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Berezinskii-Kosterlitz-Thouless transition from neural network flows
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We adopt the neural network (NN) flow method to study the Berezinskii-Kosterlitz-Thouless (BKT) phase
transitions of the two-dimensional g-state clock model with ¢ > 4. The NN flow consists of a sequence of
the same units that proceed with the flow. This unit is a variational autoencoder trained by the data of Monte
Carlo configurations in unsupervised learning. To gauge the difference among the ensembles of Monte Carlo
configurations at different temperatures and the uniqueness of the ensemble of NN-flow states, we adopt the
Jensen-Shannon divergence (JSD) as the information-distance measure “thermometer.” This JSD thermometer
compares the probability distribution functions of the mean spin value of two ensembles of states. Our results
show that the NN flow will flow an arbitrary spin state to some state in a fixed-point ensemble of states. The
corresponding JSD of the fixed-point ensemble takes a unique profile with peculiar features, which can help to
identify the critical temperatures of BKT phase transitions of the underlying Monte Carlo configurations.
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I. INTRODUCTION

Machine learning is a powerful tool for extracting relevant
features from big data and then classifying the data according
to these learned features. It has a wide range of applications
to physical sciences [1-9]. When applied to physics study, the
thermal states or quantum states of many-body systems are
the natural arenas to exploit the power of machine learning in
dealing with big data. Indeed, there have been many studies of
identifying the phase transitions and critical states by machine
learning, e.g. [10-27]. Most studies are based on the so-called
supervised learning by training the neural network with the
labeled data, e.g., labeling the thermal states by temperature
and then using the trained machine to classify the unknown
states and identify the phase transition point. There are two
challenges to such studies. One is to discover new physics
through machine learning, such as the new critical states.
With supervised learning, the answers, e.g., critical states, are
already encoded in the training set. The machine should be
able to identify the target states without specifying them in
advance in the training stage. This is the practice of unsuper-
vised machine learning, by which the machine is trained with
unlabeled data to find the posteriors of the data set encoding
the information of the relevant features.

There are many approaches to uncovering the phase struc-
tures through unsupervised learning, e.g. [15-21]. Among
them, there is an unconventional approach of adopting the
unsupervised learning neural network to identify phase tran-
sitions, the so-called neural network (NN) flow [18-21], by
mimicking the spirit of renormalization group (RG) flow. In-
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stead of training the machine to classify the thermal states,
to proceed with the NN flow, we first use the unlabeled data
to train an unsupervised neural network such as autoencoder
(AE) or variational autoencoder (VAE) imperfectly, i.e., with-
out having high accuracy. We call this neural network the unit
of NN flow. The AE structure with encoding and decoding
parts bears a similar role to the single decimation (encoding)
and rescaling (decoding) step in the RG flow. We then build up
a machine of NN flow by connecting a sequence of the same
flow units. The NN flows proceed by flowing the input states
through the NN-flow machine to obtain the corresponding
flow states. Surprisingly, the flow states will approach a fixed-
point ensemble of states by which one can identify the phase
transition by a temperature prediction network which plays
the role of a thermometer. The validity of the NN flow-method
has been demonstrated with its application to g = 2, 3, 4 Potts
and clock spin models with various frameworks of unsuper-
vised machine structure, such as the restricted Boltzmann
machine (RBM) and (variational) autoencoder (AE/VAE)
[21]. The success of NN flow demonstrates its similarity to the
renormalization group flow (RG flow), which flows any state
away from the critical state by sequential scaling or rescaling
procedures, and the unit of NN flow plays a similar role of
the scaling or rescaling operation. Despite that, the underlying
mechanism for the success of NN flow is not completely clear.

Another challenge is to apply the machine-learning tech-
nique to identify the topological phase transition, such as
the Berezinskii-Kosterlitz-Thouless (BKT) transition [28-31].
Unlike the usual Landau-Ginzburg-type phase transition,
there is no local order parameter to characterize the BKT
phase transition; thus, in some sense, the BKT phase transition
is continuous, or so-called “topological.”” One may need to
adopt nonlocal observables, such as the vortex condensation,
to distinguish the BKT phase from the non-BKT ones. Re-
garding pattern recognition from the machine-learning point

©2023 American Physical Society
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of view, the relevant features of the BKT phase transition
should be less evident than the Landau-Ginzburg ones. The
BKT phase transition was first studied for the XY model. A
family of its discrete versions called the g-state clock model
with ¢ > 5 can also display the BKT phase [32,33]. The BKT
phase appears in the XY model whenever the temperature T
is below a critical temperature. However, for the above clock
models, the BKT phase appears when 7} < T < 7. Below
Ti, the model is in the ferromagnetic (Z, broken) phase, and
above T, the paramagnetic (disordered) phase. Thus, there are
the BKT phase transitions at both 77 and 7,, which are not
easy to identify precisely because of the lack of a local order
parameter of the Landau-Ginzburg type even by numerical
methods [34-39]. Despite that, it has been suggested there
emerges an onset temperature 7, for the ¢ > 4 clock model,
beyond which the thermodynamical observables of the dis-
crete rotor models collapse into the ones of the continuous
rotor model (¢ = oo). Thus, thermodynamics in this regime
becomes g-independent, which defines the so-called extended
universality [40]. For g > 8 clock models, T, > T,, so that
the phase transition at 7, is BKT. On the other hand, for the
cases of g =5,6,7, T, < T,, and the phase transition at 7,
is not guaranteed to be BKT. It was claimed in [40] that the
transition at 7, for ¢ = 6, 7 is non-BKT by some arguments,
but in [32,34,41], it was showed otherwise.

