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Tunable thermal conduction force without macroscopic temperature gradients
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Ubiquitous thermal conduction makes its force effect particularly important in diverse fields, such as electronic
engineering and biochemistry. However, regulating thermal conduction force is still challenging due to two
stringent restrictions. First, a temperature gradient is essential for inducing the force effect. Second, the force
direction is fixed to the temperature gradient in a specific material. Here, we demonstrate that thermal conduction
force can exist unexpectedly at a zero average temperature gradient in dielectric crystals. The wavelike feature
of thermal conduction is considered, i.e., the second sound mode. Based on the momentum conservation law
for phonon gases, we analyze thermal conduction force with the plane, zeroth-order Bessel, and first-order
Bessel second sounds. Remarkably, the force direction is highly tunable to be along or against the second
sound direction. These results provide valuable insights into thermal conduction force in those environments
with temperature fluctuations, and they open up possibilities for practical applications in manipulating the local
thermal conductivity of crystals.
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I. INTRODUCTION

Thermal conduction, a primary mode of heat transfer, is
essential for life and industry [1–3]. At a microscopic level, it
is described by phonon motion [4,5]. As phonons carry energy
and momentum, they can interact with an object in the thermal
conduction path and produce a force on the object through
momentum exchange. Based on the hypothesis that heat flux
interacts with momentum flux [6,7], thermal conduction force
was predicted in the liquid-liquid or liquid-solid phase with
a constant temperature gradient, and its effect was experi-
mentally detected [8]. However, existing research on thermal
conduction force has mainly focused on liquids, ignoring the
ubiquitous solid-solid phase. Moreover, a constant tempera-
ture gradient is necessary to induce the force effect, similar to
the condition for observing thermophoresis [9,10]. The force
direction is also fixed to the temperature gradient in a specific
material, which severely limits the flexibility of thermal con-
duction force regulation. Therefore, studying tunable thermal
conduction force in solid-solid phases without macroscopic
temperature gradients remains a challenging task.

The second sound mode has been shown to exhibit wave-
like behavior in dielectric crystals [11,12], resulting in a
periodic temperature field in space and time, and thus a zero
macroscopic temperature gradient. This is distinct from the
diffusive nature of thermal conduction [13,14]. However, in-
vestigating the force effect of second sounds [herein referred
to as the second sound radiation force (SSRF)] is still chal-
lenging due to several tricky problems. On the one hand,
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the nonlinearity of second sounds leads to the failure of the
Fourier law [15–17]. On the other hand, when second sounds
propagate in dielectric crystals, the phonon model describing
thermal conduction is nonequilibrium, resulting in a highly
complicated case. Despite various experimental evidence of
second sounds [18–24], exploring the interaction between
second sounds and impurities remains elusive.

Here, we propose the fundamental theory of the SSRF
based on the momentum conservation law in phonon systems.
Considering a low temperature and only one branch of lattice
waves, we first investigate the SSRF of the plane second
sound (PSS) and zeroth-order Bessel second sound (ZBSS)
on a fixed spherical particle with the scattering theory; see
Figs. 1(a) and 1(b). Despite the pattern difference of second
sounds, the SSRF direction is always along the propagating
path of second sounds, demonstrating a pushing effect on the
particle. We further study the SSRF of the first-order Bessel
second sound (FBSS), whose direction can be unexpectedly
opposite to the FBSS propagating direction, exhibiting a drag-
ging effect on the particle. The underlying mechanism is that
the scattering properties of different incident second sounds
are distinct, thus showing distinct characteristics. These re-
sults help flexibly change the local phonon spectrum and
realize local thermal conductivity manipulation; see Fig. 1(c).

II. GENERAL THEORY FOR CALCULATING THERMAL
CONDUCTION FORCE

Without loss of generality, we start with a simple model to
investigate the SSRF and consider a crystal where the second
sound propagation is lossless. The temperature is about 10 K,
a typical value ensuring that phonon transport is in the hydro-
dynamic regime [12]. The resistive relaxation time τR is nearly
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FIG. 1. Schematic of thermal conduction force. (a) An adiabatic
spherical particle with a radius a in the presence of an incident
second sound propagating along the z axis is depicted. The particle
center is the origin of the Cartesian coordinate system (x, y, z), and
θ denotes the polar angle. (b) A particle in the presence of the
Bessel second sound is shown, with δ representing the cone angle.
(c) The local thermal conductivity of dielectric crystals can be tuned
by manipulating the interaction between the impurity particle (the
blue sphere) and the second sound (the black wave line). ω1 and ω2

are the vibrating angular frequencies of the impurity particle before
and after interacting with the second sound, and κ1 and κ2 are the
corresponding local thermal conductivities of the crystal. The region
containing the impurity particle is zoomed in for clarity.

infinite, i.e., τR → ∞, indicating that the resistive process
can be ignored. Consequently, the collisions between phonons
keep the total momentum conservation. The normal relaxation
time τN is short, making the collisions between phonons suffi-
ciently frequent, and the phonon system can reach the local
equilibrium state. In natural crystals, the resistive process
inevitably exists, resulting in the second sound attenuation
during propagation. However, when τN � τR, the resistive
process can be neglected [25]. Therefore, adopting the no-
attenuation model is reasonable. Under this circumstance, the
local equilibrium distribution function of the phonon system
is

f (k, r, t ) = 1

eβ(r,t )[h̄ωk−h̄k·u(r,t )] − 1
, (1)

where h̄, ωk , k, and u(r, t ) are the reduced Planck constant,
phonon angular frequency, phonon wave vector, and phonon
drifting velocity, respectively. β(r, t ) = 1/[kBT (r, t )], where
kB is the Boltzmann constant, and T (r, t ) is the local temper-
ature of the crystal. r is the position vector, and t represents
time. Since the temperature and drifting velocity vary spa-
tiotemporally, the phonon system is in a nonequilibrium state.
This state is distinct from the equilibrium state, whose distri-
bution function is given by

f0(k) = 1

eβ0 h̄ωk − 1
, (2)

where β0 = 1/(kBT0) is a constant and T0 is the background
temperature. In fact, when calculating the thermal conduction
force, the size of the impurity plays a significant role and
should be taken into consideration. As a starting point for our
calculations, we make use of the local equilibrium assumption
for the phonon system. It is important to note that as the size of
the impurity varies, the relaxation time τR also changes, which
can be referred to as the size effect. However, in this paper,
regardless of how τR changes, our focus remains on the second
sound region, where τN � τR. Consequently, we can still as-
sume that the phonon system is in a state of local equilibrium.
We use the Debye model to describe the phonon spectrum,
i.e., ωk = c|k|, where c is a constant representing the modulus
of phonon group velocity and implicitly related to the lattice
potential field. The velocities of the longitudinal and trans-
verse waves are equal. According to the Debye model, we
should consider the contribution of one longitudinal wave and
two transverse waves. However, considering only one branch
of lattice waves does not affect the results qualitatively [26];
thus, we only consider the contribution of the longitudinal
wave. Substituting the first-order Taylor expansion for f into
the energy and momentum conservation laws for the phonon
system (see Appendix A), we derive

∂

∂t
E (r, t ) + ∂

∂ri
Qi(r, t ) = 0, (3)

∂

∂t
Pi(r, t ) + ∂

∂rj
Πij(r, t ) = 0, (4)

where E represents the energy density, while Qi, Pi, and Πij

denote the components of energy flux vector, momentum den-
sity vector, and momentum flux tensor of the phonon system,
respectively. The subscripts i or j take x, y, and z, indicating
that the corresponding components, e.g., rx, ry, and rz denote
the coordinate components of r. For repeated subscripts, the
Einstein summation convention is used. We obtain the dy-
namic equations for β and u,(

∂2

∂t2
− c2

3
∇2

)
β(r, t ) = 0, (5)(

∂2

∂t2
− c2

3
∇2

)
ui(r, t ) = 0, (6)

where ∇2 is the Laplace operator in three dimensions. Equa-
tion (5) shows that the temperature field propagates as a wave
[26–29], i.e., the second sound mode.

