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Electronic structure calculations with interpolating tensor product wavelet basis

Tommi Höynälänmaa * and Tapio T. Rantala †

Computational Physics, P. O. Box 692, FI-33014 Tampere University, Finland

(Received 21 March 2023; accepted 4 August 2023; published 22 August 2023)

We introduce a basis set consisting of three-dimensional Deslauriers-Dubuc wavelets and solve numerically
the Schrödinger equations of H and He atoms and molecules H2, H+

2 , and LiH with Hartree-Fock and density
functional theory (DFT) methods. We also compute the 2s and 2p excited states of hydrogen. The Coulomb
singularity at the nucleus is handled by using a pseudopotential. The eigenvalue problem is solved with Arnoldi
and Lanczos methods, Poisson equation with generalized minimal residual method and conjugate gradient on
the normal equations methods, and matrix elements are computed using the biorthogonality relations of the
interpolating wavelets. Performance is compared with those of CCCBDB and BIGDFT.
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I. INTRODUCTION

Standard approaches to assess properties of atoms,
molecules and models of nanostructures in quantum chem-
istry are Hartree-Fock (HF) and density functional theory
(DFT). Both of these invoke numerical solutions of the
Schrödinger differential equation of the many-body system of
electrons. Thus, controlled approximations are inevitable and
practical numerical algorithms are necessary.

The vast majority of the algorithms are based on finding the
solutions or orbitals as series expansion of basis functions, the
basis set. A finite basis set leads to the Roothaan-Hall equa-
tions, a generalized matrix eigenvalue problem. Gaussian-type
basis functions are the most popular due to their advanta-
geous analytical features. Here, we introduce a different type
basis set, wavelet functions, point out their advantages and
drawbacks, and consider a few test cases and compare their
performance with conventional approaches.

Wavelets and related scaling functions are functions gen-
erated by translations and dilatations of the so-called mother
wavelet and mother scaling function. Interpolating wavelets
use a mother scaling function satisfying the cardinal interpo-
lating property ϕ(k) = δk,0 where k is an integer. Orthonormal
wavelets form an orthonormal basis in function space L2(R).
Both of these wavelet types can be generalized to multivariate
functions.

Studies of wavelets have been active, and new ones with
various properties have been found during the past tens
of years [1,2]. One-dimensional interpolating wavelets in
function space Cu(R) consisting of bounded and uniformly
continuous functions on R are defined in Ref. [2]. One-
dimensional interpolating wavelets in function space C0(R)
consisting of functions on R vanishing at infinity are de-
fined in Ref. [3]. Deslauriers-Dubuc wavelets have also been
discussed in Refs. [4,5]. Compactly supported interpolating
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wavelets have been generalized to multiple dimensions in
Refs. [6,7]. Fukuda, Kinoshita, and Suzuki [8] have studied
unconditional convergence of wavelet expansions. They have
shown that uniformly convergent wavelet expansions even for
continuous functions do not always converge unconditionally
in L∞(R). Pathak [9] has investigated translation and convo-
lution associated with discrete wavelet transform.

Arias [10] and Engeness and Arias [11] have developed
formalism for electronic structure calculations with interpo-
lating wavelets so that matrix elements of the operators are
computed as usual and overlap matrices are used in the matrix
form of the Schrödinger equation. Lippert et al. [12] introduce
a Lagrangian based formalism for the multiresolution analysis
(MRA) of electronic structure. Arias [10] uses a carbon atom
and a N2 molecule as examples. Engeness and Arias [11] use
both calcium and aluminum atoms and molecules O2 and H2O
as examples.

Fischer and Defranceschi use Daubechies wavelets [1]
for computation of hydrogenlike atoms [13]. They have de-
veloped an iterative method based on nonstandard operator
form of the Schrödinger operator. Their work shows that
this method is well suited for computations of hydrogenlike
atoms. Fischer and Defranceschi have presented Hartree-
Fock equations in an orthonormal wavelet basis [14]. They
have also analyzed the Hartree-Fock method with a contin-
uous wavelet transform [15] and demonstrated it using the
hydrogenic Schrödinger equation with an iterative solution
scheme.

Wei and Chou [16] have used orthonormal wavelets in
self-consistent electronic structure calculations within the
local-density approximation and demonstrated their method
with H2 and O2 molecules. Tymczak and Wang [17] have
used orthonormal Daubechies wavelets for quantum molec-
ular dynamic simulations and developed a wavelet selection
scheme for computations. They used a hydrogen atom and
a H2 molecule as examples. Their method shows system-
atic convergence with increasing grid size. Yamaguchi and
Mukoyama [18] have carried out electronic structure calcu-
lations with the Hartree-Fock method and Meyer wavelets.
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Our earlier contribution [19] is use of one-dimensional
interpolating wavelets to solve the Hartree-Fock equations in
the central field approximation for orbitals of several test case
atoms. We were able to derive analytic formulas for all the
relevant matrix elements of Hamiltonian and Fock operators.
We also developed the exact pseudopotential method [20]
for one-dimensional calculations of atoms and applied it to
the hydrogen and helium ground states and for some excited
states.

