling density inhomogeneity, which gen-
erates a current in the negative direction, i.e., in the direction
opposite to the barrier movement, whereas the bulk diffu-
sion generates a current in the direction along the barrier
movement. As a result, when the bulk hopping (diffusion)
rate vanishes, i.e., when q = 0, the particle current is always
negative and shows a negative peak as the barrier velocity v

and bulk density ρ are varied. Quite remarkably, the nega-
tive peak in the current is further enhanced when a strong
repulsive interaction is present among the particles. On the
other hand, for the nonzero bulk hopping rate q �= 0, as the
barrier speed v, bulk density ρ and interaction strength ε are
varied, the particle current shows both positive and negative
peaks, which are in fact due to the competition between the
positive contribution from the bulk diffusion and the negative
contribution from the barrier movement; however, the extent

of variation is weaker in this case compared to that for q = 0.
We have been able to identify the precise parameter regime for
an optimum transport, which indeed maximizes the magnitude
of the particle current. In the case of attractive interaction, a
particle prefers to have its nearest neighbor occupied, giving
rise to particle clustering. The contribution in the current
from the transitions which cause fragmentation of the clusters
decreases as the strength of attractive interaction increases,
thus resulting in a decreased current. Indeed, unlike repul-
sive interaction, the current decreases monotonically with the
attractive interaction strength, irrespective of defect speed,
particle density, and bulk diffusivity. To theoretically under-
stand the above results, we perform a modified mean-field
calculation, which—for repulsive interaction, high particle
density and negligible bulk diffusion—agrees reasonably well
with simulations. Strong attractive interaction causes particle
clustering, leading to strong spatial correlations in the sys-
tem, and the mean-field theory in that case does not work

(a) q = 0.1 (b) q = 0.5

FIG. 11. Numerical results for scaled current JL is plotted against ε and v at ρ = 0.29. For small q, a positive and a negative peak in the
variation of current can be observed from panel (a) while panel (b) shows that there exists a single positive peak in its variation. Such peaks
occur at large positive ε and at moderate v.
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well. Also, for large bulk diffusion, our mean-field theory
does not show satisfactory agreement with simulations, again
due to the built up of quite strong spatial correlations in the
system.

The role of interparticle interactions in controlling particle
transport in the presence of a time-dependent drive can be
tested in experiments. A periodic potential energy landscape
can be created by superimposing external rotating magnetic
field on local periodic arrangement of micromagnets [37].
With the help of this periodic potential, micron-size super
paramagnetic beads can be separated from a complex mixture
by transporting the beads across a substrate. Then, by tuning
the rotational frequency of the external field, the mobility of
a specific type of beads can be significantly reduced. The
interaction among the paramagnetic colloidal particles can be
directly tuned using a modulated ratchet potential [38]. In a
system of paramagnetic particles dispersed in water, driven
across a striped patterned magnetic garnet film, an external
rotating magnetic field induces a periodic potential energy
landscape and causes directed motion of the particles. Interest-
ingly, by varying the ellipticity of the rotating magnetic field,
the interparticle interaction can be changed from attractive
to repulsive. Our conclusions can be tested in this kind of a
setup.

Throughout this work, we have considered interacting
many-particle systems, albeit only on a lattice, where particles
hop in discrete steps. Indeed it would be quite interesting
to investigate particle transport in a continuum. In the past,
there has been some progress made in this direction where
the directed particle transport in continuum was found to be
crucially dependent on the precise nature of the protocols
concerning the externally applied drive. For example, in a
system of particles with nearest-neighbor interaction and dif-
fusing on a one-dimensional ring [39], a sinusoidally varying
traveling wave potential was found to generate a current al-
ways in the direction of the traveling wave itself. However,
in a previous work by two of us, it was demonstrated, using
numerical simulations, that a moving potential barrier can in
fact generate current in either direction, depending on whether
the external potential moves uniformly or in discrete jumps
[40]. Interestingly, some recent studies have reported multiple
current reversal for Brownian particles in the presence of a
traveling wave potential [41–43]. In a slightly different con-
text, authors in Ref. [44] numerically investigated the effect
of interaction on particle transport in asymmetric channels
and observed that, depending on the frequency of the external
periodic drive, it is possible to enhance transport by tuning
the interaction potential. For single-file diffusion of colloidal
particles in an external time-varying force field, various types
of interactions such as Weeks-Chandler-Andersen, Yukawa,
and super paramagnetic potentials were considered [45], and
anomalous transport was observed. Indeed, theoretical un-
derstanding of transport in continuum, with such realistic
potentials and in the presence of a time-dependent drive, will
be of significant interest in the context of obtaining the most
efficient directed flow. However, it is worth mentioning that
any analytical calculations in such a many-particle contin-
uum model is quite challenging. In this scenario, theoretical
studies of lattice models such as those presented here are
quite relevant and useful, particularly in terms of analytically

calculating the transport properties, and could initiate further
research in this direction.