We consider a fixed spherical impurity with a radius a in
a crystal. The particle boundary is adiabatic, forbidding the
propagation of second sound. The incident second sound in-
teracts with the impurity and is scattered during propagation.
The time-averaged force containing the influence of incident
and scattered second sounds on the particle is the SSRF. Since
the second sound is a continuous sinusoidal wave, we define
the SSRF based on the momentum conservation law,

F = −
∫∫ 〈

Π
′ 〉
dS, (7)

where Π
′
ij = ∑

k h̄kivkj ( f − f0) is the momentum flux of the
second sound, and vkj = ∂ωk/∂kj is the phonon group veloc-
ity component. No second sound appears when the phonon
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system is in equilibrium. We should ignore the contribution of
f0 to explore the SSRF, which is illustrated by f − f0 in the
definition. The integration is over the particle surface S, with
the particle center being the origin of the Cartesian coordinate
system (x, y, z); see Fig. 1(a). The propagating direction of the
second sound is along the z axis. We only consider the SSRF
along the propagating direction, and we obtain

F = −
∫∫ ∑

k

h̄kzvkz ( f − f0)dS. (8)

The SSRF does not exist unless we perform a Taylor expan-
sion of f to at least the second order (see Appendix B). The
general expression of the SSRF is

F = −1

2
×

∫∫ (
2π2

9β4
0 (h̄c)3

〈(
T

′
1

T0

)2〉

+ π2

15β4
0 h̄3c5

〈
|u|2

〉)
dS, (9)

where T
′

1 is the temperature deviation from the background
temperature. Then we should calculate the average value
of T

′2
1 and |u|2. In this paper, we employ the multipole

expansion-based method for the direct calculation of ther-
mal conduction force. In the field of acoustics, there are
two distinct approaches for computing the acoustic radiation
force and torque: the angular spectrum-based method and the
multipole expansion-based method. These methods differ in
how they decompose the incident wave. The former method
decomposes the incident wave into a series of plane waves
[30,31], while the latter method decomposes it into a sum of
spherical waves [32–35]. Each method offers its own advan-
tages. The advantage of the angular spectrum-based method
lies in its direct calculation of the acoustic radiation force
and torque. On the other hand, the multipole expansion-based
method is advantageous due to its ease of setup. However,
Gong et al. have demonstrated the equivalence between
these two methods [36]. The second sound wavelength l , the
normal relaxation time τN, and the second sound speed cs

satisfy l = τNcs, so the second sound wavelength is about
a micrometer [37], much longer than the lattice constant
(about 20 Å) in natural crystals. Thus, we ignore the lattice
effect.

III. PUSHING AND PULLING EFFECTS WITH
DIFFERENT INCIDENT SECOND SOUNDS

We further explore the SSRF with three kinds of second
sounds. First, we consider the SSRF with the plane second
sound (PSS). Though the PSS solution is the simplest one
to Eq. (5), many typical characteristics of the SSRF can be
revealed. Temperature pulses or optical methods could excite
an approximate PSS. The PSS propagating along the z axis
can be described by Tinc = T0 + T1ei(qz−ωt ), where T1, q, and
ω represent the amplitude, wave number, and angular fre-
quency of the second sound. Here, i = √−1. According to
Eq. (6), q and ω satisfy ω = cq/

√
3. We calculate F under the

circumstance of PSS (see Appendix C) and obtain

F = − 2π3a2T 2
1

9β4
0 (h̄c)3T 2

0

∞∑
n=0

2(n + 1)

× [Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)]

− π3T 2
1

5β4
0 (h̄c)3q2T 2

0

∞∑
n=0

2n(n + 1)(n + 2)

× [Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)], (10)

where U and V are decided by the scattering property of the
second sound at the boundary of the impurity particle (see
Appendix C). Then we define Y as the reduced SSRF, only
related to T1/T0 and qa,

Y = F

AE ′
1

= F

πa2E ′
1

= −5T1

3T0

∞∑
n=0

2(n + 1)

× [Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)]

− 3T1

2T0(qa)2

∞∑
n=0

2n(n + 1)(n + 2)

× [Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)], (11)

where A is the cross-section, and E
′
1 is the energy density of

the incident second sound (see Appendix C). The physical
meaning of Y is the SSRF per unit cross section and unit
energy density.

The Y -qa curves are displayed in Fig. 2(a). We set the
particle radius as a = 1 μm, and the range of q is taken as
0 � q � 10 μm−1, which is the same order as the experi-
mental results reported in [23]. Since Y is proportional to
T1/T0, it increases as T1/T0 increases. When qa increases, the
second sound exchanges momentum more frequently with the
particle, and Y increases monotonically. However, when qa
increases further, the particle radius is much longer than the
second sound wavelength, so Y remains stable as the particle
is no longer sensitive to the change of the second sound wave-
length. Since the value of Y is always positive for the PSS, the
SSRF shows a pushing effect on the particle. Our results are
in qualitative agreement with those found in acoustic waves
[38].

Considering the SSRF with the ZBSS, we expect it to
show distinct features as a different solution to Eq. (5). At
the same time, research on the ZBSS is an intermediate case
between the PSS and FBSS, suggesting that the SSRF for
the ZBSS may possess common features with the cases of
the PSS and FBSS. Bessel beams can be realized in acoustic
fields by spiral diffraction gratings, in optical fields by holo-
graphically generated zone plates and axicons [39,40], and
in thermal fields based on a similar mechanism. The ZBSS
propagating along the z-axis can be described by Tinc = T0 +
T1ei(qzz−ωt ) j0(qr

√
x2 + y2), where qz and qr denote the axial

and transverse wave numbers with q2
z + q2

r = q2, and j0(x) is
the zeroth-order Bessel function. As shown in Fig. 1(b), we
use a crucial parameter, the cone-angle δ = arccos(qz/q), to
characterize the Bessel beams. Since the Bessel beams are
composed of various plane waves, δ represents the largest
angle of these components relative to the z-axis. Then, we
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FIG. 2. Numerical results of the reduced second sound radiation force Y under the conditions of (a) plane second sound as a function of
qa (where q and a are the second sound wave number and the particle radius) with the temperature ratio T1/T0 = 0.02, 0.06, 0.10 (where T1

is the second sound amplitude, and T0 is the background temperature); (b) zeroth-order Bessel second sound as a function of qa and δ with
T1/T0 = 0.10; and (c) first-order Bessel second sound as a function of qa and δ with T1/T0 = 0.10. The area enclosed by the red line is where
Y < 0.

obtain the reduced SSRF of the ZBSS,

Y = −5T1

3T0

∞∑
n=0

2(n + 1)[Vn(qa)Un+1(qa)

− Un(qa)Vn+1(qa)]Pn(cos δ)Pn+1(cos δ)

− 3T1

2T0(qa)2

∞∑
n=0

2n(n + 1)(n + 2)[Vn(qa)Un+1(qa)

− Un(qa)Vn+1(qa)]Pn(cos δ)Pn+1(cos δ), (12)

where Pn(x) is the nth Legendre polynomial. Figure 2(b)
shows how Y varies with qa and δ, with the typical value
T1/T0 = 0.10 chosen to satisfy the requirement that T1 should
be much smaller than T0, an implicit condition for deriving
Eqs. (5) and (6). Y does not increase monotonically but with
some undulation as qa increases for a fixed δ (see Appendix D
for more details). This phenomenon is reasonable because the
Bessel second sound is composed of various plane seconds
with different weights, each of which has a different angle
relative to the symmetry axis. Consequently, the respective
contributions of these components are different as qa in-
creases, leading to the nonmonotony of Y after considering
the total effect of these components. Nevertheless, the value
of Y is always positive, indicating that the SSRF still exhibits
a pushing effect on the particle. With δ = 0 and Pn(cos δ) = 1,
the result becomes the same as the case of the PSS. This
result is reasonable since the ZBSS is reduced to the PSS
when δ = 0. Additionally, our results show similar features to
the acoustic radiation force by the zeroth-order Bessel sound
wave [38].

