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Complex-valued neural-operator-assisted soliton identification
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The numerical determination of solitary states is an important topic for such research areas as Bose-Einstein
condensates, nonlinear optics, plasma physics, and so on. In this paper, we propose a data-driven approach for
identifying solitons based on dynamical solutions of real-time differential equations. Our approach combines
a machine-learning architecture called the complex-valued neural operator (CNO) with an energy-restricted
gradient optimization. The CNO serves as a generalization of the traditional neural operator to the complex
domain, and constructs a smooth mapping between the initial and final states; the energy-restricted optimization
facilitates the search for solitons by constraining the energy space. We concretely demonstrate this approach
on the quasi-one-dimensional Bose-Einstein condensate with homogeneous and inhomogeneous nonlinearities.
Our work offers an idea for data-driven effective modeling and studies of solitary waves in nonlinear physical
systems.
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I. INTRODUCTION

Steady soliton solutions of nonlinear partial differential
equations (PDEs) arise in a wide range of contexts in physics,
including Bose-Einstein condensates (BECs) [1–3], nonlin-
ear optics [3–6], and plasma physics [7,8]. Since analytical
solutions to nonlinear PDEs are generally difficult to obtain
(especially for nonintegrable PDEs), the numerical identifi-
cation of solitons constitutes an important subject for both
theoretical inquiries and practice. From a theoretical per-
spective, the ground-state solitary solution can unveil the
equilibrium characteristics of nonlinear systems, such as long-
range order and topological structures; the lifetime of soliton
solutions can offer valuable insights into the stability and re-
sponse to perturbations near equilibration. From the practical
point of view, the study of solitons has potential implications
in long-distance communication [9–11], data transmission,
and in laying the foundation for advanced photonic devices
and data storage technologies [12–14].

The solitary waves that we are interested in are separable
in time and space. Several traditional methods are available
for finding this type of soliton [15–17]. For example, the
complex evolution method extends the real-time of PDEs to
complex or imaginary values [18,19]. Since complex-time
evolution always reduces energy, this method is more suitable
for finding ground-state solitons. Moreover, several meth-
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ods were developed based on stationary equations for both
ground-state and excited-state solitons, where the time de-
pendence was eliminated using the space-time separation.
For instance, the shooting method is primarily used for
one-dimensional (1D) systems; the Petviashvili method [20]
and its extensions [21–23] are suitable for finding higher-
dimensional ground-state solitons; Newton’s method [16,17]
and its advanced versions, such as the CG Newton’s
method [24], iteratively search for ground-state or excited-
state solitons starting from trial solutions and can be extended
to higher-dimensional systems. Some machine learning meth-
ods were also applied in finding the solitons, e.g., the
variational neural network ansatz [25], the deep residual [26],
convolutional neural network [27,28], as well as the genera-
tive models [29]. Furthermore, there are also some dynamical
PDE solvers based on machine learning [30,31]. Physics-
informed neural networks were proposed as a powerful tool
to approximate the dynamical solutions by incorporating the
governing equations as soft constraints during the training
process [32,33]. The Feynman-Kac formula-based meth-
ods [34,35] and stochastic equation-based methods [31,36]
were reported as well. This class of solvers, however, is de-
signed to find the dynamical solutions of PDEs for the given
initial states, which cannot be used for determining solitary
solutions directly.

In this paper, we propose a data-driven approach to search
for the solitons based on a machine-learning architecture
called the complex-valued neural operator (CNO). We were
motivated by the question of if it is possible to identify soli-
tary wave solutions by directly looking at the real-time PDE,
rather than its variants such as the imaginary-time PDE or
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the stationary equation. Since solitary waves exhibit space-
time separation, in principle, we can use traditional PDE
solvers [e.g., Euler or Runge-Kutta (RK) solvers] to iden-
tify solutions where the initial and final states differ by only
a phase factor. There are two challenges for such a task.
First, iterating through the initial states by PDE solvers is
highly time-consuming. Second, finding a specific solution
is an optimization problem, and hence it would be ideal to
use the gradient descent. Traditional PDE solvers, however,
cannot compute the derivative with respect to initial states.
These two challenges can be well addressed by the neural
operator (NO) [37,38], which can establish the continuous
mapping between the real-value functions during training. We
extend the NO to the complex domain, namely, the CNO with
complex layers and complex activation functions, to accom-
modate the complex dynamical PDEs. We further develop an
energy-restricted optimization algorithm to reduce the spaces
of states during the search process. Our approach is concretely
demonstrated on the one-dimensional Gross-Pitaevskii (GP)
equations with both homogeneous and inhomogeneous non-
linearities. Furthermore, we show that the trained CNO can
be also used for the stability analysis of solitary states.