Despite the intriguing feature of topological phase tran-
sitions and the difficulty of characterization, some machine-
learning studies identify BKT phases for clock models based
on the supervised learning scheme [42,43]. In this work we
apply the NN-flow method to identify the BKT phase tran-
sitions for the clock models. In our previous work [21], we
have studied the NN flows of the clock models with g < 4, of
which the phase transitions are of the Landau-Ginzburg type.
Regarding the g > 5 cases, we have also done some trials
during the working period for [21], but we cannot identify
the BKT phase transitions. There are two reasons for this
failure. One is due to the inaccurate training data for the
BKT states by our chosen Monte Carlo method. The other
is due to an inaccurate machine-learning thermometer, which
cannot give a precise temperature reading of the NN-flow
configurations in the low-temperature regime because of the
less relevant features in such a regime. In this work we have
improved the implementation of NN flow for BKT phase
transitions. We adopt a more accurate Monte Carlo scheme so
that the simulated states can exhibit the BKT phase transitions
and serve as the training data for the unit of NN flow. For
characterizing the configurations, we give up the machine-
learning thermometer, which is hard to train to be accurate
enough for the low-temperature regime. Instead, we adopt the
information-distance quantity, the so-called Jensen-Shannon
divergence (JSD), which is a generalization of the Kullback-
Leibler divergence, to measure the difference between two
ensembles of thermal states at different temperatures. There-
fore, we can use the Monte Carlo states of a given temperature
as the gauge ensemble to compare with the ensemble of the
NN-flow states.

In this way, we first see that the NN-flow ensembles ob-
tained from the different temperature ensembles of Monte
Carlo simulated configurations all yield the same information-
distance measure profile. This implies that all the NN-flow

states belong to the same ensemble of states, which we call the
fixed-point ensemble (of states). Next, the JSD profile shows
peculiar features at phase transitions to help identify critical
temperatures 7 . For example, the information-distance mea-
sure shows a sharp drop near 7] and a local minimum near 7.
Our results show that the NN flow can flow an arbitrary state
to a state in the fixed-point ensemble, and the pattern of its
JSD can be used to identify the critical temperatures of BKT
phase transitions. Since the JSD shows a minimum near 7,
we may expect that the NN-flow states capture the essence of
the critical states at 7>. However, this is not the case, as we
will discuss later.

The remainder of this paper is organized as follows. In
Sec. II we review the clock models and BKT phase transi-
tions and describe our Monte Carlo method and the phase
diagrams of the simulated results. In Sec. III we review the
method of NN flow. In Sec. IV we introduce the information-
distance “thermometer” for measuring the temperatures of
thermal ensemble states. In Sec. V we show the results of the
NN flows of the ¢ = 2,4,5,6,7,8 clock models on 20x20
and 40x40 lattices, including the patterns of JSDs and their
features for identifying the (non-)BKT phase transitions. We
also examine whether the fixed-point ensemble states bear the
physical properties of the BKT phase. We conclude our paper
in Sec. VI. In Appendix A we show more details on the phase
diagrams of our Monte Carlo configurations. In Appendix B
we show the typical schematic structure of the NN model for
training the unit of NN flow and a typical training accuracy
histogram.

II. MONTE CARLO SIMULATION OF Q-STATE CLOCK
MODEL AND BEREZINSKII-KOSTERLITZ-THOULESS
TRANSITION

We study the g-state clock model on the square lattice,
which is described by the following Hamiltonian:

H=—J) cost; —6)), (1)
(ij)

where the g-state spin on the site i is characterized by the
Potts variable 6; = 2ms;/q withs; =0, 1,...,¢9 — 1, and (ij)
denotes the nearest neighbors that interact by the ferromag-
netic coupling J > 0. The thermodynamic behaviors of the
model and the associated phase transitions are encoded in the
following partition function at finite temperature 7':

J
Zy= ) exp ](B—Tzcos(e,-—ej). )

all possible 6;,0; (i)

In the following, we set J =1 as the energy unit. The g-
state clock model has been extensively investigated both
analytically [32,33,41] and numerically [34—40]. The model
is exactly solvable for g = 2, 3,4 [44]. For g = 2, 3, they
reduce to the Ising and the three-state Potts models, respec-
tively; for ¢ = 4, it can be mapped into a double copy of the
Ising model. Therefore, their phase transitions are the second
order of the Landau-Ginzburg types. As discussed before, for
q > 5, the model displays the BKT phase sandwiched by a
low-temperature ferromagnetic (Z,) broken phase and a high-
temperature paramagnetic (disordered) phase. Thus, we may
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FIG. 1. (a) Magnetization and (b) magnetic susceptibility for the
g-state clock model are obtained from Monte Carlo simulations on a
40x40 lattice.

expect two continuous BKT transitions at temperature 7; and
T, (> Ty). In [45] the machine-learning technique and finite-
size scaling are adopted to determine the critical temperatures
of the ¢ = 8 clock model, which are 7y = 0.410 and 7, =
0.921 in the thermodynamic limit. As ¢ — o0, i.e., a planar
rotor, the model is equivalent to the XY model for which the
BKT phase extends throughout the low-temperature regime,
that is, 7 = 0. The BKT phase transitions are notoriously
difficult to identify [34—40], as there is no Landau-Ginzburg-
type order parameter to characterize them. This poses the
challenge of identifying the BKT phase transitions in some
novel ways and then motivates this work to resolve it by the
NN flow. To proceed with the NN flow for identifying the
BKT phase transitions of the clock models, we need to first
produce the spin configurations as the training data to the
neural network, i.e., the variational autoencoder (VAE) for the
current work. We will implement the Monte Carlo method to
simulate the spin configurations of the training set for various
temperatures.

In the Monte Carlo simulation, it is known that, near the
critical temperature, the single-flip updating approach will

M

Encoder

1]

!

Decoder
A4

FIG. 2. Schematic structure of the NN flow (left) with the sub-
structure of each unit, i.e., a (variational) AE (right). We consider
VAE so that the hidden layer vector z is stochastic with Gaussian
distributions.

encounter the problem of critical slowing down, in which the
autocorrelation time, i.e., the time for reaching independent
configurations, becomes very large. To tackle this problem,
Swendsen and Wang [46] proposed a cluster updating scheme
in which connected sites of the same spins are grouped into
a cluster according to some assigned probabilities. In this
way, spins are flipped altogether inside the same cluster. Later
Wolff [47] modified the cluster algorithm and extended it to
multicomponent spins such that the spins are first projected
into a randomly chosen direction before the Swednsen and
Wang algorithm is carried out. We can obtain accurate Monte
Carlo configurations for the NN flow by adopting the Wolff
algorithm. We generate 1000 configurations for each temper-
ature with 50 to 80 different temperatures for each g value.
To investigate the size effect, simulations of both lattice sizes
L =20 and L = 40 are also carried out.