We finally focus on the SSRF with the FBSS. One crucial
feature of the FBSS is that the temperature field does not
have symmetry about the polar axis. Specifically, the expres-
sion of the FBSS has a phase factor related to the azimuthal
angle. Then, we have |u|2 = |uθ |2 + |u2

φ|, which is different
from the former two cases. The FBSS can be expressed
as Tinc = T0 + T1ei(qzz−ωt ) j1(qr

√
x2 + y2), where j1(x) is the

first-order Bessel function. We obtain the reduced SSRF (see

Appendix D),

Y = −5T1

3T0

∞∑
n=1

2

n + 1
[Vn(qa)Un+1(qa)

−Un(qa)Vn+1(qa)]P1
n (cos δ)P1

n+1(cos δ)

− 3T1

2T0(qa)2

∞∑
n=1

2n(n + 2)

n + 1
[Vn(qa)Un+1(qa)

−Un(qa)Vn+1(qa)]P1
n (cos δ)P1

n+1(cos δ), (13)

where Pm
n (x) is the associated Legendre polynomial. The vari-

ation of Y with T1/T0 = 0.10 is shown in Fig. 2(c). Unlike
the former two cases, Y can be negative, indicating that the
direction of the SSRF is opposite to the wave propagating
direction, thus the particle can feel a pulling force. For the
FBSS, the scattering state is distinct from the former two
cases, with the forward scattering of the incident second sound
augmented and the backward scattering suppressed [41]. The
acoustic pulling force has been found in sound waves with the
first-order Bessel beams [38,42–46], and the optical pulling
force has been discovered in similar studies [47,48]. These
results are related to the scattering state of incident waves.
Additionally, the optical pulling force can be realized based
on the background medium rather than the incident wave [49],
and the phase shift approach has been proposed for obtaining
the acoustic pulling force [50], making the acoustic pulling
force more flexible than the traditional approach.

IV. DISCUSSION AND CONCLUSION

We have investigated the force impact of three distinct
types of second sounds. Remarkably, there exists a thermal
conduction force even in the absence of a macroscopic tem-
perature gradient. These findings challenge the conventional
notion that a nonzero temperature gradient is a prerequisite for
inducing thermal conduction force. Moreover, the presence of
thermal conduction force in solids demonstrates both pushing
and unexpectedly pulling forces. In the case of the first-order
Bessel second sound, a negative value of Y indicates the oc-
currence of thermal conduction pulling force. Similarly, with
the higher-order Bessel second sounds (see Appendixes E,
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F, and G), thermal conduction pulling force is found. When
examining the second-order Bessel second sound, denoted as
Tinc = T0 + T1ei(qzz−ωt ) j2(qr

√
x2 + y2), a negative value of Y

is discovered, indicating the presence of a pulling force. This
phenomenon is also revealed with the third-order and fourth-
order Bessel second sounds. Hence, our physical model is
both simple and effective in elucidating the essence of SSRF.

Nevertheless, we have ignored the density variation in-
duced by the temperature in our research. Recently, a novel
force has been discovered in the acoustic field, stemming
from the nonuniform distribution of density, adiabatic com-
pressibility, and dynamic viscosity within the fluid [51]. In
the context of thermal conduction in solids, temperature vari-
ations can also lead to density variations. However, since
our current focus is exclusively on the second sound re-
gion where the background temperature remains constant,
we can disregard the density variation induced by tempera-
ture. Furthermore, we have omitted the consideration of the
corresponding force effect in our analysis. Nevertheless, we
anticipate that future research must give due importance to
the density variation induced by temperature, similar to the
case of fluids. On the other hand, our focus is on the second
sound region of thermal conduction in this paper. Specifically,
we consider the scenario where the relaxation times satisfy
τN � τB � τR. Here τB is the relaxation time for boundary
scattering. In situations where τB � τN and τB � τR, which is
often observed in low-dimensional systems [52–54], thermal
conduction occurs predominantly in the Casimir region. From
a microscopic perspective, the phonons in this region exhibit
ballistic behavior, allowing them to move freely over longer
distances compared to other thermal conduction regimes, such
as the second sound region and the diffusive region. It is worth
noting that ballistic phonons also possess momentum and can
interact with impurities. Drawing inspiration from the elec-
tron scattering problem, Geal derived a rough expression for
the force exerted on an impurity [55]. Additionally, Richard
investigated the force exerted on an atom resulting from the
scattering of phonons [56]. Consequently, it is conceivable to
explore the force effect in the Casimir region. This intriguing
topic warrants further investigation in future studies. The other
two branches of the phonon spectrum should be considered
for future research, and the SSRF on a movable particle also
warrants exploration. Our research could lay the groundwork
for investigating the SSRF and open up the possibility of po-
tential applications in nondestructive local conductivity tuning
in crystals. Since thermal conductivity is closely related to the
phonon spectrum, we can flexibly modify the vibration modes
of impurity particles based on the pushing and pulling effects,
thereby altering the local thermal conductivity of crystals.

To summarize, based on the wavelike characteristic of
thermal conduction, we propose a basic theory for the SSRF
according to the momentum conservation law for phonon
systems. We focus on the SSRF with three typical wave
profiles, i.e., the plane, zeroth-order Bessel, and first-order
Bessel second sounds. A particle can experience a pushing
effect imposed by the plane and zeroth-order Bessel second
sounds. Unexpectedly, the first-order Bessel second sound can
exert a pulling effect on the particle. These results can modify
the local phonon spectrum in crystals at a low temperature

and provide a new mechanism for local thermal conductivity
manipulation.
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APPENDIX A: DYNAMIC EQUATIONS FOR β AND u

According to the local equilibrium distribution function
f , we define the energy density E (r, t ), energy flux Qi(r, t ),
momentum density Pi(r, t ), and momentum flux Πij(r, t ) of
the phonon system, respectively, as follows:

E (r, t ) =
∑

k

h̄ωk f (k, r, t ), (A1)

Qi(r, t ) =
∑

k

h̄ωkvki f (k, r, t ), (A2)

Pi(r, t ) =
∑

k

h̄ki f (k, r, t ), (A3)

Πij(r, t ) =
∑

k

h̄kivkj f (k, r, t ), (A4)

where ωk , k, h̄, and vkj = ∂ωk
∂kj

are the phonon angular fre-
quency, phonon wave vector, the reduced Planck constant,
and the phonon group velocity, respectively. The sum is over
the Brillouin zone. Since the collisions between phonons are
energy-conserved and momentum-conserved, the energy and
momentum conservation laws for the phonon system are

∂

∂t
E (r, t ) + ∂

∂ri
Qi(r, t ) = 0, (A5)

∂

∂t
Pi(r, t ) + ∂

∂rj
Πij(r, t ) = 0. (A6)

Equations (A5) and (A6) are the hydrodynamic equations of
the phonon system. We do the Taylor expansion for f up to
the first order,

f (k, r, t ) ≈ f0 + ∂ f0

∂ωk

[
ωk

β(r, t ) − β0

β0
− k · u(r, t )

]
, (A7)

where f0 = 1
eβ0 h̄ωk −1

is the equilibrium distribution function at
temperature T0, i.e., the background temperature. Then, we
can evaluate the results of Eqs. (A1)–(A4) by Eq. (A7). For
the phonon spectrum, we use the Debye model,

ωk = c|k|, (A8)

where c is a constant. We consider only the contribution of
one branch of lattice waves. By replacing the sums over the
Brillouin zone with integrals, we can derive

E (r, t ) = E0 + E1, (A9a)

Qi(r, t ) = 4

3
ui(r, t )E0, (A9b)

Pi(r, t ) = 4

3c2
ui(r, t )E0, (A9c)

Πij(r, t ) = 1

3
δijE (r, t ), (A9d)
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where E0 = π2

30(h̄c)3β4
0

is the energy density of the phonon sys-

tem at the equilibrium state, and E1 = 2π2T ′
1

15β4
0 (h̄c)3T0

is the energy
density of the second sound; the lower indices i and j take
the values x, y, and z. The Kronecker symbol δij is equal to
1 only when i and j are identical, and 0 otherwise. T ′