Iyengar and Frisch [21] have studied relationship between
Gaussian basis sets and wavelets. They use a time-dependent
basis function set: Gaussian functions centered at nuclei of the
system. When the nuclei move the basis functions move, too.
Gaussian functions are an example of multiwavelets [21–23]
for which the Jth level scaling space is decomposed into N-
scaling spaces via

· · · V(N )
J−1 ⊂ V(1)

J ⊂ V(2)
J ⊂ · · · ⊂ V(N )

J ⊂ V(1)
J+1 · · · . (1)

Comparative studies of wavelets and Gaussian functions are
presented, e.g., in Refs. [24,25]. Harrison et al. [26] use
multiwavelets for quantum chemistry computations. Yanai
et al. [27] present a numerical algorithm to evaluate Hartree-
Fock exchange in the self-consistent field method. Yanai
et al. [28,29] develop a method to do time-dependent
Hartree-Fock and density functional theory computation
with multiwavelets. Jensen et al. [30] perform multiwavelet
computations of total energies with generalized gradient
approximation-Perdew-Burke-Ernzerhof (PBE) and hybrid-
PBE0 density functionals for 211 molecules. Jensen et al. [31]
compute some magnetic properties with multiwavelets.

Han et al. [32] have developed an all-electron density-
functional program using the Mexican hat wavelets. They
analyze H2, CO, and H2O molecules and 1s core-ionized C*O
and CO* molecules. Their method shows very good perfor-
mance over the plane-wave-based methods. Genovese et al.
[33] and Mohr et al. [34] have composed a software package
BIGDFT that implements the DFT method for quantum phys-
ical systems using three-dimensional Daubechies wavelets as
a basis function set.

In three-dimensional space, the number of basis functions
may grow relatively large to give sufficient accuracy. There-
fore, we do not construct the Hamiltonian matrix explicitly.
Instead, we use iterative algorithms in solving the Roothaan-
Hall equation, though correspondingly, the computation gets
slower in self-consistent iteration of Hartree-Fock or DFT
orbitals for many electron systems.

In this paper, we demonstrate evaluation of electronic
structure with three-dimensional interpolating tensor product
wavelets and use of dual multiresolution analysis in computa-
tion of the matrix elements of the various operators. We make
calculations for the hydrogen and helium atoms, the hydrogen
molecule ion, the hydrogen molecule, and the lithium hydride
molecule. Self-consistent iteration, Hartree-Fock, and DFT
methods are used for many electron systems. Pseudopotentials
are used for two different purposes to handle the Coulomb
singularity at nuclei and also as the frozen core. We use the
data from BIGDFT as the reference for our calculations with the
interpolating tensor product Deslauriers-Dubuc wavelet basis
function set.

An advantage of the interpolating wavelets compared to the
orthonormal wavelets is that computing a wavelet expansion
of the function does not require numerical evaluation of inte-
grals since the dual wavelets are weighted sums of δ functions.
In case the interpolating wavelets are compactly supported,
these sums are finite, too. We have to choose the wavelet
family so that its Hölder regularity is, at least, 2 in order
to enable the evaluation of the Laplacian operator. BIGDFT

uses Daubechies orthonormal wavelets for the computation of
atomic orbitals and scalar products and interpolating wavelets
for charge density, function products, and the Poisson solver.
We use a rectangular computation grid, whereas, BIGDFT uses
a spherical one.

From now on, we use atomic units throughout this article
(e = me = h̄ = 4πε0 = 1). Thus, units for energy and length,
“Hartree” and “Bohr” are used and abbreviated as (Ha) and
(B). Notations for wavelet basis functions and filters is similar
to that in Ref. [6] and computation of matrix elements is
similar to that in Ref. [7].

II. SOLVING THE SCHRÖDINGER EQUATIONS

A. General

Consider a system with n electrons and m nuclei with
atomic numbers Zi and locations Ri. Within the Born-
Oppenheimer approximation, dynamics of electrons and
nuclei are independent, and then, the wave function sepa-
rates to two factors, correspondingly. Here, we consider the
electronic part, the orbitals, only, and keep the nuclear confor-
mation {Ri} fixed.

With the fixed nuclear conformation, the Coulomb poten-
tial for dynamics of electrons is

VN(r) = −
m∑

i=1

Zi

|r − Ri| , (2)

and the internuclear repulsion energy,

ER =
m−1∑
i=1

m∑
j>i

ZiZ j

|Ri − R j | . (3)

For an atom, we have ER = 0.
Let us denote the orbitals by φ as symbols ϕ and ψ are

used for scaling functions and wavelets.
If the spacing between grid points is a (usually negative)

power of 2, we can handle this by choosing jmin in Eqs. (25)
and (26) properly. Otherwise, we have to make a change in
variables r = ar′ in the Schrödinger equation. Here, one unit
in the computation grid corresponds to a Bohrs.

B. Single-electron system

The Schrödinger equation of a single-electron system is(− 1
2∇2 + VN

)
φ = εφ, (4)

where ε is the orbital energy and the total energy including
nuclear repulsion is

Etotal = ε + ER. (5)
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The wave equation of a single-electron system is solved by
the implicitly restarted Arnoldi method [35,36]. The Arnoldi
method is able to find also other than the lowest eigenvalue.

C. Hartree-Fock method

The HF equation for an n electron system is(− 1
2∇2 + VN + VH + V i

x

)
φi = εiφi, (6)

where the Hartree potential is given by

VH(r) =
∫
R3

ρ(r′)
1

|r − r′|d3r′, (7)

and the charge density by

ρ(r) =
n∑

i=1

|φi(r)|2. (8)

The exchange potentials V i
x , i = 1, . . . , n, are defined in

Ref. [37], Sec. 2.2 but not needed in our paper. For a
two-electron system with both electrons occupying the same
orbital as the singlet state HF equation can be written as(− 1

2∇2 + VN + 1
2VH

)
φ1 = ε1φ1. (9)

The Hartree potential is computed by solving the Poisson
equation,

∇2VH = −4πρ, (10)

numerically.
In this case where there are more than one resolution

level in an interpolating wavelet basis, the matrix L of the
Laplacian operator is not generally Hermitian, so we cannot
solve Eq. (10) directly with the conjugate gradient method.
The non-Hermiticity arises because our matrix elements are
not computed as ordinary inner products between functions.
In this case, we use one of the following two methods:

(1) conjugate gradient on the normal equations (CGNR):
solve

LT LVH = −4πLT ρ, (11)

with the conjugate gradient method.
(2) Generalized minimal residual method (GMRES) [38].
When the basis set consists of a single resolution level, we

may the use ordinary conjugate gradient method to solve (10).
The total energy of a two electron system is

Etotal = 2ε1 − 1

4

∫
R3

ρ(r)VH(r)d3r + ER. (12)

In this paper, we consider restricted Hartree-Fock approach,
only.