In Fig. 1 we show the magnetization and magnetic suscep-
tibility of the clock models for g = 2, 3,4, 5, 6, 7, 8, obtained
from our Monte Carlo simulated configurations. The simi-
lar temperature profiles of energy and heat capacity can be
found in Fig. 14 of Appendix A. For simplicity, we will
focus only on Fig. 1 for discussion. We can see that these
temperature profiles (or phase diagrams) move towards the
low-temperature regime as ¢ increases. The reason why our
previous tests of the NN flow for ¢ > 5 failed is partly because
the resolution of our machine-trained thermometer is poor in
the low-temperature regime. We can also see that for ¢ > 5
models, there is a sharp peak near 7, but only a minor jump
near T;. It is possible to determine the critical temperatures
from these anomalies, in principle, but difficult. It may need
highly accurate evaluations of critical points and precise size-
scaling analysis to determine the BKT phase. Despite that, we
will see that our information-distance thermometer will give
clearer features near 7j 5.
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FIG. 3. Naive analog between RG flow and neural network flow.
The decimation of the renormalization flow is in analogy to the
encoder and its inverse to the decoder. Therefore, the stochastic
hidden layer plays the role of the mean field in the renormalization
flow. As a result, the different choices of the stochastic distribution
for the hidden layer may correspond to the different mean fields and
yield different fixed-point states.

Decoder

Also, in Fig. 1 the lattice size is 40x40. Due to the
topological nature of the BKT phase transitions, the critical
temperatures 77 and 7, depend more sensitively on the lattice
size than the Landau-Ginzburg ones; e.g., see [35] for the
study of the finite-size effect of ¢ = 6 clock model. Our goal
here is not to find the true (theoretical) 7; , in the large size
limit but to check whether the NN flow can be adopted to
identify the 7; , of the Monte Carlo simulations, which we de-
note as (71.2)mc or (T¢)yc to distinguish from the theoretical
one denoted by (77 )exact- It will be much more challenging for
machine learning to identify the critical temperatures using
the Monte Carlo training set on the finite-size lattice. We
will not specify the theoretical values of T, for simplicity.

T =1.000

Later we will examine the information-distance measure of
the NN-flow states to the Monte Carlo ones. In this way we
can examine the validity of the NN-flow method.

III. NEURAL NETWORK FLOW

In this section we review our setup for the NN flow, which
was originally proposed in [18] (see also [19]) and then gen-
eralized in our previous work [21] by adopting not only the
restricted Boltzmann machine (RBM) but also the autoen-
coder (AE) and the variational autoencoder (VAE) as the unit
of NN flow. In this work we will adopt VAE since it yields
more efficient and stable results from our own experiences.

The NN flow scheme is shown in the left part of Fig. 2,
which consists of a sequential flow through the NN (i.e., VAE
adopted in this work) units. The detail of the VAE unit is
shown in the right part of Fig. 2. The procedure of the NN
flow goes as follows. First, we train the VAE with Monte
Carlo simulated configurations of the clock models. For each
temperature 7', we prepare about 2000 configurations as the
training set, and the size of the temperature bin is 0.1 with
0 < T < 4. The structure of VAE is very simple. It consists
of an encoder and a decoder, as indicated in the right part of
Fig. 2. The encoder consists of an input layer to which the
input spin configuration is preprocessed by proper normaliza-
tion as the common practice at the training stage of typical
machine learning and a hidden/latent layer whose elements
are random variables of unit Gaussian. One can also add an
intermediate layer before the hidden layer. The intermediate
and hidden layer sizes can be adjusted accordingly to optimize
the training. The decoder then takes the hidden layer as the
input, either or not going through an intermediate layer, and
then gives the output layer of the same size as the input layer
of the encoder. The mean square error between the input and
output layers can be calculated as the penalty for optimizing
the machine structure. Usually, we do not need to have very
accurate training in the VAE to give some flexibility to flow
the state. Otherwise, if the VAE is well trained, the output
state will be perfectly the input state, and there will be no
flow of states. The detailed machine structure of VAE and
the training accuracy are almost the same as the one used in

0.010
0.004

0.008

o

o

S

=
o
o
S
@

0.002
0.004

Probability
Probability

0.002 0.001 4

0.000 0.000
0 0.5 1.0 1.5 20 25 3.0 0

M
(a)

T=1.240 T =1.800
0.008
<. 0.006
=
a
R 0.004
2
a
0.002
0.000
15 f . 30 0 0.5 0 15 20 25 30
M M
(b) (c)

FIG. 4. Probability density functions (PDF) for the mean spin value M, of ¢ = 4 clock model on 20x20 lattice. Blue (shading): the PDFs
for the temperature ensembles of Monte Carlo simulated configurations at (a) 7 = 1 (below T.), (b) T = 1.24 (near T.), and (¢) T = 1.8
(above T). Red (line): the PDFs of the corresponding NN-flow ensemble after 100 iterations. It shows that the NN-flow states approach some

states in a fixed-point ensemble of states.
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[21]. For completeness, in Appendix B, we give the details of
the hyperparameters for the typical NN model, along with the
corresponding histogram of the training accuracy for training
the unit of NN flow. Moreover, after some trials, we find that
the convergence of the NN flow to the destined critical regime
seems to be quite insensitive to the exact value of the training
accuracy, as long as the accuracy is not high. This reflects
that the unit of NN flow plays a similar role to the decimation
or coarse-graining step in the RG flow, for which the loss of
irrelevant information is expected.

In some sense, the VAE has a structure similar to a single
step of renormalization group (RG) flow, as depicted in Fig. 3.
The encoder compresses the input data by some truncation,
similar to coarse graining by decimation. This procedure is
used to approach a mean-field state, which in NN flow is the
Gaussian hidden layer. The decoder then proceeds with the
hidden layer resizes to the original size of the input layer,
which is quite similar to performing the inverse decimation in
the RG flow. It is interesting to examine how good this analog
can be in the current study of the BKT phase transitions.