1 is the
temperature deviation from the background temperature. We
denote the local temperature of the crystal by T and obtain

T = T0 + T
′

1 . (A10)

Substituting Eqs. (A9a)–(A9d) into Eqs. (A5) and (A6) yields

∂u
∂t

= c2∇ β

β0
, (A11)

∂

∂t

β

β0
= 1

3
∇ · u. (A12)

By combining Eqs. (A11) and (A12), we obtain the dynamic
equation for β and u:(

∂2

∂t2
− c2

3
∇2

)
β(r, t ) = 0, (A13)(

∂2

∂t2
− c2

3
∇2

)
ui(r, t ) = 0. (A14)

APPENDIX B: GENERAL EXPRESSION FOR THE SSRF

We perform the Taylor expansion of f up to the second
order as follows:

f (k, r, t ) = f0(k) + ∂ f0(k)

∂ωk

+ 1

2

∂2 f0(k)

∂ω2
k

[
ω2

k

(
β − β0

β0

)2

+ k2|u|2 cos2 θ ′
]
,

(B1)

where θ ′ is the angle between k and u. Notice that

F = −
∫∫ ∑

k

h̄kzvkz ( f − f0)dS, (B2)

where we have assumed the propagation direction of the sec-
ond sound is along the z axis. We can substitute Eq. (B1) into
Eq. (B2) to express the SSRF along the z axis as

F = −1

2

∫∫ ∑
k

h̄kzvkz

∂2 f0(k)

∂ω2
k

[
ω2

k

(
β − β0

β0

)

+ k2|u|2 cos2 θ ′
]

dS. (B3)

Replacing the sum with integrals, we derive

F = −1

2

∫∫
2π2

9β4
0 (h̄c)3

〈(
β − β0

β0

)2
〉

+ π2

15β4
0 h̄3c5

〈|u|2〉dS.

(B4)

Noting that

β − β0

β0
=

1
T − 1

T0

1
T0

= −T
′

1

T
≈ −T

′
1

T0
, (B5)

then we simplify Eq. (B4) as

F = −1

2

∫∫ ⎛
⎝ 2π2

9β4
0 (h̄c)3

〈(
T

′
1

T0

)2〉
+ π2

15β4
0 h̄3c5

〈|u|2〉
⎞
⎠dS.

(B6)

Equation (B6) is the general expression of SSRF.

APPENDIX C: REDUCED SSRF FOR THE
PLANE-WAVE SECOND SOUND

We need to solve the scattering field. The incident PSS
along the z-axis can be expressed as

Tinc = T1

∞∑
n=0

(2n + 1)in jn(qr)Pn(cos θ )e−iωt , (C1)

where T1 is the amplitude of the second sound, jn(x) is the
spherical Bessel function of order n, Pn(x) is the Legen-
dre polynomial, θ is the polar angle, and ω is the angular
frequency of the second sound. We have neglected the back-
ground temperature T0, but this will not affect the result.
The boundary of the particle is adiabatic, meaning that the
radial component of the drifting velocity for the phonon
system is zero at the surface of the adiabatic particle, i.e.,
ur|r=a = 0. Substituting the expression of T , i.e., Eq. (A10),
into Eq. (A11) yields the following result:

u = c2∇T
′

1

iωT0
. (C2)

It can be verified that the scattering field which satisfies the
adiabatic boundary condition is given by

Tsca = T1

∞∑
n=0

(2n + 1)in

[
− j

′
n(qa)

h′
1,n(qa)

]
h1,n(qr)Pn(cos θ )e−iωt ,

(C3)

where h1,n(x) is the spherical Hankel function of the first
kind of order n, and j

′
n(x) and h

′
1,n(x) are the derivatives of

jn(x) and h1,n(x) with respect to x, respectively. The total
temperature field is given by

T
′

1 = Tinc + Tsca = T1

∞∑
n=0

(2n + 1)in

×
[

jn(qr) − j
′
n(qa)

h′
1,n(qa)

h1,n(qr)

]
Pn(cos θ )e−iωt . (C4)

Note that

h1,n(qr) = jn(qr) + inn(qr), (C5)

where n(x) is the spherical Bessel function of the second kind.
Then Eq. (C4) can be simplified as

T
′

1 = T1

∞∑
n=0

(2n + 1)in[Un(qr) + iVn(qr)]Pn(cos θ )e−iωt ,

(C6)
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where

Un(qr) = Re

[
jn(qr) − j

′
n(qa)

h′
1,n(qa)

h1,n(qr)

]
, (C7)

Vn(qr) = Im

[
jn(qr) − j

′
n(qa)

h′
1,n(qa)

h1,n(qr)

]
, (C8)

where Re and Im denote the real and imaginary parts, respec-
tively. The specific expressions of Un(qr) and Vn(qr) are

Un(qr) = jn(qr) − jn(qa)

j′2n (qa) + n′2(qa)

× [ j′n(qa) jn(qr) + n′
n(qa)n′(qr)], (C9)

Vn(qr) = jn(qa)

j′2n (qa) + n′2(qa)
[ jn(qr)n′

n(qa) + j′n(qa)n′
n(qr)].

(C10)

The following properties of the Legendre polynomial are
used:∫ 1

−1
xPn(x)Pm+1(x)dx = 2(n + 1)

(2n + 1)(2n + 3)
δnm (m � n),

(C11)∫ 1

−1
P

′
nP

′
m+1(1 − x2)xdx = 2n(n + 1)(n + 2)

(2n + 1)(2n + 3)
δnm (m � n).

(C12)

Since the total temperature field is symmetrical about the polar
axis, the total temperature field has no dependence on the
azimuthal angle φ, indicating uφ|r=a = 0. Consequently, due
to ur|r=a = 0, the SSRF expression can be reduced to

F = −1

2

∫∫ ⎛
⎝ 2π2

9β4
0 (h̄c)3

〈(
T

′
1

T0

)2〉
+ π2

15β4
0 h̄3c5

〈|uθ |2〉
⎞
⎠dS.

(C13)

Using the equation of the time average

〈RnRn+1〉 = 1
2 (VnUn+1 − UnVn+1), (C14)

where

Rn = Re[in(Un + iVn)e−iωt ], (C15)

we obtain the result for F under the PSS as follows:

F = − 2π3a2T 2
1

9β4
0 (h̄c)3T 2

0

∞∑
n=0

2(n + 1)[Vn(qa)Un+1(qa)

− Un(qa)Vn+1(qa)]

− π3T 2
1

5β4
0 (h̄c)3q2T 2

0

∞∑
n=0

2n(n + 1)(n + 2)[Vn(qa)Un+1(qa)

− Un(qa)Vn+1(qa)]. (C16)

According to the expression of E1, we get the energy density
of the incident second sound

E
′
1 = 2π2T1

15β4
0 (h̄c)3T0

. (C17)

FIG. 3. Numerical simulation results of the reduced SSRF Y as
a function of qa (with q and a being the wave number of the second
sound and the particle radius, respectively) under the circumstance
of (a) zeroth-order Bessel second sound with the cone-angle δ being
0, π/6, π/4, and π/3, and with the temperature ratio T1/T0 (T1 is the
amplitude of the second sound and T0 is the background temperature)
being T1/T0 = 0.1; (b) first-order Bessel second sound with the cone-
angle δ being π/6, π/4, π/3, and with the temperature ratio T1/T0

being T1/T0 = 0.1.

We can then calculate the following:

Y = −5T1

3T0

∞∑
n=0

2(n + 1)[Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)]

− 3T1

2T0(qa)2

∞∑
n=0

2n(n + 1)(n + 2)[Vn(qa)Un+1(qa)

− Un(qa)Vn+1(qa)]. (C18)

APPENDIX D: REDUCED SSRF FOR THE FIRST-ORDER
SECOND SOUND

The incident FBSS (see Fig. 3) can be expanded as

Tinc = T1e−iωt
∞∑

n=1

(n − 1)!