D. Density functional theory and local density approximation

Suppose that we have a system with M electronic orbitals
whose total wave functions are 	. The Kohn-Sham equa-
tion [37,39,40] for the electronic structure is(− 1

2∇2 + VN + VH + Vxc[ρ]
)
φi = Eiφi, (13)

where the charge density is

ρ(r1) =
∑

s1=±1/2

M
∫

|	(x1, x2, . . . , xM )|2dx2 · · · dxM ,

(14)
and the Hartree potential,

VH(r) =
∫
R3

ρ(r′)
1

|r − r′|d3r′, (15)

and Vxc[ρ] is the exchange-correlation potential. We have

Vxc[ρ] = Vx[ρ] + Vc[ρ], (16)

where Vx[ρ] is the exchange potential and Vc[ρ] is the cor-
relation potential. In this article, we set Vc[ρ] = 0. The
exchange-correlation energy is defined by

Exc[ρ] = Ex[ρ] + Ec[ρ], (17)

where Ex[ρ] is the exchange energy and Ec[ρ] is the correla-
tion energy. In this article, we ignore the correlation energy.

Within the local density approximation (LDA), we define

Ex[ρ] =
∫

ρ(r)εx[ρ](r)d3r, (18)

where εx[ρ](r) is the exchange energy per particle of a uni-
form electron gas at a density of ρ. It follows from the
Kohn-Sham theorem [37], Sec. 3.1 that the exchange potential
is

Vx[ρ] = δEx[ρ]

δρ
. (19)

We have

Ex[ρ] = −3

4

(
3

π

)1/3 ∫
[ρ(r)]4/3d3r, (20)

and

Vx[ρ](r) = −
(

3

π
ρ(r)

)1/3

. (21)

The total energy of the system is

EKS =
n∑

i=1

Ei − 1

2

∫
ρ(r)VH(r)d3r + Exc[ρ]

−
∫

ρ(r)Vxc[ρ](r)d3r. (22)

The Kohn-Sham equations are solved by a similar self-
consistent iteration as the HF equations.

III. THREE-DIMENSIONAL WAVELET BASIS SET

A. The basis set

Let jmin and jmax be the minimum and maximum resolution
levels of the point grid. Let

Zj =
{

k

2 j

∣∣∣∣k ∈ Z

}
, (23)

and

Vj = Z3
j , (24)
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where j ∈ Z. Define sets Qj by

Qjmin = Vjmin , (25)

Qj = Vj \ Vj−1 for j > jmin. (26)

The point grid G will be some finite subset of Vjmax . We define

Gj := G ∩ Qj (27)

for j � jmin. The functions ϕ j,k and ψ j,k are scaling functions
and wavelets belonging to an interpolating wavelet family.
Functions ϕ̃ j,k and ψ̃ j,k are dual basis functions of interpo-
lating wavelets.

Define

ψs, j,k :=
{
ϕ j,k, if s = 0,

ψ j,k, if s = 1,
(28)

ψ̃s, j,k :=
{

ϕ̃ j,k ; if s = 0,

ψ̃ j,k ; if s = 1,
(29)

and

η j,k :=

⎧⎪⎨
⎪⎩

ϕ jmin,k, if j = jmin,

ϕ j−1,k/2, if j > jmin and k even,

ψ j−1,(k−1)/2, if j > jmin and k odd,

(30)

η̃ j,k :=

⎧⎪⎨
⎪⎩

ϕ̃ jmin,k, if j = jmin,

ϕ̃ j−1,k/2, if j > jmin and k even,

ψ̃ j−1,(k−1)/2, if j > jmin and k odd.

(31)

When α ∈ Qj and j � jmin define

ζα := η j,k[1] ⊗ η j,k[2] ⊗ η j,k[3], (32)

and

ζ̃α := η̃ j,k[1] ⊗ η̃ j,k[2] ⊗ η̃ j,k[3], (33)

where k = 2 jα. We also define

ϕ j,k := ϕ j,k[1] ⊗ ϕ j,k[2] ⊗ ϕ j,k[3], (34)

where j ∈ Z and k ∈ Z3.

B. Backward and forward wavelet transforms

Let

f =
∑
α∈G

cαζα, (35)

where cα ∈ R for all α ∈ G′s. Let c = (cα )α∈G. Define
v = (vα )α∈G by setting

vα = f (α). (36)

We define forward wavelet transform U and backward wavelet
transform W by setting U (v) = c and W (c) = v. Mappings U
and W are linear. We compute the forward wavelet transform
U using an algorithm somewhat similar to Ref. [41]. Define
matrix P( j) by

P( j)
α,β = δα,β, (37)

where α ∈ Gj , β ∈ G, and matrix E ( j) by

E ( j)
α,β = δα,β, (38)

where α ∈ G and β ∈ Gj . Define

W ( j, j′ )
α,β = ζβ (α), (39)

where α ∈ Gj and β ∈ Gj′ . See Eq. (27) for definition of Gj

and Eq. (32) for the definition of ζβ . We have

W =
jmax∑

j= jmin

j∑
j′= jmin

E ( j)W ( j, j′ )P( j′ ). (40)

For forward wavelet transform, we have

U =
jmax∑

j= jmin

E ( j)U ( j), (41)

U ( j) = J ( j)

⎛
⎝P( j) −

j−1∑
j′= jmin

W ( j, j′ )U ( j′ )

⎞
⎠ for j > jmin,

(42)

U ( jmin ) = P( jmin ), (43)

J ( j) = (W ( j, j) )−1. (44)

When

f =
∑
β∈Gj

cβζβ, (45)

we have

cα = 〈ζ̃α, f 〉 =
〈
ζ̃α,

∑
β∈Gj

f (β )ϕ j,2 jβ

〉
=

∑
β∈Gj

〈ζ̃α, ϕ j,2 jβ〉 f (β ).