The rest of this paper is organized as follows. In Sec. II,
we present the basic idea of our approach and show the CNO
architecture. In Sec. III, we use our method in both the homo-
geneous GP and the inhomogeneous GP equations to identify
the solitons. In Sec. IV, we present the application of the
CNO to the stability analysis of solitons. A brief summary
and outlook can be found in Sec. V.

II. GENERAL METHOD

Let us generically consider a class of nonlinear PDEs of a
one-dimensional physical system

f (ψ, ψ̇, t ) = 0, (1)

with ψ (x, t ) being a complex-valued function. From the
perspective of field theory, the PDEs come from the Euler-
Lagrange equation ∂ψL = dt (∂ψ̇L) with L(ψ, ψ̇, t ) being the
Lagrangian. For example, the GP equation is generated by the
nonlinear Schrödinger Lagrangian, and the nonlinear Klein-
Gordon equation arises from the Klein-Gordon Lagrangian
with mass or high-order potentials. The solitons that we are
interested in are space-time separable, i.e.,

ψ (x, t ) = e−iαtφ(x), (2)

where i = √−1 is the imaginary unit and e−iαt is a time-
dependent phase factor that is isolated from the spatial solitary
state φ(x). Using the time-space separation of ψ (x, t ), the
temporal degree-of-freedom of Eq. (1) can be eliminated,
which leads to the stationary equation purely in terms of
φ(x), solving which one can obtain the time-independent
solitons. Due to the nonlinearity of f , the stationary equa-
tion is generally not a linear eigenstate equation, and various
iterative methods were developed for such stationary equa-
tions [15,16].

FIG. 1. Upper panel: Architecture of a CNO where initial
ψ (x, 0) and final ψ (x, T ) states serve as the input and output, CP
and CQ correspond to the complex embedding and decoding layers,
and h(x) are the hidden states. Lower panel: Detailed structure of
a CFL with CF and CF−1, respectively, the complex Fourier and
inverse Fourier transformations, R the low-pass filter layer, CW a
local complex transformation, and Cσ the complex-valued nonlinear
activation.

A. Basic idea

We aim to identify solitary solutions by directly looking at
the real-time dynamical PDEs. In such a context of real-time
dynamics, the PDE [Eq. (1)] maps the initial states to the final
states, i.e., G : ψ (x, 0) �→ ψ (x, T ), and the solitary solutions
correspond to the fixed points of the mapping with unit fidelity
F = 1, where

F = 1

N2

∣∣∣∣
∫

dxψ∗(x, T )ψ (x, 0)

∣∣∣∣
2

, (3)

and N = ∫
dx|φ(x)|2 is the total particle number and ψ∗(x, T )

is the complex conjugation of ψ (x, T ). Considering the fact
that the space of states is continuous and quite large, it is not
feasible to locate the solitons by directly iterating through the
initial states ψ (x, 0) using PDE solvers. To address this issue,
we developed the CNO and a restricted searching algorithm.
Our algorithm mainly consists of two steps: (i) Learn the
initial-final state mapping G by training the CNO based on
a finite-size dataset D; (ii) Perform restricted gradient opti-
mization to find the solitons within a specific energy range.
Below we explain in detail.

As is schematically shown in Fig. 1, CNO is a trainable
machine-learning architecture that is able to learn the relation
between the initial state ψ (x, 0) (as the input) and the final
state ψ (x, T ) (as the output) based on a finite-size dataset D.
More detailed descriptions of CNO can be found in Sec. II B.
The dataset D is composed of the pairs of initial-final states,
i.e.,