(n + 1)!
(2n + 1)in−1 jn(qr)P1

n (cos θ )

× P1
n (cos δ)eiφ, (D1)
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where P1
n (x) is the associated Legendre function. With a simi-

lar procedure under the PSS circumstance, the scattering field
reads

Tsca = T1e−iωt
∞∑

n=1

(2n + 1)in−1

[
− j

′
n(qa)

h′
1,n(qa)

]
h1,n(qr)

× P1
n (cos θ )P1

n (cos δ)eiφ. (D2)

The total temperature field can be expressed as

T
′

1 = T1e−iωt
∞∑

n=1

(2n + 1)in−1[Un(qr) + iVn(qr)]P1
n (cos θ )

× P1
n (cos δ)eiφ, (D3)

where Un(qr) and Vn(qr) are the same as the PSS case due
to the adiabatic boundary condition. Under the FBSS circum-
stance, the SSRF is composed of three parts,

F1 = −1

2

∫∫
2π2

9β4
0 (h̄c)3

〈(
T

′
1

T0

)2〉
dS, (D4)

F2 = −1

2

∫∫
π2

15β4
0 h̄3c5

〈|uθ |2〉dS, (D5)

F3 = −1

2

∫∫
π2

15β4
0 h̄3c5

〈|uφ|2〉dS. (D6)

The following properties of the Legendre polynomial and the
associated Legendre polynomial are used:

(2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x), (D7a)

nPn(x) = xP
′
n(x) − P

′
n−1(x), (D7b)

(n + 1)Pn(x) = P
′
n+1(x) − xP

′
n(x), (D7c)

(2n + 1)Pn(x) = P
′
n+1(x) − P

′
n−1(x), (D7d)

(1 − x2)P
′
n(x) = nPn−1(x) − nxPn(x), (D7e)

(2n + 1)xPm
n (x) = (n + m)Pm

n−1(x) + (l + 1 − m)

× Pm
n+1(x) (m � 0), (D8a)

(2n + 1)(1 − x2)
dPm

n

dx
= (n + 1)(n + m)Pm

n−1(x)

− n(n + 1 − m)Pm
n+1(x) (m � 0).

(D8b)

Differentiating both sides of Eq. (D8a) with respect to x, we
obtain

xPm
n

′
(x) = (n + m)Pm′

n−1(x) + (n + 1 − m)Pm′
n+1(x)

2n + 1
− Pm

n (x).

(D9)

Differentiating the both sides of Eq. (D7c) with respect to x,
we get

xP
′′
n (x) = P

′′
n+1(x) − (n + 2)P

′
n(x). (D10)

By performing similar operations, we obtain the following
equations:

xP
′′′
n (x) = P

′′′
n+1(x) − (n + 3)P

′′
n (x), (D11a)

xP
′′′′
n (x) = P

′′′′
n+1(x) − (n + 4)P

′′′
n (x). (D11b)

By combining Eqs. (D7a) and (D7e), we have

(1 − x2)P
′
n(x) = n(n + 1)[Pn−1(x) − Pn+1(x)]

(2n + 1)
. (D12)

Differentiating both sides of Eq. (D12) with respect to x and
combining it with Eq. (D7d) yields

(1 − x2)P
′′
n (x) = 2xP

′
n(x) − n(n + 1)Pn(x). (D13)

Combining Eq. (D7c), we get

(1 − x2)P
′′
n (x) = 2P

′
n+1(x) − (n + 1)(n + 2)Pn(x). (D14)

By performing similar operations and combining Eqs. (D10),
(D11a), and (D11b), we find

(1 − x2)P
′′′
n (x) = 4P

′′
n+1(x) − (n + 2)(n + 3)P

′
n(x),

(D15a)

(1 − x2)P
′′′′
n (x) = 6P

′′′
n+1(x) − (n + 3)(n + 4)P

′′
n (x),

(D15b)

(1 − x2)P
′′′′′
n (x) = 8P

′′′′
n+1(x) − (n + 4)(n + 5)P

′′′
n (x).

(D15c)

Given Pn(1) = 1 and Pn(−1) = (−1)n, with Eq. (D14) and
Eqs. (D15a)–(D15c), we obtain the following:

P
′
n(1) = 1

2 n(n + 1), (D16a)

P
′
n(−1) = 1

2 n(n + 1)(−1)n−1, (D16b)

P
′′
n (1) = 1

8 (n − 1)n(n + 1)(n + 2), (D16c)

P
′′
n (−1) = 1

8 (n − 1)n(n + 1)(n + 2)(−1)n−2, (D16d)

P
′′′
n (1) = 1

48 (n − 2)n(n + 1)(n + 2)(n + 3), (D16e)

P
′′′
n (−1) = 1

48 (n−2)(n−1)n(n + 1)(n + 2)(n + 3)(−1)n−3,

(D16f)

P
′′′′
n (1) = 1

384 (n − 3)(n − 2)n(n + 1)(n+2)(n+3)(n + 4),

(D16g)

P
′′′′
n (−1) = 1

384 (n − 3)(n − 2)(n − 1)n(n + 1)(n + 2)

× (n + 3)(n + 4)(−1)n−4. (D16h)

Then we have

∫ 1

−1
P

′2
n (x)dx =

∫ 1

−1
P

′
n(x)dPn(x) = P

′
n(x)Pn(x)|1−1

−
∫ 1

−1
Pn(x)P

′′
n (x)dx. (D17)
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Noting that

−
∫ 1

−1
Pn(x)P

′′
n (x)dx = − 1

22n(n!)2

∫ 1

−1

dn

dxn
(x2 − 1)n dn+2

dxn+2
(x2 − 1)ndx

= − 1

22n(n!)2

∫ 1

−1

dn+2

dxn+2
(x2 − 1)nd

[
dn−1

dxn−1
(x2 − 1)n

]

= −1

22n(n!)2

[
dn+2

dxn+2
(x2 − 1)n dn−1

dxn−1
(x2 − 1)n|1−1 −

∫ 1

−1

dn−1

dxn−1
(x2 − 1)n dn+3

dxn+3
(x2 − 1)ndx

]

= (−1)2

22n(n!)2

∫ 1

−1

dn+3

dxn+3
(x2 − 1)nd

[
dn−2

dxn−2
(x2 − 1)n

]

= · · · = (−1)n−1

22n(n!)2

∫ 1

−1

d2n

dx2n
(x2 − 1)nd

[
d

dx
(x2 − 1)n

]
= (−1)n−1

22n(n!)2
(2n)!

d

dx
(x2 − 1)n|1−1 = 0, (D18)

combining Eqs. (D16a) and (D16b) yields ∫ 1

−1
P

′2
n (x)dx = n(n + 1). (D19)

Combining Eq. (D7c), we get∫ 1

−1
Pn(x)P

′
n+1(x)dx =

∫ 1

−1
Pn(x)[(n + 1)Pn(x) + xP

′
n(x)]dx =

∫ 1

−1
(n + 1)P2

n (x) + xP
′
n(x)Pn(x)dx = 2. (D20)

Combining Eq. (D7d), we obtain∫ 1

−1
P

′
n(x)Pn+1(x)dx =

∫ 1

−1
Pn+1(x)[P

′
n+2(x) − (2n + 3)Pn+1(x)]dx = 2 − 2 = 0. (D21)

By combining Eqs. (D16a)–(D16f), we find∫ 1

−1
P

′′2
n (x)dx =

∫ 1

−1
P

′′
n (x)dP

′
n(x) = P

′
n(x)P

′′
n (x)|1−1 −

∫ 1

−1
P

′
n(x)P

′′′
n (x)dx = (n2 + n + 3)(n − 1)n(n + 1)(n + 2)

12
(D22)

and ∫ 1

−1
P

′
n(x)P

′′′
n (x)dx = (n − 2)(n − 1)n(n + 1)(n + 2)(n + 3)

24
. (D23)

Combining Eqs. (D10) and (D19), we have∫ 1

−1
P

′
n(x)P

′′
n+1(x)dx = n(n + 1)(n + 2)(n + 3)

4
. (D24)