(46)
Consequently,

J ( j)
α,β = 〈

ζ̃α, ϕ j,2 jβ

〉
, (47)

and we do not have to invert matrix W ( j, j).
An operator representing pointwise multiplication of a

function f by another in the given computation grid is

M = UDW, (48)

where D is a diagonal matrix with values of the function f at
the grid points in the diagonal. The local pseudopotentials are
computed this way.

C. Matrix elements of the Laplacian operator

Laplacian operator,

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(49)

is approximated by linear operator L = L(x) + L(y) + L(z)

where

L(x)
α,α′ =

∫
R3

ζ̃α (x)
∂2

∂x2
ζα′ (x)dτ, (50)

L(y)
α,α′ =

∫
R3

ζ̃α (x)
∂2

∂y2
ζα′ (x)dτ, (51)

L(z)
α,α′ =

∫
R3

ζ̃α (x)
∂2

∂z2
ζα′ (x)dτ (52)
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for α, α′ ∈ G. Let α = 2− j (kx, ky, kz ) ∈ G ∩ Qj and α′ =
2− j′ (k′

x, k′
y, k′

z ) ∈ G ∩ Qj′ . We define

ι =
{

j − 1, if j > jmin,

j, if j = jmin,
(53)

lx =

⎧⎪⎨
⎪⎩

kx
2 , if kxeven and j > jmin,

kx−1
2 , if kx odd and j > jmin,

kx, if j = jmin,

(54)

tx =
{

0, if j = jmin or j > jmin and kx even,

1, if j > jmin and kx odd,
(55)

ly =

⎧⎪⎪⎨
⎪⎪⎩

ky

2 , if ky even and j > jmin,

ky−1
2 , if ky odd and j > jmin,

ky, if j = jmin,

(56)

ty =
{

0, if j = jmin or j > jmin, and ky even,

1, if j > jmin, and ky odd,
(57)

lz =

⎧⎪⎨
⎪⎩

kz

2 , if kz even and j > jmin,

kz−1
2 , if kz odd and j > jmin,

kz, if j = jmin,

(58)

tz =
{

0, if j = jmin or j > jmin, and kz even,

1, if j > jmin and kz odd,
(59)

and similar definitions for ι′, l ′
x, t ′

x, l ′
y, t ′

y, l ′
z, and t ′

z.
Elements of matrices are computed by

L(x)
α,α′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

22ιa(tx, t ′
x, ι

′ − ι, l ′
x − 2ι′−ιlx )

×s(ty, t ′
y, ι

′ − ι, l ′
y − 2ι′−ιly)

×s(tz, t ′
z, ι

′ − ι, l ′
z − 2ι′−ιlz ), if ι � ι′,

22ι′a(tx, t ′
x, ι

′ − ι, lx − 2ι−ι′ l ′
x )

×s(ty, t ′
y, ι

′ − ι, ly − 2ι−ι′ l ′
y)

×s(tz, t ′
z, ι

′ − ι, lz − 2ι−ι′ l ′
z ), if ι > ι′,

(60)

L(y)
α,α′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

22ιs(tx, t ′
x, ι

′ − ι, l ′
x − 2ι′−ιlx )

×a(ty, t ′
y, ι

′ − ι, l ′
y − 2ι′−ιly)

×s(tz, t ′
z, ι

′ − ι, l ′
z − 2ι′−ιlz ), if ι � ι′,

22ι′s(tx, t ′
x, ι

′ − ι, lx − 2ι−ι′ l ′
x )

×a(ty, t ′
y, ι

′ − ι, ly − 2ι−ι′ l ′
y)

×s(tz, t ′
z, ι

′ − ι, lz − 2ι−ι′ l ′
z ), if ι > ι′,

(61)

L(z)
α,α′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

22ιs(tx, t ′
x, ι

′ − ι, l ′
x − 2ι′−ιlx )

×s(ty, t ′
y, ι

′ − ι, l ′
y − 2ι′−ιly)

×a(tz, t ′
z, ι

′ − ι, l ′
z − 2ι′−ιlz ), if ι � ι′,

22ι′s(tx, t ′
x, ι

′ − ι, lx − 2ι−ι′ l ′
x )

×s(ty, t ′
y, ι

′ − ι, ly − 2ι−ι′ l ′
y)

×a(tz, t ′
z, ι

′ − ι, lz − 2ι−ι′ l ′
z ), if ι > ι′.

(62)

The filters a and s are defined by

a(t1, t2, j, k) =
∫
R3

ψ̃t1,0,0(x)
∂2

∂x2
ψt2, j,k (x)dτ, for j � 0,

(63)

a(t1, t2, j, k) =
∫
R3

ψ̃t1,− j,k (x)
∂2

∂x2
ψt2,0,0(x)dτ, for j < 0,

(64)

s(t1, t2, j, k) =
∫
R3

ψ̃t1,0,0(x)ψt2, j,k (x)dτ, for j � 0,

(65)

s(t1, t2, j, k) =
∫
R3

ψ̃t1,− j,k (x)ψt2,0,0(x)dτ, for j < 0.