After training the VAE, we use it as the unit of NN flow.
The NN flow then passes an arbitrary Monte Carlo config-
uration into a sequence of unit VAEs. All the VAEs have
the same bias and weights determined at the training stage.
The procedure of NN flow is similar to a sequence of dec-
imation or inverse decimation steps in the RG flow to flow
a UV state to the IR fixed-point state. Typically, after a few
steps, the NN flow will also yield a fixed-point state. How-
ever, unlike the RG flow, we will see that the ensemble of
fixed-point states bears no characteristic of criticality, such
as power-law behaviors of correlation functions. Despite that,
our information-distance thermometer can still indicate pecu-
liar features near 77 ;.

We now motivate the need to construct a “thermometer”
based on an information-distance measure to gauge the NN-
flow states and to use it to identify the BKT phase transitions.
For the Landau-Ginzburg type-phase transition, we can indeed
calculate the order parameter such as the magnetization of
the Ising model (or equivalently the two-state clock model
[44]) and compare with the one by Monte Carlo method.
Or we can measure the temperature of the NN-flow states
by using a machine-learning thermometer. We can train the
thermometer machine with the Monte Carlo simulated data
set. In fact, this is what has been done in our previous work
[21]. However, this kind of thermometer is not very accurate
in low-temperature regimes. This is expected as the low-
temperature phase is the ordered phase with fewer intrinsic
features, thus more difficult to train. When studying the BKT
phase, the above techniques become less useful because there
is no local order parameter such as magnetization for the BKT
phase transition, and especially the BKT critical temperatures
tend to locate at the low-temperature regime. This is why we
must adopt different techniques to characterize the NN-flow
states to extract their BKT features. This will be discussed in
the next section.

IV. INFORMATION-DISTANCE MEASURE
AS THERMOMETER

Instead of training an additional machine-learning-type
thermometer, we can, in fact, use the temperature ensembles
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FIG. 5. Jensen-Shannon divergence J SD[PTpllQT] of the
(a) g =4 (dashed line) and 8 (solid line) and (b) ¢ = 5 (solid line), 6
(dashed line), and 7 (dotted line) clock models on a 40x40 lattice.
Here T runs all the temperature bins in 0 < T < 4, and T, runs for
three specific temperatures: Tjo, = 0.4 (red color), Tiq = 0.8 (blue
color), and Ty;en = 1.6 (green color). The JSDs can serve as a good
“thermometer” because the minimum of the JSDs sits right on the
corresponding 7,.

of the Monte Carlo simulated configurations to gauge NN-
flow states and their associated ensemble. In this sense we
would like to measure the difference between two ensembles
of thermal states. Thus, one can invoke some information-
distance measures such as the root-mean-square distance,
the Kullback-Leibler divergence (KLD) [48] or the Jensen-
Shannon divergence (JSD) [49,50]. Given two (discrete)
probability density functions (PDFs) denoted by P and Q, the
KLD is given by

Q)

P 3)

KLIP||Q] =~} P(m)1n

KLD is a very common information-distance measure, which
is also known as relative entropy. However, it is not well
defined if Q(n) vanishes for some n. Therefore, a more
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FIG. 6. NN-flow JSD[Py,  [|Qr] of g =2 clock model on a
20x20 lattice. Pr, , is the PDF of the mean spin value of NN-flow
states after one iteration (dashes line) and 100 iterations (solid line)
of the initial Monte Carlo ensemble at temperature 7gq,,, and Q7 is
the reference PDF based on Monte Carlo ensemble at temperature
T. For convenience, we choose Tjow = Tiow (red), Thiq (blue), and
Thign (green) of Fig. 5. We see that there is a unique pattern for
NN-flow JSDs with its minimum sitting inside the narrow window
Of [(TL‘)exact, (Tc)MC] Wlth (TL‘)exact = m = 227 (Vertical gray
line), and (7.)yc = 2.35 (vertical light-yellow line) the theoretical
and Monte Carlo critical temperatures, respectively.

well-defined measure is the JSD, which is given by
ISD[P||Q] = iKL[P||R] + 1KL[Q|IR], 4

where R = %(P + Q). It is easy to see that JSD is well de-
fined even though some of P(n) or Q(n) vanishes. Note that
KL[P||Q] and JSD[P||Q] are positive definite and can mea-
sure the dissimilarity between the distributions P and Q. Thus,
the JSD[P||Q] becomes smaller if P and Q are more similar
to each other and vanishes if P = Q.

Recall that temperature can also be defined statistically.
Thus, our information-distance measure, in this sense, plays
the role of the “thermometer.” With the JSD as the chosen
information-distance measure, the next question is what kind
of PDFs we will choose so that the resultant JSD can serve
as a good “thermometer.” Since we would like to construct
the PDFs for the ensemble of the thermal states, it is better to
choose some specific property of the spin configurations and
consider its PDF for a given ensemble.

A natural property for the spin configurations is the “mean
spin value,”

|

M= Zl i, (5)
where N is the total number of the lattice sites, and s; =
0,1,...,g — 1is the spin value on the site i. Thus, M will be

the random variable for an ensemble of a given temperature
or its corresponding ensemble of the NN-flow states. We will
further discretize M by proper rounding into bins denoted by
M,, with n the integer index so that its associated PDF will be
just denoted by P(n) or Q(n) as the ones used for the JSD.
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FIG. 7. (a) Color chart of JSD[Py,  ||Qr] of T-Thow plane for
the ¢ = 4 clock model on a 40x40 lattice for the ensemble of NN-
flow states after 100 iteration steps. The corresponding diagram of
magnetic susceptibility (yellow line with decorated crosses) is also
superimposed, which shows a peak near 7' = (T )exact- (b) NN-flow
JSD[ Py, 1|Q7] for Taow = Tiow (red), Thia (blue), and Thien (green) of
Fig. 5 on a 20x 20 lattice (dashed line) and 40 x40 lattice (solid line).
We label (7} )exact = m = 1.13 by the vertical gray dash-dot
line, and (7,)yc = 1.24 (20x20 lattice), 1.20 (40x40 lattice) with
the vertical solid light-yellow lines. We see that the finite-size effect
is relevant to improve the capability of using the minima of NN-flow
JSDs to identify the critical temperature. Our results again show that
NN flows can reach a fixed-point JSD pattern with its minimum
located at the critical temperature.

Note that the mean spin value M is different from the usual
physical magnetization of the state and cannot be served as an
order parameter of the system.