Combining Eqs. (D7d), (D18), and (D24) yields∫ 1

−1
P

′′
n (x)P

′
n+1(x)dx =

∫ 1

−1
Pn

′′(x)[(2n + 1)Pn(x) + P
′
n−1(x)] = (n − 1)n(n + 1)(n + 2)

4
. (D25)

Combining Eqs. (D11a) and (D22), we get∫ 1

−1
P

′′
n (x)P

′′′
n+1(x)dx = (3n2 + n + 10)(n − 1)n(n + 1)(n + 2)(n + 3)(n + 4)

192
. (D26)

Combining Eqs. (D7d) and (D26), we find∫ 1

−1
P

′′
n (x)P

′′′
n−1(x)dx = (3n2 + 5n + 12)(n − 3)(n − 2)(n − 1)n(n + 1)(n + 2)

192
. (D27)

Thus, we obtain∫ 1

−1
Pn−1(x)P

′′
n+3(x)dx =

∫ 1

−1
Pn−1(x)[(2n + 5)P

′
n+2(x) + P

′′
n+1(x)]dx = 4(2n + 3), (D28a)

∫ 1

−1
P

′
n−1(x)P

′
n+3(x)dx =

∫ 1

−1
[P

′
n+1(x) − (2n + 1)Pn(x)][(2n + 5)Pn+2(x) + P

′
n+1(x)]dx = n(n − 1), (D28b)
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∫ 1

−1
P

′′′
n+1(x)Pn+2(x)dx =

∫ 1

−1
Pn+2(x)dP

′′
n+1(x) = P

′′
n+1(x)Pn+2(x)|1−1 −

∫ 1

−1
P

′
n+2(x)P

′′
n+1(x) = 0, (D28c)

∫ 1

−1
P

′′
n (x)Pn+2(x)dx =

∫ 1

−1
[P

′′
n+2(x) − (2n + 3)P

′
n+1(x)]Pn+2(x)dx = 0, (D28d)

∫ 1

−1
Pn−1(x)P

′
n+2(x)dx =

∫ 1

−1
Pn−1(x)[(2n + 3)Pn+1(x) + P

′
n(x)]dx = 2, (D28e)

∫ 1

−1
Pn−1(x)P

′
n+1(x)dx =

∫ 1

−1
Pn−1(x)[(2n + 1)P

′
n(x) + P

′′
n−1(x)]dx = 2(2n + 1), (D28f)

∫ 1

−1
P

′
n+1(x)P

′′′
n+3(x)dx =

∫ 1

−1
P

′
n+1(x)[(2n + 5)P

′′
n+2(x) + P

′′′
n+1(x)]dx = n(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)

12
, (D28g)

∫ 1

−1
P

′
n(x)P

′′
n+3(x)dx =

∫ 1

−1
P

′
n(x)[(2n + 5)P

′
n+2(x) + P

′′
n+1(x)]dx = n(n + 1)(n2 + 13n + 26)

4
, (D28h)

∫ 1

−1
P

′
n+2(x)P

′
n(x)dx =

∫ 1

−1
P

′
n(x)[(2n + 3)Pn+1(x) + P

′
n(x)]dx = n(n + 1), (D28i)

∫ 1

−1
P

′′
n+2(x)Pn(x)dx =

∫ 1

−1
Pn(x)[(2n + 3)P

′
n+1(x) + P

′′
n (x)]dx = 2(2n + 3), (D28j)

∫ 1

−1
P

′′
n+2(x)Pn(x)dx =

∫ 1

−1
Pn(x)[(2n + 3)P

′
n+1(x) + P

′′
n (x)]dx = 2(2n + 3), (D28k)

∫ 1

−1
P

′′
n+2(x)P

′
n−1(x)dx =

∫ 1

−1
[(2n + 3)P

′
n+1(x) + P

′′
n (x)][P

′
n+1(x) − (2n + 1)Pn(x)]dx = (n − 1)n(n2 + 11n + 14)

4
, (D28l)

∫ 1

−1
P

′′′
n+1(x)P

′
n+3(x)dx =

∫ 1

−1
P

′′′
n+1(x)[(2n + 5)Pn+2(x) + P

′
n+1(x)]dx = (n − 1)n(n + 1)(n + 2)(n + 3)(n + 4)

24
, (D28m)

∫ 1

−1
P

′′′
n+1(x)Pn+2(x)dx = P

′′
n+1(x)Pn+2(x)|1−1 −

∫ 1

−1
P

′′
n+1(x)P

′
n+2(x)dx = 0, (D28n)

∫ 1

−1
P

′′
n (x)P

′
n+3(x)dx =

∫ 1

−1
[P

′′
n+2(x) − (2n + 3)P

′
n+1(x)][(2n + 5)Pn+2(x) + P

′
n+1(x)]dx = (n − 1)n(n + 1)(n + 2)

4
,

(D28o)∫ 1

−1
P

′′′
n+1(x)P

′′
n+4(x)dx =

∫ 1

−1
[P

′′′
n+3(x) − (2n + 5)P

′′
n+2(x)][(2n + 7)P

′
n+3(x) + P

′′
n+2(x)]dx

= (3n4 + 30n3 + 57n2 − 90n)[(n + 1)(n + 2)(n + 3)(n + 4)]

192
, (D28p)∫ 1

−1
P

′′
n (x)P

′′
n+4(x)dx =

∫ 1

−1
[P

′′
n+2(x) − (2n + 3)P

′
n+1(x)][(2n + 7)[(2n + 5)Pn+2(x) + Pn+1

′
(x)] + P

′′
n+2(x)]dx

= (n + 1)(n + 2)(n4 + 12n3 + 20n − 33n)

12
, (D28q)∫ 1

−1
P

′
n−1(x)P

′′
n+4(x)dx =

∫ 1

−1
[P

′
n+1(x) − (2n + 1)Pn(x)]{(2n + 7)[(2n + 5)Pn+2(x) + P

′
n+1(x)] + P

′′
n+2}dx

= (n4 + 18n3 + 23n2 − 42n)

4
. (D28r)

Now, our main task is to evaluate the following three expressions: C1 = ∫ 1
−1 P1

n (x)P1
n+1(x)xdx; C2 = ∫ 1

−1 P1
n (x)P1

n+1(x) x
1−x2 dx;

and C3 = ∫ 1
−1 x(1 − x2)P1′

n (x)P1′
n+1(x)dx. Note that

∫ 1

−1
P1

n (x)P1
n+1(x)xdx =

∫ 1

−1
P

′
n(x)P

′
n+1(x)x(1 − x2) = 2n(n + 1)(n + 2)

(2n + 1)(2n + 3)
, (D29)∫ 1

−1
P1

n (x)P1
n+1(x)

x

1 − x2
dx =

∫ 1

−1
xP

′
n(x)P

′
n+1(x)dx =

∫ 1

−1
[P

′
n+1(x) − (n + 1)Pn(x)]P

′
n+1(x)dx

= n(n + 1). (D30)
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To evaluate
∫ 1
−1 x(1 − x2)P1′

n (x)P1′
n+1(x)dx, we know that∫ 1

−1
P1

n

′
(x)P1′

n+1(x)(1 − x2)xdx =
∫ 1

−1

[
(n + 1)P1′

n−1(x) + nP1′
n+1(x)

2n + 1
− P1

n

][
(n + 2)2P1

n (x) − (n + 1)2P1
n+2(x)

2n + 3

]
dx, (D31)

and ∫ 1

−1
P1′

n−1(x)P1
n (x)dx =

∫ 1

−1
[P

′′
n−1(x)(1 − x2)

1
2 − x

(1 − x2)
1
2

](1 − x2)
1
2 P

′
n(x)dx = n(n + 1) − 2n = −n(n − 1), (D32)∫ 1

−1
P1′

n−1(x)P1
n+2(x)dx =

∫ 1

−1
(1 − x2)P

′′
n−1(x)P

′
n+2(x) − xP

′
n−1(x)P

′
n+2(x)dx = −n(n − 1), (D33)∫ 1

−1
P1′

n+1(x)P1
n+2(x)dx =

∫ 1

−1
(1 − x2)P

′′
n+1(x)P

′
n+2(x) − xP

′
n+1(x)P

′
n+2(x)dx = −(n + 1)(n + 2), (D34)∫ 1

−1
P1′

n+1(x)P1
n (x)dx =

∫ 1

−1
(1 − x2)P

′′
n+1(x)P

′
n(x) − xP

′
n+1(x)P

′
n(x)dx = n(n + 1). (D35)