APPENDIX A: EXPRESSION FOR W (α+1)

The (i, j)-th element of the transition matrix [31] can be
readily written as

W (α+1)
i j = 1 − a+ − a− for i = j = α + 1

W (α+1)
i j = a− for i = j + 1 = α + 1

W (α+1)
i j = a+ for i = j − 1 = α + 1 (A1)

W (α+1)
i j = 1 for i = j �= α + 1

W (α+1)
i j = 0 for i �= α + 1, i �= j.

Here a± are the conditional probabilities that, given the defect
site is occupied, a particle from the defect site moves to its
unoccupied right (left) neighboring site during the residence
time τ . For example, when α + 1 = 1 and 2, the respective
transition matrices can be simply written as

W (1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − a+ − a− a+ 0 . . . 0 a−
0 1 0 0 . . . 0
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

0 . . . 0 0 1 0
0 0 . . . 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

W (2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0 0
a− (1 − a+ − a−) a+ 0 . . . 0
0 0 1 0 . . . 0
. . . . . . . . . . . . . . . . . .

0 . . . 0 0 1 0
0 0 . . . 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(A2)

APPENDIX B: CALCULATION OF a± FOR q = 0

In the main text, a+(a−) is defined as the conditional
probability that given the defect site is occupied, a particle
hops from the defect site to its empty right (left) neighbor
site during the residence time τ of the defect at a single site.
Equation (5) provides a formal mathematical definition for
a±. In this Appendix we outline the calculation for ω±

i with
i = 1, 2, . . . , 6 as explicit functions of ε and v.

Let 1̂ (0̂) denote an occupied (empty) defect site. When
a particle hops rightward from the defect site, there are six
possible local configurations, which are 001̂01, 101̂01, 001̂00,
101̂00, 11̂00, and 11̂01. We number them as i = 1, 2, . . . , 6.
Similarly, for leftward hopping possibilities are 101̂00, 101̂01,
001̂00, 001̂01, 001̂1, and 101̂1. For a system of size L we
divide one Monte Carlo step in L time intervals of length
dt = 1/L, where L � 1. For a specific local configuration
i, ω+

i (ω−
i ) is defined as the probability that a particle hops

from the defect site to its right (left) neighboring site dur-
ing τ . The configurations are numbered in such a way, that
ω+

i = ω−
i = ωi. Below we discuss only the rightward hopping
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events, which can be easily generalized for leftward hopping
as well.

1. Calculation for ω1 = ω(001̂01)

For the local configuration 001̂01 the probability that the
particle hopping event takes place during the first infinitesimal
time step dt is given by (1 − ε)dt/4 (see Fig. 1). Probability
that no hopping takes place in this interval is

[
1 − dt (1 − ε)

4
− dt

4

]
(B1)

which includes the possibilities both leftward and rightward
hopping attempts was unsuccessful. The probability that the
hopping event takes place after time 2dt is therefore,

[
1 − dt (1 − ε)

4
− dt

4

][
(1 − ε)dt

4

]
. (B2)

Similarly the probability that it takes place at time 3dt is

[
1 − dt (1 − ε)

4
− dt

4

]2[ (1 − ε)dt

4

]
(B3)

and so on. So the probability ω1 that the hopping happens in
any of the τ/dt time steps is

(1 − ε)dt

4

{
1 +

[
1 − (2 − ε)dt

4

]
+

[
1 − (2 − ε)dt

4

]2

+ · · · +
[

1 − (2 − ε)dt

4

](τ/dt )−1}

= (1 − ε)dt

4

{
1 − [1 − (2 − ε)dt/4]τ/dt

1 − [1 − (2 − ε)dt/4]

}

= 1 − ε

2 − ε

[
1 − e−(2−ε)/4v

]
(B4)

where we have used τ = 1/v and dt → 0.

2. Results for remaining ω

Following similar steps as outlined above, expressions for
all other ω can be derived. We directly present the final results
here

ω2 = ω(101̂01) = 1
2 [1 − e−(1−ε)/2v]

ω3 = ω(001̂00) = 1
2 (1 − e−1/2v )

ω4 = ω(101̂00) = 1

2 − ε
[1 − e−(2−ε)/4v] (B5)

ω5 = ω(11̂00) = [1 − e−(1+ε)/4v]

ω6 = ω(11̂01) = (1 − e−1/4v ).

3. Expressions for C±
i

We provide the formal definitions for C±
i below. These denote the conditional probability of a specific local configuration,

given that the defect site is occupied.