(66)Filter a is computed with formulas

a(0, 0, j, k) = 22 ja0(k) for j � 0, (67)

a(0, 0,−1, k) = 4
m∑

μ=−m

hμa(0, 0, 0, μ − k) for j = −1,

(68)
a(0, 0, j, k) = 4

m∑
μ=−m

hμa(0, 0, j + 1, k − 2− j−1μ)

for j < −1, (69)

a(0, 1, j, k) = a(0, 0, j + 1, 2k + 1) for j � 0, (70)

a(0, 1,−1, k) = 4a0(1 − k), (71)

a(0, 1, j, k) = 4a(0, 0, j + 1, k − 2− j−1) for j < −1,

(72)

a(1, 0, 0, k) =
m∑

ν=−m

g̃νa(0, 0,−1, ν − 2k), (73)

a(1, 0, j, k) = 4
m∑

ν=−m

g̃νa(0, 0, j − 1, k − 2 j−1ν) for j > 0,

(74)
a(1, 0, j, k) =

m∑
ν=−m

g̃νa(0, 0, j − 1, 2k + ν) for j < 0,

(75)

a(1, 1, j, k) = a(1, 0, j + 1, 2k + 1) for j � 0, (76)

a(1, 1,−1, k) = 4a(1, 0, 0, 1 − k), (77)

a(1, 1, j, k) = 4a(1, 0, j + 1, k − 2− j−1) for j < −1,

(78)

where

a0(k) :=
∫
R

ϕ̃(x)
∂2

∂x2
ϕ(x − k)dx. (79)

Filter s is computed with formulas,

s(0, 0, j, k) = δk,0 for j � 0, (80)

s(0, 0,−1, k) = hk, (81)

025307-5



HÖYNÄLÄNMAA AND RANTALA PHYSICAL REVIEW E 108, 025307 (2023)

s(0, 0, j, k) =
m∑

μ=−m

hμs(0, 0, j + 1, k − 2− j−1μ)

for j < −1, (82)

s(0, 1, j, k) = 0 for j � 0, (83)

s(0, 1,−1, k) = δk,1, (84)

s(0, 1, j, k) = s(0, 0, j + 1, k − 2− j−1) for j < −1, (85)

s(1, 0, 0, k) = 0, (86)

s(1, 0, j, k) =
m∑

ν=−m

g̃νδk,2 j−1ν for j > 0, (87)

s(1, 0, j, k) = 0 for j < 0, (88)

s(1, 1, 0, k) = δk,0, (89)

s(1, 1, j, k) = 0 for j �= 0. (90)

IV. CONSTANT AND INTERPOLATED
PSEUDOPOTENTIALS

The Coulomb potential arising from a single nucleus is

V (r) = −Z

r
, (91)

where Z is the charge of the nucleus.
We avoid the singularity by using a pseudopotential. We

define c to be the cutoff point of the pseudopotential, and D
to be the degree of the interpolating polynomial used in the
pseudopotential. Actually, we use c = 2− jmax where jmax is the
highest resolution level in the wavelet basis. Parameter D has
to be an odd integer, and we define n = (D + 1)/2. We define

V1(r) := −1

r
, r � 0, (92)

s := [−nc, − (n − 1)c, . . . ,−2c,−c, c, 2c, . . . , (n − 1)c, nc],

(93)

and

t[i] := V1(s[i]), (94)

where i = 1, . . . , 2n. Let P be the interpolating polynomial
of degree at most D having value t[i] at point s[i] for i =
1, . . . , 2n. Now, we define the interpolated pseudopotential
with

Vinterp(r) :=
{

V1(r), r � c,

P(r), r < c.
(95)

The actual pseudopotential of a nucleus with charge Z and
location R is then

V (r) = ZVinterp(|r − R|). (96)

Function Vinterp with different values of c is plotted in Fig. 1.
We may also use the cut pseudopotential defined by

Vcut (r) :=
{

V1(r), r � c,

− 1
c , r < c,

(97)

where c = 2− jmax−1.

FIG. 1. Pseudopotentials Vinterp with D = 7. Parameter c is the
cutoff value, see Sec. IV.

V. HARTWIGSEN-GOEDECKER-HUTTER
PSEUDOPOTENTIAL

By using pseudopotentials the number of computed or-
bitals can be reduced and since the pseudo wave functions are
smoother than all-electron wave functions the basis function
set can also be reduced. In a pseudopotential computation
only, the valence electrons are actually computed, and the
effect of the core electrons is handled by replacing the nuclear
potential with a pseudopotential. We use the Hartwigsen-
Goedecker-Hutter (HGH) pseudopotential [33,42] in these
computations.

The HGH pseudopotential consists of a local and a non-
local part. The local part is a function of the position as the
nuclear potential. The nonlocal part is a linear operator, and
it is not a function of position. The local pseudopotential is
given by

Vloc(r) = −Zion

r
erf

(
r√

2rloc

)
+ exp

[
− 1

2

(
r

rloc

)2]

×
[
C1 + C2

(
r

rloc

)2

+ C3

(
r

rloc

)4

+ C4

(
r

rloc

)6]

where r is the distance from the nucleus. Note that

lim
r→0

−Zion

r
erf

(
r√

2rloc

)
= −Zion

rloc

√
2

π
, (98)

and the local pseudopotential is defined at the origin (nucleus),
too.