Then we have ∫ 1

−1
P1

n

′
(x)P1′

n+1(x)(1 − x2)xdx = n(n + 1)(2n3 + 4n − 3)

(2n + 1)(2n + 3)
. (D36)

For an mth-order Bessel second sound, the SSRF is given by

F = − 2π3a2T 2
1

9β4
0 (h̄c)3T 2

0

∞∑
n=m

C1
(n − m)!(n + 1 − m)!(2n + 1)(2n + 3)

(n + m)!(n + 1 + m)!
[Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)]Pm

n (cos δ)Pm
n+1(cos δ)

− π3T 2
1

5β4
0 (h̄c)3q2T 2

0

∞∑
n=m

(m2C2 + C3)
(n − m)!(n + 1 − m)!(2n + 1)(2n + 3)

(n + m)!(n + 1 + m)!

× [Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)]Pm
n (cos δ)Pm

n+1(cos δ), (D37)

and the reduced SSRF is

Y = −5T1

3T0

∞∑
n=m

C1
(n − m)!(n + 1 − m)!(2n + 1)(2n + 3)

(n + m)!(n + 1 + m)!
[Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)]Pm

n (cos δ)Pm
n+1(cos δ)

− 3T1

2T0(qa)2

∞∑
n=m

(m2C2 + C3)
(n − m)!(n + 1 − m)!(2n + 1)(2n + 3)

(n + m)!(n + 1 + m)!

× [Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)]Pm
n (cos δ)Pm

n+1(cos δ). (D38)

In the case of FBSS, then, we see∫ 1

−1
P1

n

′
(x)P1′

n+1(x)(1 − x2)xdx +
∫ 1

−1
P1

n (x)P1
n+1(x)

x

1 − x2
dx = 2n2(n + 1)(n + 2)2

(2n + 1)(2n + 3)
. (D39)

Thus, we obtain the following expression for Y :

Y = −5T1

3T0

∞∑
n=1

2

n + 1
[Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)]P1

n (cos δ)P1
n+1(cos δ)

− 3T1

2T0(qa)2

∞∑
n=1

2n(n + 2)

n + 1
[Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)]P1

n (cos δ)P1
n+1(cos δ). (D40)

APPENDIX E: REDUCED SSRF FOR THE SECOND-ORDER BESSEL SECOND SOUND

To calculate the reduced SSRF of the second-order Bessel second sound (see Fig. 4), the following expressions must be
evaluated :C1 = ∫ 1

−1 P2
n (x)P2

n+1(x)xdx, C2 =∫ 1
−1 P2

n (x)P2
n+1(x) x

1−x2 dx, and C3 = ∫ 1
−1 x(1 − x2)P2′

n (x)P2′
n+1(x)dx. Noting that∫ 1

−1
xP2

n (x)P2
n+1(x)dx = n − 1

2n + 1

2

2n + 3

(n + 3)!

(n − 1)!
, (E1)
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FIG. 4. Numerical simulation results of the reduced SSRF Y
under the circumstance of the second-order Bessel second sound
(a) as a function of both qa and δ (the area enclosed by the red line
is where Y < 0); and (b) as function of qa with the cone-angle δ

being π/6, π/4, π/3, and with the temperature ratio T1/T0 being
T1/T0 = 0.10.

∫ 1

−1
(1 − x2)xP2

n

′
(x)P2′

n+1(x)dx

=
∫ 1

−1

[
(n + 2)P2′

n−1(x) + (n − 1)P2′
n+1(x)

2n + 1
− P2

n (x)

]

×
[

(n + 2)(n + 3)

2n + 3
P2

n (x) − n(n + 1)

2n + 3
P2

n+2(x)

]
dx, (E2)

and∫ 1

−1
P2′

n−1(x)P2
n (x)dx =

∫ 1

−1
[2P

′′
n (x) − n(n + 1)P

′
n−1(x)]

× [2P
′
n+1(x) − (n + 1)(n + 2)Pn(x)]dx

= −(n − 2)(n − 1)n(n + 1), (E3)∫ 1

−1
P2

n

′
(x)P2

n−1(x)dx =
∫ 1

−1
P2

n−1(x)dP2
n (x) = P2

n (x)P2
n−1(x)|1−1

−
∫ 1

−1
P2

n (x)dP2
n−1(x)

FIG. 5. Numerical simulation results of the reduced SSRF Y
under the circumstance of the third-order Bessel second sound (a) as
a function of both qa and δ (the area enclosed by the red line is where
Y < 0); and (b) as a function of qa with the cone-angle δ being π/6,
π/4, π/3, and with the temperature ratio T1/T0 being T1/T0 = 0.10.

= −
∫ 1

−1
P2′

n−1P2
n (x)dx = (n − 2)

× (n − 1)n(n + 1), (E4)

thus we find

∫ 1

−1
P2

n (x)P2′
n+1(x)dx = (n − 1)n(n + 1)(n + 2), (E5)

∫ 1

−1
P2′

n+1(x)P2
n+2(x)dx = −n(n + 1)(n + 2)(n + 3). (E6)

Remembering that

∫ 1

−1
P2

n
2
(x)dx = (n + 2)!

(n − 2)!

2

2n + 1

= 1

2n + 1
(n − 1)n(n + 1)(n + 2) (E7)
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FIG. 6. Numerical simulation results of the reduced SSRF Y un-
der the circumstance of the fourth-order Bessel second sound (a) as a
function of both qa and δ (the area enclosed by the red line is where
Y < 0); and (b) as a function of qa with the cone-angle δ being π/6,
π/4, π/3, and with the temperature ratio T1/T0 being T1/T0 = 0.10.

and∫ 1

−1
P2′

n−1(x)P2
n+2(x)dx =

∫ 1

−1
[2P

′′
n (x) − n(n + 1)P

′
n−1(x)]

× [2P
′
n+3(x) − (n + 3)(n + 4)

Pn(x)]dx = −(n − 2)(n − 1)n(n + 1), (E8)

therefore we have∫ 1

−1
(1 − x2)xP2

n

′
(x)P2′

n+1(x)dx

= (n − 1)n(n + 1)(n + 2)[2n3 + 2n2 − 4n − 6]

(2n + 1)(2n + 3)
(E9)

and∫ 1

−1
P2

n (x)P2
n+1(x)

x

1 − x2
dx =

∫ 1

−1
(1 − x2)xP

′′
n (x)P

′′
n+1(x)

= (n − 1)n(n + 1)(n + 2)

2
.

(E10)

Thus, we can get∫ 1

−1
(1 − x2)xP2

n

′
(x)P2′

n+1(x)dx + 4
∫ 1

−1
P2

n (x)P2
n+1(x)

x

1 − x2
dx

= (n − 1)n(n + 1)(n + 2)(2n3 + 10n2 + 12n)

(2n + 1)(2n + 3)
. (E11)

Then, the results of Y can be expressed as

Y = −5T1

3T0

∞∑
n=2

2

n(n + 1)(n + 2)
[Vn(qa)Un+1(qa)

− Un(qa)Vn+1(qa)]P2
n (cos δ)P2

n+1(cos δ)

− 3T1

2T0(qa)2

∞∑
n=2

2

n + 1
[Vn(qa)Un+1(qa)

− Un(qa)Vn+1(qa)]P2
n (cos δ)P2

n+1(cos δ). (E12)

APPENDIX F: REDUCED SSRF FOR THE THIRD-ORDER BESSEL SECOND SOUND

Similarly, the third-order Bessel second sound should be evaluated in terms of the following expressions: C1 =∫ 1
−1 P3

n (x)P3
n+1(x)xdx, C2 = ∫ 1

−1 P3
n (x)P3

n+1(x) x
1−x2 dx, and C3 = ∫ 1

−1 x(1 − x2)P3′
n (x)(x)P3′

n+1(x)dx. Noting that

∫ 1

−1
xP3

n (x)P3
n+1(x)dx = n − 2

2n + 1

2

2n + 3

(n + 4)!