C+
1 = P(001̂01|1̂) =

〈(
1 − η

(α)
α−1

)(
1 − η(α)

α

)
η

(α)
α+1

(
1 − η

(α)
α+2

)
η

(α)
α+3

〉
〈
η

(α)
α+1

〉 , (B6)

C+
2 = P(101̂01|1̂) =

〈
η

(α)
α−1

[
1 − η(α)

α

]
η

(α)
α+1

[
1 − η

(α)
α+2

]
η

(α)
α+3

〉
〈
η

(α)
α+1

〉 , (B7)

C+
3 = P(001̂00|1̂) =

〈[
1 − η

(α)
α−1

][
1 − η(α)

α

]
η

(α)
α+1

[
1 − η

(α)
α+2

][
1 − η

(α)
α+3

]〉
〈
η

(α)
α+1

〉 , (B8)

C+
4 = P(101̂00|1̂) =

〈
η

(α)
α−1

[
1 − η(α)

α

]
η

(α)
α+1

[
1 − η

(α)
α+2

][
1 − η

(α)
α+3

]〉
〈
η

(α)
α+1

〉 , (B9)

C+
5 = P(11̂00|1̂) =

〈
η(α)

α η
(α)
α+1

[
1 − η

(α)
α+2

][
1 − η

(α)
α+3

]〉
〈
η

(α)
α+1

〉 , (B10)

C+
6 = P(11̂01|1̂) =

〈
η(α)

α η
(α)
α+1

[
1 − η

(α)
α+2

]
η

(α)
α+3

〉
〈
η

(α)
α+1

〉 , (B11)

C−
1 = P(101̂00|1̂) =

〈
η

(α)
α−1

[
1 − η(α)

α

]
η

(α)
α+1

[
1 − η

(α)
α+2

][
1 − η

(α)
α+3

]〉
〈
η

(α)
α+1

〉 , (B12)

C−
2 = P(101̂01|1̂) =

〈
η

(α)
α−1

[
1 − η(α)

α

]
η

(α)
α+1

[
1 − η

(α)
α+2

]
η

(α)
α+3

〉
〈
η

(α)
α+1

〉 , (B13)
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FIG. 12. Panels (a) and (b) show particle density profile ρ(x) for ρ = 0.29 and 0.75, respectively, where x denotes the distance from the
defect site. For all bulk density and interaction strength the defect site has a density trough and its right neighbor has a peak. For attractive
interaction the trough and peak are relatively shallower.

C−
3 = P(001̂00|1̂) =

〈[
1 − η

(α)
α−1

][
1 − η(α)

α

]
η

(α)
α+1

[
1 − η

(α)
α+2

][
1 − η

(α)
α+3

]〉
〈
η

(α)
α+1

〉 , (B14)

C−
4 = P(001̂01|1̂) =

〈[
1 − η

(α)
α−1

][
1 − η(α)

α

]
η

(α)
α+1

[
1 − η

(α)
α+2

]
η

(α)
α+3

〉
〈
η

(α)
α+1

〉 , (B15)

C−
5 = P(001̂1|1̂) =

〈[
1 − η

(α)
α−1

][
1 − η(α)

α

]
η

(α)
α+1η

(α)
α+2

〉
〈
η

(α)
α+1

〉 , (B16)

C−
6 = P(101̂1|1̂) =

〈
η

(α)
α−1

[
1 − η(α)

α

]
η

(α)
α+1η

(α)
α+2

〉
〈
η

(α)
α+1

〉 , (B17)

APPENDIX C: ADDITIONAL NUMERICAL RESULTS

We have included the plots of local density ρ(x), obtained from simulations, as a function of position x [Figs. 12(a) and 12(b)]
for ρ = 0.29, 0.75 and q = 0. x is measured from the defect site.

We observe that, the density peak and trough are more pronounced in the case of repulsive interaction. We also find that at low
density, the difference between the height of the peak and the depth of the trough are small, which justifies the small magnitude
of current at low density.
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ρ+, ρ-

ρ
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ρ-, ε = -0.6
ρ-, ε = 0.0
ρ-, ε = 0.6

FIG. 13. ρ± are plotted against bulk density ρ. Mean-field results are presented by solid (ε = −0.6), dashed (ε = 0) and dotted (ε = 0.6)
lines. ρ+ shows a weaker dependence on ρ compared to ρ−. For attractive interaction ρ+(ρ−) is noticeably smaller (greater) than that for the
hardcore and repulsive interactions. Mean-field results show good agreement for ε � 0 but for ε < 0 quantitative deviation from numerical
data is observed. Points, simulations; lines, mean-field theory.
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FIG. 14. ρ± are plotted against defect velocity v. Mean-field results are presented by solid (ε = −0.6), dotted (ε = 0), and dashed (ε = 0.6)
lines which qualitatively capture the variation. For large v both these quantities approach ρ while for small v they show weak variation.
Comparing the data for different ε values show that for all v repulsive interaction causes highest (lowest) ρ+(ρ−).

We have shown the variation of the peak and trough densities ρ+ and ρ−, respectively, as a function of bulk density ρ in
Fig. 13, and compare the simulation results (points) to that obtained from the mean-field theory (solid and dashed lines). We find
that the variation of ρ− with ρ is much stronger compared to that of ρ+. Such a behavior is also supported by the mean-field
theory (lines).

We have studied also the variation of ρ± with v for two different ρ (Fig. 14). For small v a particle can almost always hop out
of the defect site but as v increases such a transition may not always be possible because of short residence time of the defect
[31,32]. Therefore ρ− (ρ+) increases (decreases) with v, finally saturating to ρ for very large v. As ε increases from negative
to positive values, for all v, ρ− becomes systematically lower and ρ+ becomes higher, consistent with what we have shown in
Fig. 13.
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