In Fig. 4 we show the PDFs for M,, for the Monte Carlo
configuration ensembles of the ¢ =4 clock model at three
different temperatures (in blue shading): 7 =1 (below T.),
T =1.24 (near T.), and T = 1.8 (above T.), and also the
PDFs of the corresponding ensemble states obtained by the
NN flow (red line). We can see that the NN-flow PDFs
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FIG. 8. NN-flow JSD[Py,  ||Qr] after 100 iterations for Thow = Tiow(red solid), Tiiq (blue dashed), and Tiign (green dotted) of Fig. 5 on a
40x40 lattice for the clock models of ¢ = (a) 5, (b) 6, and (c) 7. The critical temperatures (7} )¢ (yellow solid) and s (77 )yc (yellow dashed)
of the Monte Carlo simulation are indicated by the vertical light-yellow lines in each subfipanel. The universal JSDs have decreased sharply
near the transition point (7; )¢ between the ordered phase and the BKT phase. Moreover, the JSD minima sit right at T = (T3)uc in (a) and

(b), but a bit higher than T = (73 ) in (¢).

resemble each other. As we shall see later, this implies that
the NN-flow states approach some states in a fixed-point en-
semble of states. Also, as we can see from Fig. 4, because
the mean spin value has no preferred directions, the PDFs are
symmetric around the mean value, which is always 3/2 for all
temperatures and is unrelated to the orderings.

To demonstrate the ability of the JSD “thermometer,” in
Fig. 5 we plot the JSD[ Py, ||Qr] for the g = 4,5, 6,7, 8 clock
models on a 40x40 lattice. Here Q7 is the PDF of the mean
spin value for the Monte Carlo ensemble at temperature T’
with T running across all the temperature bins with 0 < T < 4,
and Py, is the one for some specific temperature 7). In Fig. 5
we choose three specific temperatures: 7oy = 0.4, Tinig = 0.8,
and Tiign = 1.6 with the middle temperature Tp,iq in the BKT
phase for the cases of ¢ > 4. We see that in most cases, the
JSD has its minimum sit right on 7" = 7},. This indicates that
the JSD can serve as a good “thermometer” for the clock
models considered in this work. The only exceptions are the
JSDs in the low-temperature regime of the g < 4 cases, e.g.,
the one of g = 4 at Tj,y in Fig. 5, for which we find that the
corresponding JSDs are almost zero in an extended regime
at low temperature. It indicates that the thermal fluctuations
in these low-temperature ordered phases are too small to be
resolved by JSD.

V. THE RESULTS OF NN FLOW FOR BKT
PHASE TRANSITIONS

In this section we will present the results of the NN flows
for the ¢ = 2,4, 5, 6,7, 8 clock models and discuss the prop-
erties of the NN-flow states.

A.g=2

We first consider the ¢ = 2 clock model on the 20x20
lattice as a benchmarking test to check if the JSD of mean
spin value can be used as a kind of “thermometer” to gauge
the ensembles of states. As mentioned, the ¢ = 2 clock model
is equivalent to the Ising model with a second-order phase
transition from the low-temperature ordered phase to the high-
temperature disordered one. We will consider the NN-flow
JSD[Py, . ||Qr] where Pr,  is the PDF of the mean spin value

of NN-flow states after 100 iterations of the initial Monte
Carlo ensemble at temperature Tqoy, and Q7 is again the
Monte Carlo one at temperature 7" with 7 running over 0 <
T < 4. For convenience, we choose Taow = Tiow, Imid, and
Thign of Fig. 5. We expect that the NN-flow JSDs should show
a unique pattern associated with a fixed-point ensemble of
states at the critical temperature, thus being consistent with
the results obtained in [21]. This is indeed the case as shown
in Fig. 6, as we see that the minimum of the universal NN-flow
JSD sits inside the narrow window of [(7,)exact, (1z)ac] With
(T)exact and (T;.)yc the theoretical and Monte Carlo critical
temperatures, respectively. With the success of this bench-
marking test, we can move on to the higher g clock models.

B.g=4

The g = 4 clock model is the dividing line for the ap-
pearance of the BKT phase transitions. For the ¢ > 4 clock
models, the BKT phase appears to be characterized by some
nonlocal order parameter, such as the condensation of the vor-
tex/antivortex pair. However, we like to characterize the BKT
phase transitions by the patterns of our JSD “thermometer”
for the NN-flow ensemble of states after 100 iterations of
the initial Monte Carlo ensemble. The result of the NN-flow
JSD[ Py, ||Qr] is shown in Fig. 7. The notation for Pr,  and
QOr and the three choices of Taow = Tow» Tmia and Thign in
Fig. 7(b) are the same as for the ¢ = 2 case. In Fig. 7(a) we
plot the color chart for the distributions of JSD[Pr,, ||Qr] on
the T-Thow plane. This plot is for the ¢ = 4 clock model on a
40 x40 lattice. The color pattern of Fig. 7(a) is almost uniform
along the y axis but varies along the x axis. This implies that
all the NN-flow ensembles of different Ty, yield the same
JSD profile; a universal fixed-point ensemble of the NN-flow
states exists.

More interestingly, the color chart of Fig. 7(a) shows two
discontinuities along the x axis. One is around T = (7 )exact ~
1.13, which is the critical temperature of the g = 4 clock
mode, and slightly deviates from the Monte Carlo critical
temperature (7;)yc as indicated by the peak of magnetic sus-
ceptibility (yellow line with decorated crosses). The second
discontinuity is at around 7' = 1.35, beyond which the mag-
netic susceptibility starts to level off. In Fig. 7(b) we show
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FIG. 9. (a) Color chart of JSD[Py,  ||Qr] on the T-Tq,, plane
with Pr, and Qr the PDFs of the mean spin value for the Monte
Carlo ensembles of the g = 8 clock model on a 40x40 lattice at tem-
peratures Tqo and 7, respectively. The three (red) blocks coincide
with the ordered, BKT, and disordered phases, which are superim-
posed by the magnetic susceptibility, shown by the light-yellow line
with decorated crosses. (b) The JSD color chart with the PDF Py,
in (a) replaced by the NN-flow one after 100 iterations. The uniform
color distribution along the y axis indicates a universal fixed-point
ensemble, which can capture the Monte Carlo critical temperatures
(Th 2)mce =~ 0.39, 1.06 by its discontinuity along the x axis.