D = {[ψk (x, 0), ψk (x, T )]|k = 1, 2, . . . , M}, (4)

with ψk (x, 0) being random differentiable functions and M
being the total number of data points. Practically, ψk (x, T ) can
be generated by the numerical propagating Eq. (1) by certain
PDE solvers, e.g., the Euler or the RK solvers. CNO learns
the mapping G by minimizing the loss function L, which
refers to the training process. The loss function L is defined
to characterize the effective distance between the network
prediction ψpred(x, T ) and the solutions ψ (x, T ) in the dataset
D. Practically, in the following discussion we use the L2-norm
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loss function

L = 1

M

∑
k

∫
dx

|ψk,pred(x, T ) − ψk (x, T )|
|ψk (x, T )| . (5)

Once the mapping G is learned by the CNO, the trained
CNO can be used to find the solitons by minimizing �F =
|F − 1| with respect to the initial state ψ (x, 0). This is an op-
timization process, which can be carried out using the gradient
descent method. Here, we emphasize that the CNO-based
soliton search has two major advantages. First, the forward
propagation of CNO is much faster than traditional PDE
solvers. The detailed discussion on the computational com-
plexity will be shown in Sec. II B. In Sec. IV, we additionally
show a concrete running-time comparison between CNO and
traditional PDE solvers in the context of the stability analysis
of solitons. Furthermore, the output of the CNO is continu-
ously derivable to its input, which thus naturally facilitates the
gradient-based optimization of �F .

Although the trained CNO can provide several computa-
tional conveniences as mentioned above, the vast space of the
initial states remains a significant obstacle in our practical pur-
suit of solitons. This motivated us to reduce the search space,
which is based on Noether’s theorem. Noether’s theorem es-
tablishes a relationship between symmetries and conserved
charges, with the charges being of help in space reduction.
For example, in systems with time translation symmetry, such
as the GP equation or nonlinear Klein-Gordon equation, the
energy (or the Hamiltonian) E = ∫

dx�ψ̇ − L is conserved,
with � = ∂ψ̇L being the conjugate field. Therefore, we can
perform the energy-restricted optimization by adding an in-
equality constraint into the minimization of �F . To be more
specific, if we set an energy upper bound E � Emax, the opti-
mization problem is reformed as

min
ψ (x,0)

�F subject to Eψ (x,0) � Emax. (6)

Using the augmented Lagrangian method [39], the above op-
timization problem can be rewritten as

min
ψ (x,0),λ,γ

�F + γ

2

(
max

{
λ

γ
+ Eψ (x,0) − Emax, 0

}2

− λ2

γ 2

)
,

(7)
where Eψ (x,0) is the energy of the input ψ (x, 0), λ is the
Lagrange multiplier, and γ is the penalty factor.

B. Complex-valued neural operator

Here, we discuss in detail the CNO. Neural operators
(NO) are machine-learning models proposed to learn map-
pings between functions [37,38]. Since the mapping G here
is generally complex, we have to extend the NO from the real
to the complex domain. Taking the Fourier neural operator as
a backbone [37], we propose the complex-valued NO, i.e., the
CNO. There have been some recent studies on the complex-
valued neural networks [40–44]. One known challenge lies
in the fact that complex-valued activation functions are not
simultaneously complex-differentiable and bounded [40,41],
which leads to complex neural networks still being an open
and active research topic.

Our CNO, as shown in Fig. 1, is formulated as a multilayer
architecture with the initial state ψ (x, 0) being the input and
the final state ψ (x, T ) the output, i.e.,

ψ (x, T ) = CQ{CFLl [· · · (CFL1{CP[ψ (x, 0)]})]}. (8)

Here, CP[ψ (x, 0)] and CQ(hl ) layers are the complex em-
bedding and complex decoding layers, where the first can lift
the input to a higher-dimensional hidden space to ensure the
expressiveness of the model, while the second works oppo-
sitely to make the output have the same dimension as the
input.

Feature learning takes place in the hidden space, which
consists of several complex-valued Fourier layers (CFLs).
In CFL j + 1 ( j = 0, 1, . . . , l − 1), the hidden state hj are
projected to h j+1 as

h j+1(x) = Cσ (CW hj (x) + CF−1{R · CF[h j (x)]}), (9)

where σ denotes the complex-valued element-wise nonlinear
activation, CW is a complex-valued convolutional network
which implements the linear transformation on h j , CF and
CF−1 are the complex Fourier transformation and inverse
Fourier transformation, and R denotes the low-pass filter
defined on the frequency space. The main points in the
construction of CFLs lie in the complex-valued convolution
CW hj (x) and the complex-valued activation Cσ (·). Below,
we will discuss them one by one.