The nonlocal pseudopotential is defined by

Vnonlocal[φ] = r ∈ R3 �→
∑

l

∫
Vl (r, r′)φ(r′)d3r′, (99)

where

Vl (r, r′) =
3∑

i=1

3∑
j=1

l∑
m=−l

Yl,m(r̂)pl
i (r)hl

i, j pl
j (r

′)Y ∗
l,m(r̂′) (100)
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TABLE I. Computation grids. We define Z (n) := {k ∈ Z : |k| �
n}.

Number Grid points

1 1
2 (Z (20))3

2 1
2 (Z (20))3 ∪ 1

4 (Z (10))3

3 1
2 (Z (20))3 ∪ 1

4 (Z (10))3 ∪ 1
8 (Z (4) × Z (4) × Z (10))

4 1
4 (Z (60))3

5 1
2 (Z (30))3 ∪ 1

4 (Z (15))3

6 (Z (38))3 ∪ 1
2 (Z (19))3

7 1
4 (Z (40))3

8 (Z (10))3 ∪ 1
2 (Z (10))3

9 1
2 (Z (20))3 ∪ 1

4 (Z (20))3

10 1
4 (Z (40))3 ∪ 1

8 (Z (40))3

11 (Z (10))3 ∪ 1
2 (Z (5))3

12 1
2 (Z (20))3 ∪ 1

4 (Z (10))3 ∪ 1
8 (Z (4) × Z (4) × Z (15))

13 1
4 (Z (40))3 ∪ 1

8 (Z (20))3

14 1
4 (Z (60))3 ∪ 1

8 (Z (30))3

for each nucleus. The origin of the coordinate system in (100)
is located at the nucleus. The functions pl

i are defined by

pl
i (r) =

√
2rl+2(i−1) exp

(− r2

2r2
l

)
rl+(4i−1)/2

l

√
�

(
l + 4i−1

2

) , (101)

where parameter rl is given in Bohrs. The range of values
l is determined by the actual pseudopotential. The spherical
harmonics Yl,m in Eq. (100) can be replaced by orthonormal
linear combinations of Yl,m, m = −l, . . . , l . This allows us to
avoid computation with complex valued functions.

VI. ATOMIC AND MOLECULAR ORBITALS

The hydrogen atom, hydrogen molecule ion, and lithium
HGH computations presented here have been performed with
the Arnoldi method. The helium, hydrogen molecule, and
lithium hydride computations have been performedwith self-
consistent iteration and the Arnoldi method. When there is
only one resolution level in the basis the Hamiltonian and
Laplacian matrices are Hermitian and the Arnoldi method
reduces to a variant of the Lanczos method. Furthermore,
the ordinary conjugate gradient method could be used for the
Poisson equation. Two methods have been used for solving the
Poisson equation for the general case: CGNR and GMRES.
We ran a benchmark for these methods and GMRES was
eight times faster when the accuracies of the results were
approximately the same. This is because the GMRES code
is parallelized better than CGNR. All the computations use
eigth order Deslauriers-Dubuc wavelets (polynomial span 7).
We use interpolating polynomials of degree 7 for the pseu-
dopotentials. In some computations, the Arnoldi method did
not find the desired eigenvalues. This was solved by rising
the number of computed eigenvalues and the number of basis
vectors in the Arnoldi method. The basis function sets (com-
putation point grids) are presented in Table I. The grid spacing
for a wavelet basis is defined to be g = 2− jmax a where jmax is
the maximum resolution level in the basis and a is the size of

TABLE II. Total energy of the hydrogen atom. Quantity g is the
distance between grid points in the highest resolution level. The
numbers in column ‘Basis” refer to Table I and “TH” means this
paper.

Source Basis g (B) Pseudopot. E (Ha)

TH 7 0.25 Const. −0.487470
TH 8 0.5 Const. −0.462247
TH 9 0.25 Const. −0.487470
TH 10 0.125 Const. −0.496380
TH 7 0.25 Interp. −0.478328
TH 8 0.5 Interp. −0.439146
TH 9 0.25 Interp. −0.478328
TH 10 0.125 Interp. −0.493471
TH 7 0.25 HGH −0.499294
TH 8 0.5 HGH −0.589957
TH 9 0.25 HGH −0.499295
TH 10 0.125 HGH −0.499899
CCCBDB [43] −0.466582
BIGDFT [33,34] HGH −0.499969
Exact None −0.5

one unit in resolution level 0 in the wavelet basis in atomic
units. See Sec. II A.

The data presented in the tables in this article were obtained
from our own software (denoted by TH), our own computa-
tions with BIGDFT [33,34], and CCCBDB [43]. BIGDFT is a
quantum-mechanical computation package using Daubechies
wavelets. CCCBDB is large database containing atomic and
molecular data. The CCCBDB energies and internuclear dis-
tances in this article use the (slater-type orbital) STO-3G basis
set. Quantity g is the distance between grid points in the
highest resolution level, and quantity d is the distance between
the nuclei in the result tables. Esystem is the total energy of
the system, and Ebinding is the binding energy. We used grid
spacing 0.45 B (finer grid spacing 0.225 B) in all our BIGDFT

computations. The BIGDFT parameters for determining the size
of the basis set were crmult=10.0 and frmult=16.0. Parameter
crmult is used to specify the size of the coarse region and
parameter frmult the size of the fine region around atoms. The

FIG. 2. Radially averaged wave functions of the hydrogen atom
for several bases. The solid line is the analytical radial wave function.
The basis numbers refer to Table I.
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FIG. 3. Radially averaged wave functions of the hydrogen atom
for some bases. The solid line is the analytical radial wave function.
The basis numbers refer to Table I.

computations were also performed with values crmult = 5.0
and frmult = 8.0, but the results did not differ significantly.
Note that the total energy does not include the energies of
the core electrons in the lithium hydride HGH computa-
tions. Computations using our own software use interpolating
wavelets and BIGDFT computations orthonormal Daubechies
wavelets.