(n − 2)!
, (F1)∫ 1

−1
P3

n (x)P3
n+1(x)

x

1 − x2
dx =

∫ 1

−1
(1 − x2)2xP

′′′
n (x)P

′′′
n+1(x)dx = (n − 2)(n − 1)n(n + 1)(n + 2)(n + 3)

3
, (F2)

and

P3
n (x) = 4(1 − x2)

1
2 P

′′
n+1(x) − (n + 2)(n + 3)P

′
n(x)(1 − x2)

1
2 , (F3)

and

P3
n

′
(x) = 4P

′′′
n+1(x)(1 − x2)

1
2 − 4x

(1 − x2)
1
2

P
′′
n+1(x) + (n + 2)(n + 3)

x

(1 − x2)
1
2

− (n + 2)(n + 3)P
′′
n (x)(1 − x2)

1
2 , (F4)
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then we get ∫ 1

−1
P3′

n−1(x)P3
n (x)dx = −(n − 3)(n − 2)(n − 1)n(n + 1)(n + 2), (F5)∫ 1

−1
P3′

n−1(x)P3
n+2(x)dx = −(n − 3)(n − 2)(n − 1)n(n + 1)(n + 2), (F6)

and ∫ 1

−1
P3

n

′
(x)P3

n−1(x)dx =
∫ 1

−1
P3

n−1(x)dP3
n (x) = P3

n (x)P3
n−1(x)|1−1 −

∫ 1

−1
P3

n (x)dP3
n−1(x) = −

∫ 1

−1
P3′

n−1(x)P3
n (x)dx

= (n − 3)(n − 2)(n − 1)n(n + 1)(n + 2), (F7)∫ 1

−1
P3′

n+1(x)P3
n+2(x)dx = −(n − 1)n(n + 1)(n + 2)(n + 3)(n + 4), (F8)∫ 1

−1
P3

n+1(x)P3
n+1(x)dx = 2

2n + 1

(n + 3)!

(n − 3)!
. (F9)

Therefore, we have ∫ 1

−1
(1 − x2)xP3

n

′
(x)P3′

n+1(x)dx = (2n3 − 8n − 9)(n − 2)(n − 1)n(n + 1)(n + 2)(n + 3)

(2n + 1)(2n + 3)
, (F10)∫ 1

−1
(1 − x2)xP3

n

′
(x)P3′

n+1(x)dx + 9
∫ 1

−1
P3

n (x)P3
n+1(x)

x

1 − x2
dx = 2(n − 2)(n − 1)n2(n + 1)(n + 2)2(n + 3)(n + 4)

(2n + 1)(2n + 3)
. (F11)

The expression of the reduced SSRF for the third-order Bessel second sound (see Fig. 5) is

Y = −5T1

3T0

∞∑
n=3

2

(n − 1)n(n + 1)(n + 2)(n + 3)
[Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)]P3

n (cos δ)P3
n+1(cos δ)

− 3T1

2T0(qa)2

∞∑
n=3

2

(n − 1)(n + 1)(n + 3)
[Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)]P3

n (cos δ)P3
n+1(cos δ). (F12)

APPENDIX G: REDUCED SSRF FOR THE FOURTH-ORDER BESSEL SECOND SOUND

As before, our main goal is to evaluate the following expressions: C1 = ∫ 1
−1 P4

n (x)P4
n+1(x)xdx, C2 = ∫ 1

−1 P4
n (x)P4

n+1(x) x
1−x2 dx,

and C3 = ∫ 1
−1 x(1 − x2)P4′

n (x)P4′
n+1(x)dx. Noting that∫ 1

−1
xP4

n (x)P4
n+1(x)dx = n − 3

2n + 1

2

2n + 3

(n + 5)!

(n − 3)!
, (G1)∫ 1

−1
P4

n (x)P4
n+1(x)

x

1 − x2
dx = (n − 3)(n − 2)(n − 1)n(n + 1)(n + 2)(n + 3)(n + 4)

4
, (G2)

and ∫ 1

−1
(1 − x2)xP4

n

′
(x)P4′

n+1(x)dx

=
∫ 1

−1

[
(n + 4)P4′

n−1(x) + (n − 3)P4′
n+1(x)

2n + 1
− P4

n (x)

][
(n + 2)(n + 5)P4

n (x) − (n + 1)(n − 2)P4
n+2(x)

2n + 3

]
dx, (G3)

P4
n

′
(x) = 6(1 − x2)P

′′′
n+1(x) − (n + 3)(n + 4)P

′′
n (x)(1 − x2)

= 6[4P
′′
n+2(x) − (n + 3)(n + 4)P

′
n+1(x)] − (n + 3)(n + 4)[2P

′
n+1(x) − (n + 1)(n + 2)Pn(x)]

= 24P
′′
n+2(x) − 8(n + 3)(n + 4)P

′
n+1(x) + (n + 1)(n + 2)(n + 3)(n + 4)Pn(x), (G4)

P4′
n−1(x) = 24P

′′′
n+1(x) − 8(n + 2)(n + 3)P

′′
n (x) + n(n + 1)(n + 2)(n + 3)P

′
n−1(x), (G5)∫ 1

−1
P4′

n−1(x)P4
n (x)dx = −(n − 4)(n − 3)(n − 2)(n − 1)n(n + 1)(n + 2)(n + 3), (G6)
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∫ 1

−1
P4′

n−1(x)P4
n+2(x)dx = −(n − 4)(n − 3)(n − 2)(n − 1)n(n + 1)(n + 2)(n + 3), (G7)∫ 1

−1
P4

n

′
(x)P4

n−1(x)dx =
∫ 1

−1
P4

n−1(x)dP4
n (x) = P4

n (x)P4
n−1(x)|1−1 −

∫ 1

−1
P4

n (x)dP4
n−1(x) = −

∫ 1

−1
P4′

n−1(x)P4
n (x)dx

= (n − 4)(n − 3)(n − 2)(n − 1)n(n + 1)(n + 2)(n + 3), (G8)∫ 1

−1
P4

n (x)P4′
n+1(x)dx = (n − 3)(n − 2)(n − 1)n(n + 1)(n + 2)(n + 3)(n + 4), (G9)∫ 1

−1
P4

n
2
(x)dx = 2

2n + 1
(n − 3)(n − 2)(n − 1)n(n + 1)(n + 2)(n + 3)(n + 4), (G10)∫ 1

−1
P4′

n+1(x)P4
n+2(x)dx = −(n − 2)(n − 1)n(n + 1)(n + 2)(n + 3)(n + 4)(n + 5), (G11)

then we have∫ 1

−1
(1 − x2)xP4

n

′
(x)P4′

n+1(x)dx = (n − 3)(n − 2)(n − 1)n(n + 1)(n + 2)(n + 3)(n + 4)[2n3 − 2n2 − 12n − 12]

(2n + 1)(2n + 3)
. (G12)

Thus we can know ∫ 1

−1
(1 − x2)xP4

n

′
(x)P4′

n+1(x)dx + 16
∫ 1

−1
P4

n (x)P4
n+1(x)

x

1 − x2
dx

= (n − 3)(n − 2)(n − 1)n(n + 1)(n + 2)(n + 3)(n + 4)[2n3 + 14n2 + 20n]

(2n + 1)(2n + 3)
. (G13)

And the result of the reduced SSRF (see Fig. 6) is

Y = −5T1

3T0

∞∑
n=4

2

(n − 2)(n − 1)n(n + 1)(n + 2)(n + 3)(n + 4)
[Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)]P4

n (cos δ)P4
n+1(cos δ)

− 3T1

2T0(qa)2

∞∑
n=4

2

(n − 2)(n − 1)(n + 1)(n + 3)(n + 4)
[Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)]P4

n (cos δ)P4
n+1(cos δ). (G14)
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