(1) Complex convolution. To perform the equivalent
operation of traditional real-valued two-dimensional (2D)
convolution in the complex domain, we convolve the hidden
complex vector h = a + ib with the complex filter matrix
CW = A + iB, where A and B are real matrices and a and
b are real vectors. Since the convolution operator is distribu-
tive, convolving the vector h by the filter CW can be simply
expressed by

CW ∗ h = (A ∗ a − B ∗ b) + i(B ∗ a + A ∗ b), (10)

with ∗ denoting the convolutional operation.
(2) Complex-value activation. We generalize the real-

valued Gaussian error linear unit (GELU) [45] to its complex
counterpart, namely, CGELU. The CGELU is defined as

CGELU(z) = GELU[R(z)] + iGELU[I (z)], (11)

where both the real R(z) and imaginary I (z) parts of a neuron
are activated by GELU, with

GELU(x) = x · 1
2 [1 + erf(x/

√
2)], (12)

erf(·) the Gauss error function and x being a real number. It is
known that GELU is nonconvex and nonmonotonic, and has
been practically applied in many large language models (e.g.,
OpenAI’s GPT [46] and Google AI’s BERT models [47])
where it outperforms the convex and monotonic ReLU. Note
that we may have some other extensions, such as activating
the norm of z while keeping its phase factor unchanged,
i.e., CGELU(x) = GELU(|z| + z0) exp(i arg z) with z0 being
a real learnable parameter. The performance of various exten-
sions remains to be further studied, but this is not the focus of
this article. Therefore, in the following, we consistently adopt
the CGELU defined in Eq. (11).
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Now, we discuss the complexity of CNO. In a CFL,
the time complexity majorly comes from the Fourier and
the inverse Fourier transforms which provides a complexity
O(n log n) with n being the dimension of the input. Hence,
the total complexity of a CNO with l CFLs is O(ln log n).
On the other hand, traditional explicit PDE solvers based on
the finite difference and the pseudospectrum are well known
to exhibit complexity O(tsn2) and O(tsn log n), respectively,
with ts being the time steps. Hence, the forward propagation
of CNO should be significantly faster than traditional explicit
solvers as l � ts. This property not only facilitates our soliton
identification algorithm mentioned above, but also speeds up
the stability analysis that will be shown in Sec. IV. We will
numerically compare the propagation efficiency of the CNO
and traditional PDE solvers in Sec. IV.

III. SOLITON IDENTIFICATION

We demonstrate our approach on the one-dimensional GP
equation

i∂tψ =
[
− ∂2

x

2m
+ V (x) + g(x)|ψ |2

]
ψ, (13)

which is generated by the Lagrangian (setting h̄ = 1)

L =
∫

dx

[
iψ∗ψ̇ − |∂xψ |2

2m
− V (x)|ψ |2 − g(x)

2
|ψ |4

]
. (14)

It describes a quasi-one-dimensional BEC with N atoms being
tightly confined in the transverse y-z directions, with ψ (x, t )
being the longitudinal field satisfying

∫
dx|ψ (x, t )|2 = N .

The first, second, and third terms on the right-hand side
(R.H.S.) of Eq. (13), respectively, denote the kinetic energy,
the longitudinal potential along x, and the nonlinear inter-
action arising from the two-body s-wave collision of atoms
with g = 2as/m�2

⊥ the reduced nonlinearity strength, as the
scattering length, �⊥ the transverse confinement length, and
m the atomic mass. g is commonly set positive to stabilize
the BEC [48,49]. Particularly, an equation with a space-
independent interaction g(x) = g0 is known as the homoge-
neous GP equation, whereas if g(x) is space dependent, the
equation is called the inhomogeneous GP equation [50,51].
Practically, spatial inhomogeneity g(x) can be achieved using
the confinement-induced resonance technique [52,53], i.e.,
properly engineering the transverse confinement near the or-
bital resonance point to induce spatial inhomogeneity in the
scattering length. The energy of the BEC is simply the Hamil-
tonian of the Schrödinger field, i.e.,

E =
∫

dx

[ |∂xψ |2
2m

+ V (x)|ψ |2 + g(x)

2
|ψ |4

]
, (15)

which is conserved during the time evolution, as mentioned
before.