For the molecular computations, the energy of the system
as a function of the distance between the nuclei is computed
in three points near the energy minimum, and a second degree
polynomial is fitted into these points. The distance between
the nuclei is then the minimum point of the polymial, and
the energy of the system is computed at the minimum dis-
tance. We locate the nuclei at points (0, 0,± d

2a ) where d
is the distance between the nuclei in Bohrs. When binding
energies of molecules were computed the energies of atoms
were usually computed with the basis set as the molecule.
When the basis was unsymmetric, it was modified. For ex-
ample, grid Z (4)×Z (4)×Z (10) becomes Z (4)×Z (4)×Z (4)
for the atoms. See the caption of Table I for the definition
of Z (n).

The results for hydrogen atom ground state are presented
in Table II. The radially averaged ground state wave functions

FIG. 4. Energy of H2 as a function of internuclear distance calcu-
lated with the Hartree-Fock method and HGH pseudopotential. The
solid line is our computation with interpolating wavelets and basis
set 5, g = 0.25 B, and the dashed line is computed with BIGDFT and
(fine) grid spacing g = 0.225 B.

TABLE III. Hydrogen atom orbital energies with the HGH pseu-
dopotential. We labeled the resulting 2p orbitals with a, b, and c. All
the orbitals presented are approximately orthogonal.

Orbital Computed energy (Ha) Exact energy (Ha)

1s −0.499295 −0.5
2s −0.120957 −0.125
2pa −0.123045 −0.125
2pb −0.123045 −0.125
2pc −0.123045 −0.125

of the hydrogen atom are plotted in Figs. 2 and 3. A radial
average of a function f :R3 → R is computed by

f̄ (r) := 1

4π

∫ π

θ=0

∫ 2π

φ=0
f (r, θ, φ) sin θ dφ dθ, (102)

where r ∈ [0,∞[. As the angular part of a s-type wave func-
tion is 1

2
√

π
, we estimate a radial wave function by

ḡ(r) := 1

2
√

π

∫ π

θ=0

∫ 2π

φ=0
f (r, θ, φ) sin θ dφ dθ. (103)

The calculation of hydrogen excited states uses HGH pseu-
dopotential and basis 9. Results are presented in Table III.
The names of the excited states were obtained by computing
inner products between the computed states and analytical
states. The resulting orbitals are approximately orthonormal
and the computed 2p states are approximately linear combi-
nations of the analytical 2p states. The largest (in absolute
value) inner product between different orbitals is 〈2pa|2pc〉 =
5.428×10−4. The quality of the linear combinations can be
measured by a quantity

√
1 − ‖P f ‖2

2 where P is the orthogo-
nal projection from L2(R3) onto the space spanned by 2px,
2py, and 2pz. The value of this quantity is 0.1265 for all
the computed orbitals 2pa, 2pb, and 2pc. Analytical expres-
sions for hydrogenic orbitals can be found for example in
Ref. [46].

Helium atom has been computed using the HGH pseu-
dopotential. Results are presented in Table IV. Grid spacing
g = 0.5 B does not give sensible results with the HGH pseu-
dopotential. We suppose that Froese Fischer’s results [44]

TABLE IV. Energetics of the helium atom. All our and BIGDFT

computations use the HGH pseudopotential. The numbers in column
Basis refer to Table I and TH means this paper.

Source Basis g (B) Exchange potential E (Ha) Eorb (Ha)

TH 4 0.25 HF −2.901959 −0.971927
TH 5 0.25 HF −2.901180 −0.970247
TH 4 0.25 LDA −2.821511 −0.629713
TH 5 0.25 LDA −2.819951 −0.628152
TH 14 0.125 HF −2.916129 −0.974768
CCCBDB [43] HF −2.807584
CCCBDB [43] LSDA −2.809599
BIGDFT [33,34] HF −2.862303
BIGDFT [33,34] LDA −2.833895
HF limit [44] HF −2.862 −0.918
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TABLE V. Hydrogen molecule. The numbers in columnBasis refer to Table I and TH means this paper.

Source Basis a (B) g (B) Pseudopot. Exch. Esystem (Ha) Ebinding (Ha) d (B)

TH 1 1.0 0.5 interp. HF −1.045883 0.167601 1.855140
TH 2 1.0 0.25 interp. HF −1.156554 0.199450 1.501870
TH 3 1.0 0.125 interp. HF −1.186176 0.210390 1.454593
TH 4 1.0 0.25 HGH HF −1.188779 0.190189 1.397995
TH 5 1.0 0.25 HGH HF −1.187995 0.189405 1.397991
TH 6 0.4 0.20 HGH HF −1.188547 0.189383 1.389890
TH 4 1.0 0.25 HGH LDA −1.157528 0.158938 1.485861
TH 5 1.0 0.25 HGH LDA −1.155960 0.157378 1.485851
CCCBDBa HF −1.117506 0.184342 1.345
CCCBDBa LSDA −1.157014 0.248654 1.391
BIGDFTb HGH HF −1.133393 0.133455 1.386175
BIGDFTb HGH LDA −1.136870 0.136932 1.445097
Experimentalc 0.166 1.40

aReference [43].
bReference [33,34].
cReference [45], Chap. 5.2.

can be regarded as the Hartree-Fock limit for helium. The
computed total energies of the helium atom are quite good.