the NN-flow JSD[ Py, |107] for Thow = Tiow (red), Tiia (blue),
and Thign (green) on a 20x20 (dashed lines) and on a 40 x40
(solid lines) lattice. Then, we can examine the finite-size effect
by comparing these two subfigures. Again, we see that the
NN flow drives the JSD curves of Monte Carlo ensembles of
different temperatures to a universal JSD curve with its mini-
mum sitting nearby the narrow window of [(7)exact, (T¢)arc]-
This is consistent with the result of Fig. 7(a). We see that
the minimum of the universal JSD on the 40x40 lattice is
closer to (T, )y than that of the 20x20 lattice. This indicates
the finite-size effect. Thus, after taking care of the finite-size
effect, the universal NN-flow JSD can be used to identify the
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FIG. 10. NN-flow JSD[Py, , ||Qr] after 100 iterations for Ty =
Tiow (red solid), Tiyiq (blue dashed), and Ty, (green dotted) of Fig. 5
for the clock models of ¢ = 8 (a) on a 20x20 lattice, and (b) on a
40x40 lattice. The results show that NN flow can yield a universal
JSD to identify the BKT phase and the associated critical tempera-
tures by taking account of the finite-size effect.

critical temperature of the ¢ = 4 clock model as in the g = 2
case. Last, the NN-flow JSD of the 40 x40 lattice also shows a
sharp drop in a very small window between [(7} )exact, (T2 )mc]-
This can also be considered a peculiar feature to indicate the
phase transition besides using its minimum.

C.q=5,6,7

Now we will consider the clock models possibly exhibiting
the BKT phase transitions, that is, ¢ > 4. In this subsection we
will consider g = 5, 6, 7 cases, and in the next subsection the
q = 8 case. From both the analytical and numerical studies
[32,33,35-39], it is argued that there is an extended BKT
phase in a finite temperature interval [T}, 75] for g > 4 cases.
As discussed before, due to the emergence of 7, for extended
universality, there are discussions about the authentic BKT
nature of the phase transition at 7, for ¢ = 5, 6, 7. Therefore
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FIG. 11. Correlation of site spins, (s;s;) of the g = 8 clock model
on a 40x40 lattice as a function of r = |i — j| for the Monte Carlo
ensemble at various temperatures and for the universal NN-flow
ensemble after 100 iterations (dashed lines). The power-law behavior
will be characterized by an approximately straight line of nonzero
slope. The T = 0.8 one (black square line) represents the BKT phase
and does show an approximate power-law behavior. However, the
NN-flow one is a flat straight line, more like the low-temperature
ordered phase (red circle line).

we will first discuss the result for ¢ = 5, 6,7 and leave the
study of the g = 8 case in the next subsection.

Similar to the g =2,4 cases, the resultant NN-flow
JSD[ Py, ||Q7] for g =5, 6,7 on a 40x40 lattice for Thow =
Tiow (red solid), Tiyig (blue dashed), and Thgp (green dotted) of
Fig. 5 is shown in Fig. 8. We again see that the NN-flow JSDs
approach a universal pattern, which indicates a fixed-point
ensemble of states. In Figs. 8(a) and 8(b) for the g = 5,6
cases, respectively, we see that the JSD minima sit right on
T = (T3)pmc, which is the T; indicated by Monte Carlo simu-
lation. However, for Fig. 8(c) for the ¢ = 7 case, the minimum
sits at the temperature slightly higher than (7).

Finally, in all three cases, as shown in Fig. 8, the JSD has
dropped sharply near the transition point 7 = (7} )¢ and has
aminimum close to T = (T2)uc, where (17 2)yc are indicated
by the vertical light-yellow lines in each panel. This indicates
the capability of the NN flows to identify the BKT phase.

D.¢g=8

Now we consider the NN flow of the ¢ = 8 clock model
on 20x20 and 40x40 lattices. This model has an extended
BKT phase ranging from (77)yc to (T2)mc, for which the
critical temperatures (772)uc of the BKT phase transition
are read from the typical phase diagrams of our Monte Carlo
simulation, as shown in Fig. 1. Moreover, even there exists the
collapse of thermodynamic observables, the phase transition
at (T;)yc is the BKT type for the ¢ = 8 clock model.

We first plot the color charts of JSD[Py,  ||Qr] on the
T -Thow plane. In Fig. 9(a) the PDFs Py, and Qr are the ones
of mean spin value for the Monte Carlo ensembles of states at
temperatures Ty, and T, respectively. This can be seen as the
autocorrelation between finite-temperature Monte Carlo en-
sembles. Interestingly, three red blocks appear, corresponding
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FIG. 12. (a) Picture of the orientations of the site spins for a
chosen BKT Monte Carlo state of ¢ = 8 clock model on a 40x40
lattice with temperature 7 = 0.8. This picture shows the typical
vortex-antivortex condensation of the BKT phase. (b) The picture of
the orientations of the site spins for some six chosen NN-flow states
of the same model after 20 iterations. For simplicity, only part of the
lattice is shown. Almost all the site spins in each NN-flow state point
to the same direction.

to the ordered phase, the BKT phase, and the disordered phase
of the ¢ = 8 clock model. For comparison, in Fig. 9(b) we
replace Pr, , in Fig. 9(a) by the PDF associated with the NN-
flow ensembles after 100 iterations. As expected, the color
chart is now uniform along the y axis, indicating a universal
fixed-point ensemble of states after NN flow. More interest-
ingly, we see a minor vertical jump near (7})yc = 0.39, the
lower critical temperature of the BKT phase transition. There
is no such jump in Fig. 7(a) for the ¢ = 4 case. On the other
hand, there emerges a (red) stripe starting near the second
BKT critical temperature (73)y¢ = 1.06 as indicated by the
peak of magnetic susceptibility, but ending when the magnetic
susceptibility starts to level off. This kind of (red) stripe also
appears in Fig. 7(a) for the g = 4 case.