It is known that almost all solitary solutions of the 1D GP
equation can be anticipated using Newton’s method or other
eigensolvers, based on trial solutions constructed from the
eigenstates of the linear Schrödinger equation (with the non-
linearity turned off) or their variations. These solitons provide
the ground truth to verify the effectiveness of our algorithm,
which is the main objective of this paper. On the other hand,

the trade-off is that there are rarely unexpected solutions in
the 1D system and hence generalizing our algorithm to higher-
dimensional systems would be more practically valuable. This
generalization is not so straightforward as will be discussed in
Sec. V.

A. Homogeneous GP equation

For the first example, we consider a homogeneous BEC
confined in a harmonic potential V (x) = ω2x2/2 with fixed
g(x) = g0 = 20ω/N� and � = (mω)−1/2 denoting the har-
monic length. We generate a training dataset Dtrain of size
Mtrain = 104 and a testing dataset Dtest of size Mtest = 103 for
such a learning task, where the data points are collected by
independently propagating the GP equation Eq. (13) using
the RK finite difference method [54] from the initial states
ψ (x, 0) to the final state ψ (x, T ) with T = ω−1 being fixed.
The initial states ψ (x, 0) are randomly generated using the
harmonic basis, i.e., ψ (x, 0) = ∑nc

n=1 cnξn where cn denotes
the expansion coefficients satisfying

∑
n |cn|2 = 1, nc = 20 is

the basis cutoff, and

ξn(x) = 1

2nn!

(
1

πR2

)1/4

Hn

(
x

R

)
e− x2

2R2 , (16)

with Hn being the Hermite polynomial and R =
(3gN�2/2ω)1/3 being the Thomas-Fermi radius. Employing
the harmonic basis, rather than directly randomizing the
ψ (x, 0) in the coordinate space is based on the physical
consideration that the complex wave ψ (x, t ) and its first-order
derivative ∂xψ (x, t ) should be continuous for a potential V (x)
without singularity. However, the soliton identification is still
conducted in the coordinate space.

Through feeding Dtrain to the CNO, we carry out the train-
ing by minimizing the loss function L [Eq. (5)] using the
Adam optimizer [55]. Our CNO contains l = 4 CFLs, and
the embedding dimension is 64. Figure 2(a) presents L as a
function of training epochs, where the solid and dashed curves
indicate L on the training Dtrain and the testing Dtest datasets,
respectively. The inset takes a closed look at L within the
range [0.04,0.1]. It is shown that the training process con-
verges at about 450 epochs, as indicated by the loss function L
reaching a broad plateau. The training error and testing error
exhibit similar behavior with small quantitative differences,
which indicates the trained CNO does not suffer from a severe
overfitting problem.

After convergence, we perform the energy-restricted op-
timization [Eq. (7)] to identify the soliton states based on
the trained CNO. Practically, we set the energy bound to
Emax = 9ω, and optimize Eq. (7) using the Adam optimizer
from 103 stochastic initial states. As a result, the lowest seven
solitary states can be identified. In Figs. 2(b1) to 2(b3), we
typically display the amplitude of the ground-state |φ0|, the
third excited-state |φ3|, and the fifth excited-state |φ5| by solid
lines, respectively. As a comparison, we also show the ampli-
tude of solitons |φn| obtained by Newton’s method by dashed
lines, which serve as the ground truth. Both results are in good
qualitative agreement. Quantitatively, the solitons found by
the CNO shown in Fig. 2(b) do not perfectly match the ground
truth. The mismatch can be attributed to the intrinsic error of
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FIG. 2. Numerical results of the homogeneous GP equation.
(a) Variation of the loss function L on epochs during the training
process, where the solid and dashed curves indicate L on the training
Dtrain and testing Dtest datasets, respectively. (b) Comparison between
the solitary states identified by the CNO (solid lines) and those ob-
tained by Newton’s method (dashed lines). Panels (b1), (b2), and (b3)
display the amplitude of the ground-state |φ0|, the third excited-state
|φ3|, and the fifth excited-state |φ5|, respectively. (c) The overlap F ′

(circle) and the energy error �E (square) as a function of the soliton
index n. Solid lines correspond to the case of Emax = 9ω, whereas
dashed lines correspond to the case of Emax = 4ω.