We calculated the hydrogen molecule with the interpolated
and HGH pseudopotentials. The computation results for the
hydrogen molecule are presented in Table V. The resulting
dissociation curve with the HF method, HGH pseudopotential,
and basis set 5 is plotted in Fig. 4. When the HGH pseu-
dopotential was used the computation worked for grid spacing
g = 0.25 B but did not work for spacing g = 0.5 B. The mini-
mum energy of the curve is E0 = −1.188 Ha, and it is located
at internuclear distance d0 = 1.398 B. The corresponding val-
ues for the BIGDFT reference curve are E0 = −1.132 Ha and
d0 = 1.385 B. The results for the hydrogen molecule ion are
presented in Table VI.

The calculations for lithium hydride molecule are pre-
sented in Table VII. Grid spacing g = 0.5 B did not yield a
physical dissociation curve for the HGH pseudopotential. Nei-
ther g = 0.5 B nor g = 0.25 B yielded a physical dissociation
curve for the interpolated pseudopotential. The dissociation
curve of lithium hydride computed with the Hartree-Fock

TABLE VI. Hydrogen molecule ion H+
2 . The analytical results

are equal to the experimental results. The numbers in column Basis-
refer to Table I and TH means this paper.

Source Basis g (B) Pseudopot. Esystem (Ha) Ebinding (Ha) d (B)

TH 1 0.5 interp. −0.520169 0.082028 2.371005
TH 2 0.25 interp. −0.573665 0.095310 2.021654
TH 12 0.125 interp. −0.589135 0.101242 2.015143
TH 11 0.5 HGH −0.712279 0.121898 2.007951
TH 2 0.25 HGH −0.601783 0.102460 2.006845
TH 7 0.25 HGH −0.601636 0.102342 2.005329
TH 13 0.125 HGH −0.602448 0.102549 1.999338
CCCBDBa −0.582697 0.116115 2.005
BigDFTb HGH −0.602489 0.102520 1.995677
Experimentalc 0.103 2.00

aReference [43].
bReference [33,34].
cReference [45], Chap. 4.6.

method and basis set 5 is plotted in Fig. 5. The minimum
energy of the curve is E0 = −0.817 Ha, and it is located at
internuclear distance d0 = 2.880 B. The corresponding val-
ues for the BIGDFT reference curve are E0 = −0.760 Ha and
d0 = 2.921 B.

The energies of the hydrogen atom converge to the
exact value for the constant, interpolated, and HGH pseu-
dopotentials with grid spacings g = 0.5, 0.25, and 0.125 B
(Table II). The Hartree-Fock helium computations yield ap-
proximately same results for g = 0.25 B and g = 0.125 B
(Table IV). The Hartree-Fock computations of the hydro-
gen molecule using the HGH pseudopotential give ap-
proximately same energies for g = 0.25 B and g = 0.2 B
(Table V). The calculations of the hydrogen molecule ion
using the HGH pseudopotential yield approximately same
energies and internuclear distances for g = 0.25 B and g =
0.125 B (Table VI). The Hartree-Fock computations of the
lithium hydride molecule give approximately same results for
g = 0.25 B and g = 0.2 B (Table VII).

TABLE VII. Lithium hydride molecule. All our and BIGDFT

computations were performed with the HGH pseudopotential. The
CCCBDB all-electron total energies are not presented in the table
because the energies calculated by us do not include the energies of
the core electrons. The numbers in column Basis refer to Table I and
TH means this paper.

Source Basis a (B) g (B) Exch. Esystem (Ha) Ebinding (Ha) d (B)

TH 4 1.0 0.25 HF −0.817817 0.117472 2.879961
TH 5 1.0 0.25 HF −0.817030 0.116686 2.880018
TH 4 1.0 0.25 LDA −0.811482 0.111137 3.013411
TH 5 1.0 0.25 LDA −0.809904 0.109560 3.013474
TH 6 0.4 0.2 HF −0.817007 0.116370 2.863496
CCCBDBa HF 0.081274 2.855
CCCBDBb LSDA 0.135698 2.899
BIGDFTb HF −0.760938 0.059911 2.866004
BIGDFTb LDA −0.776416 0.075389 2.930745

aReference [43].
bReferences [33,34].
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FIG. 5. Total energy of the lithium hydride molecule as a func-
tion of the internuclear distance calculated with the Hartree-Fock
method and HGH pseudopotential. The solid line has been computed
with interpolating wavelets and basis set 5, g = 0.25 B, and the
dashed line with BIGDFT and (fine) grid spacing g = 0.225 B.

VII. CONCLUSIONS

We have shown how to solve the wave equations of hydro-
gen and helium atoms, hydrogen molecule ion, and hydrogen
and lithium hydride molecules in a three-dimensional interpo-
lating tensor product wavelet basis. As far the authors know,

only Arias [10] and Engeness and Arias [11] have performed
this before. However, they do not use the dual interpolating
MRA to evaluate matrix elements. We do that, and it allows
us to neglect the overlap integrals of the basis functions.

It seems to require large basis sets to obtain numerically
good orbitals for quantum physical systems. Roughly, the
description requires, at least, 10 000 basis functions. The most
accurate computed bond length of the hydrogen molecule is
good and the energy satisfactory. The most accurate binding
energies and internuclear distances for the hydrogen molecule
ion in Table VI are very accurate. The calculations with the
HGH pseudopotential performed very well with grid spacing
g = 0.25 B but not with g = 0.5 B. The same phenomenon
was observed with BIGDFT, too.

We tested the H and He atom computations with BIGDFT

so that the coarse grid spacing was changed from 0.45 to
0.225 B. For some reason, we got slightly worse energies.
We also found that one level basis set can be replaced with
considerably smaller two-level basis set without a significant
effect on the results.

Note that having no more than two resolution levels in
the basis makes the computation of the Laplacian operator
simpler and faster because in that case the s(· · · ) terms in the
Laplacian operator, equations (60)–(62), are either Kronecker
δs or zero.
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