Similarly to the cases of ¢ =15,6,7, we again show
the NN-flow JSD[Py,, ||Qr] of the ¢ = 8 clock model for
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Tiow = Tiow (red solid), Tiyi¢ (blue dashed), and Tpign (green
dotted) on a 2020 lattice in Fig. 10(a) and on a 40x40 lattice
in Fig. 10(b). The NN-flow JSDs again approach a unique
pattern, indicating a universal fixed-point ensemble of states.
Unlike the cases of ¢ = 4, 5, 6 but similar to the case of ¢ = 7,
the minimum of universal JSD no longer locates at the critical
Monte Carlo temperature (7,)y¢ but at a higher one. Despite
that, the increase of the lattice size does help to sharpen the
minimum of the JSD and slightly move it toward (73 ). Note
that the same effect also moves (73 )y to the lower value. By
the trend, we expect that with a large enough lattice size, the
minimum of the universal JSD could move closer to (75)uc
and become sharper. We believe this should be the case for all
BKT phase transitions from the BKT phase to the disordered
phase; that is, it should hold for g > 7.

Regarding the BKT phase transition near (7} )¢, the JSDs
do show a sharp drop, as in the cases of g = 5, 6, 7. Moreover,
the increase of the lattice size also helps to pin down (T} )yc¢
more precisely by the endpoint of the sharp drop. However,
we found some deviation of the NN flow results from the
MC data for ¢ =7, 8, especially at 7,. One of the possible
explanations is due to the emergence of extended universality
discussed before. That is, as g increases, the phase transition
at 7> should be closer to the one of the continuous rotor model
and harder for the JSD or other quantities to capture the exact
phase transition point. We can then conclude that the NN flow

can yield a universal JSD pattern that can be used to identify
the BKT phase and the associated critical temperatures once
the finite-size effect is considered. Therefore, we can infer the
extended regime of BKT between (77 )¢ and (73 )y from the
peculiar pattern of JSD.

E. Properties of the NN-flow states

Our study demonstrates the ability of NN flows to identify
BKT phase transitions. This then raises the question if the NN-
flow ensemble fixed-point states can be the physical critical
states for the BKT phase transition. Or does the ensemble of
NN-flow fixed-point states bear any physical implications? In
the following, we examine this issue.

To check this issue, we should first recall that our NN-flow
states are no longer the g-spin states but with the site-spin
values in the [0,1] range. One can either use these continuous
spin values to evaluate some physical quantities or try to
discretize them to mimic the g-state spin. For the moment,
we will use the continuous site-spin values. The first thing to
check is to evaluate the spatial correlation function of the site
spins and see if it exhibits power-law-like behaviors, which
is the signature of critical states. The results for some chosen
states of the ¢ = 8 clock model on a 40 x40 lattice are shown
in Fig. 11. This is a log-log plot, so the power-law behavior
should be represented by an approximately straight line of the
nonzero slope, such as the BKT one at T = 0.8 shown by
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FIG. 13. Probability density functions (PDF) for the mean spin value M, of ¢ = 8 clock model on 40x40 lattice. Blue: the PDFs for the
temperature ensembles of Monte Carlo simulated configurations at (a) 7 = 0.2 (ordered phase), (b) T = 0.36 [ordered phase, near (T} )uc],
(¢) T = 0.48 [BKT phase, near (T)yc], (d) T = 0.96 [BKT phase, near (73 )yc], () T = 1.12 [disordered phase, near (75 )yc],and (f) T = 1.6
(disordered phase). Red: the PDFs of the corresponding NN-flow ensemble after 100 iterations, which are almost the same for all temperatures.
The results show that although the flow PDFs do not resemble the ones at (7 )uc, it still yields the maximal overlap and thus the minimal JSD

to help indicate the phase transition.
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the black line. However, we see that the NN-flow one (the
dashed line) is just a flat straight line, which is more like
one of the low-temperature ordered phases such as the red-line
one. This indicates that the NN-flow states are more like the
low-temperature ordered states instead of the BKT ones. Such
a conclusion remains even when we discretize the site spins
of the NN-flow fixed-point states. This implies that the NN
flow states do not show the features of BKT states, though the
NN-flow JSDs can show a universal pattern that can capture
the phase diagram of the BKT phase transitions.

We can explore the above conclusion more directly by
showing the orientations of all the site spins, namely, the
picture of 0 < 6, = 2ms;/q < 2m for all i. In Fig. 12(a) we
show a picture of the orientations of site spins for a typical
BKT state of the ¢ = 8 clock model at T = 0.8, for which
we have verified its spin-spin correlation obeys an approxi-
mate power-law behavior. We see that the site spins slowly
change their orientations either clockwise or anticlockwise
in the local domains, similar to the vortex and antivortex
structure. The clockwise domains will usually encounter the
anticlockwise domain after some extent, expressing the pat-
tern of vortex-antivortex condensation as expected for a BKT
state. On the other hand, in Fig. 12(a) we show the pictures of
orientations of site spins for six NN-flow states of the g = 8
clock model on a 40x40 lattice. Each of them has all the
site spins oriented in the same direction, which is consistent
with the result of the flat straight line shown in Fig. 11. For
simplicity, we show only part of the lattice. However, different
NN-flow states pick up different orientations for the whole
lattice. This seems to imply that each NN-flow state is in a
particular spontaneous-symmetry-broken state. Despite that,
the statistics of the orientation or the mean spin value from the
ensemble of NN-flow states can yield a universal and peculiar
pattern by which the BKT phase transitions can be identified.
Therefore, even though the NN flow can yield a fixed-point
ensemble of states, the component states bear no feature of
BKT states so we cannot use this universal ensemble to eval-
uate the critical exponents of the phase transitions. This is the
essential difference of the NN flow from the RG flow. That is,
the statistics of NN-flow ensemble states can help identify the
BKT phase, but the states carry no feature of the mean-field
states. Therefore, we can take the analog picture of Fig. 3 only
in the literal sense.

F. Why can JSD be used to detect the transition?

To clarify why JSD of mean spin value can be used to
indicate the phase transition even though the NN-flow states
carry no vortex/antivortex features of the critical states, we
now examine the probability distributions (PDF) for details. In
Fig. 13 we choose to display the PDFs of the mean spin value
M, of g =8 clock model on 40x40 lattice at six different
temperatures (in blue): T = 0.2, T = 0.36 (below T}), T =
0.48, T =0.96 (between Ty and T5), T = 1.12,and T = 1.6
(above T»), which cover three phases. We can see that the
pattern of PDF changes from phase to phase. They can be
compared to the PDFs of the corresponding ensemble states
obtained by the NN flow (in red), which remains almost the
same in all three phases.
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FIG. 14. (a) Energy and (b) heat capacity for ¢ =2,3,4,5,
6, 7, 8 clock model is obtained from the Monte Carlo configurations
on a 40x40 lattice.

By comparing the PDFs of the unflow states to the flow
ones, we can see some interesting features and understand
why JSD is minimal near the critical temperature, i.e., (75)uc-
The key point is that the overall shape of the flow PDFs is
similar to the one of the disordered phase away from (73 )y ¢
[Fig. 13(f)] but with a shifted central position. This shift
makes the value of the associated JSD larger than the ones
near (75 )yc [Figs. 13(d) and 13(e)]. This is in contrast to the
case of ¢ = 4 clock model as shown in Fig. 4. In that case,
the flow PDFs do not resemble the one above T, quite well,
but with about the same central positions [Fig. 4(c)]. Despite
that, we see that the flow PDFs in both ¢ = 4 and g = 8 cases
have the maximal overlap with the unflow PDFs at the critical
temperatures so that the corresponding JSDs are minimal.
Therefore, although the flow states of the BKT phases do not
carry the topological features, the PDFs of their ensemble can
still indicate the phase transition miraculously.

Finally, we shall mention that we have also studied the
PDFs and thus of JSDs of energy or physical spins, but find
that they cannot capture the BKT phase transition as the
mean spin value can. However, we do not show these null
results as there is no interesting implication to be drawn.
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FIG. 15. A typical schematic architecture of a variational autoencoder for training the unit of NN flow with L = 40. The number inside the
brackets indicates the dimension of each layer. In the middle are the hidden layers of VAE with dimensions indicated as 128 and 144, denoted

as hy and hy, respectively, in Fig. 15.

The deeper reason behind this is unclear and requires further
investigation.

VI. CONCLUSION

In this paper we extend the neural flow (NN flow) based
on the unsupervised machine learning of the variational au-
toencoder to study the BKT phase transitions of the g-state
clock models. Due to the intricate nature of the BKT phase, we
employ an information-distance measure, the Jensen-Shannon
divergence (JSD), as the “thermometer” to gauge the NN-
flow states with input Monte Carlo states. We find that the
minimum of the JSD can pinpoint the temperatures of the
ensembles far more precisely than the usual machine-learning
thermometer. With the help of this JSD thermometer, we
find that the NN-flow states from different finite-temperature
Monte Carlo states form a fixed-point ensemble, which can
capture the essence of the phase diagrams, such as the
BKT phase and the associated critical temperatures of phase
transitions.

However, the NN-flow states do not bear the feature of
BKT states, but each looks more similar to the spontaneously-
symmetry-broken states of the low-temperature phase. This

accuracy: clock4 L:40 h,:144 h;:128 e:50

accuracy: clock4 L:40 h;:36 h;:128 e:50

implies that the NN flow is not an analog to the RG flow. De-
spite that, the statistics of the mean spin value for evaluating
the JSDs can indeed capture the essence of the BKT phase
diagrams.

Our results demonstrate the power of machine learning
in the study of topological phase transitions. The realization
of the phase diagrams by the NN flow is quite different from
the conventional way via coarse graining or RG flow. It is
interesting to explore the deeper statistical structure of the
NN-flow ensemble of states to uncover the mystery of the
powerful NN flow method. After the demonstration of this
work and the earlier ones [18-21], it is also crucial to look
for the application of NN flow to other physical arenas with
the similar critical phenomena so that NN flow can help to
predict the locations of the phase transitions.
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APPENDIX A: DETAILS ON THE PHASE DIAGRAMS
OF MONTE CARLO SIMULATED CONFIGURATIONS

For completeness and as complementary to Fig. 1, we
show in this Appendix the phase diagrams of the g = 2, 3,
4,5,6,7, 8 clock model based on the temperature profiles of
(a) energy and (b) heat capacity. These results are obtained
from the Monte Carlo configurations of 2000 samples for each
temperature bin and are shown in Fig. 14. From the results,
we find that it is more difficult to identify 77’s of the BKT
phase transitions than 7,. The latter is signaled by a sharp
rise or drop (magnetization and energy) or a peak (magnetic
susceptibility and energy). The former, however, shows only
a small jump or change.

APPENDIX B: SCHEMATIC STRUCTURE OF NN-FLOW
UNIT AND TRAINING ACCURACY, AND THE RESULTANT
INSENSITIVE JSD FEATURE

In this Appendix we demonstrate that the results of NN
flow are quite independent of the hyperparameters of the
training models as long as the training accuracy is low.

We take the g = 4 clock model as the example, and first
display the details of a typical NN model for the NN-flow unit
in Fig. 15, of which the dimensions of two hidden layers of
the VAE are h; = 128 and h; = 144. The resultant training
accuracy of this model is shown in Fig. 16(a), which is less
than 1%. By changing the hyperparameters 4 », the training
accuracy changes accordingly, as shown in Figs. 16(b) and
16(c), which are also lower than 2%.

T=0.8
0.45 1
0.40 A
0.35 1
0.30 1
Q) 0.251
a
0201 ___ h =36 h,=36
015/ — Mm=64 hy=36
— h1=128 h,=36
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FIG. 17. NN-flow JSD[Py,  ||Qr] of the g = 4 clock model on a
40x40 lattice for the ensemble of NN-flow states after 100 iteration
steps with different hyperparameters. Our results again show that NN
flows can reach a fixed-point JSD pattern with its minimum located at
the critical temperature. The minimum points seem to be independent
of the hyperparameter of NN.

Finally, we show the resultant JSDs with different hyperpa-
rameters /; and A, in Fig. 17. We see that the patterns of JSD
are quite independent of the hyperparameters, especially with
the minima at the critical temperatures, although the overall
scales are different. Therefore, we can conclude that identify-
ing the phase transitions by NN flow is quite insensitive to the
hyperparameters as long as the training accuracy is low. The
low training accuracy ensures the input states will flow by the
NN units to the ensemble of fixed-point states. Otherwise, the
highly accurate VAE will reproduce the input state.
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