CNO in learning the mapping G. In fact, training errors are
inevitable for any data-driven machine-learning model.

To quantitatively measure the discrepancy between the
solitons found by the CNO and Newton’s method, we calcu-
late the overlap (solid line with circles)

F ′ =
∣∣∣∣
∫

dxφ∗
n,CNO(x)φn,Newton(x)

∣∣∣∣
2

, (17)

and energy discrepancy (solid line with squares)

�E = ∣∣ECNO
n − ENewton

n

∣∣, (18)

as are plotted in Fig. 2(c). One can observe that the identi-
fied solitons averagely have F ′ � 96% and �E � 0.35. In
Fig. 2(c), �E roughly decreases monotonically as n increases,
which means the solitons φn,CNO closer to the energy bound
Emax exhibit a lower energy error �E . This phenomenon can
be understood that F [Eq. (3)] is generally nonconvex near
a fixed point, i.e., there are several local minima �F � 0
near the point �F = 0. The energy constraint [the last term
of Eq. (7)] becomes more and more important as Eψ (x, 0)
approaches the bound Emax, thereby decreasing the likelihood
that the algorithm will achieve a local minimum. Otherwise,
if Eψ (x, 0) is too far away from Emax, the last term of Eq. (7)
is simply a constant referring to no restriction. In this case,
the searching algorithm may converge to a local-minimum
solution giving rise to a large �E . A mathematical proof of
this statement can be found in the Appendix. For numerical
verification, we set a small bound Emax = 4ω such that only
the lowest two solitons (φ0 and φ1) are allowed to be identi-
fied. The corresponding F ′ and �E are plotted by dashed lines
in Fig. 2(c), from which one can clearly observe that a lower
bound Emax is really helpful to reduce the error �E .

FIG. 3. Numerical results of the inhomogeneous GP equation.
(a) Variation of the loss function L on epochs during the training
process. (b) Comparison between the solitary states identified by the
CNO (solid lines) and those obtained by Newton’s method (dashed
lines). (c) The overlap F ′ (circle) and the energy discrepancy �E
(square) as a function of the soliton index n.

B. Inhomogeneous GP equation

We illustrate the second example by considering a
BEC carrying inhomogeneous nonlinearity g(x) = g0 +
δg sin(2πx) and being confined in a boxed potential within
x ∈ [−R, R], where the homogeneous g0 is taken with
the same value as in the first example, and δg = g0/2
characterizes the inhomogeneous nonlinearity with R = 5�

being fixed. The data generation is similar to the first example,
except that now we adopt a basis of trigonometric polynomial,
i.e.,

ξn(x) = 1

R
sin

[
nπ

2R
(x + R)

]
, (19)

with nc = 15. The trigonometric basis ensures that the com-
plex field ψ (x) vanishes at both boundaries of the box x =
±R, which is reasonable for a boxed potential with hard walls.
We train the CNO based on the training dataset Dtrain. The
hyperparameters of the CNO are the same as those of the first
example.

In Fig. 3(a), we show the variations of L as the training
processes, which indicates that the training converges at about
400 epochs. We set the upper energy bound to Emax = 4 for
the soliton search, and as a consequence, the lowest seven soli-
tons are obtained and displayed in Figs. 3(b1) to 3(b3). Again,
the soliton states obtained by Newton’s method are also shown
in Fig. 3(b) as a reference. It can be observed that, although
the potential energy is flat inside the box, the amplitude of the
field exhibits strong modulations due to the inhomogeneous
nonlinearity. Accordingly, in Fig. 3(c), we show the overlap
F ′ [Eq. (17)] and the energy error �E [Eq. (18)] based on the
solitons obtained by the CNO and Newton’s method, where
an averaged F ′ � 98% and �E � 0.13 are indicated. Also
in Fig. 3(c), �E shows an overall decreasing trend as n in-
creases, which is similar to the tendency in Fig. 2(c) of the
first example.
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IV. CNO-BASED STABILITY ANALYSIS

The trained CNO has learned the mapping between the
initial and final states, which allows it to play the role of
traditional PDE solvers in the numerical analysis of solitons.
Furthermore, since the forward propagation of the CNO is
quite a bit faster than traditional PDE solvers as mentioned
before, the numerics can be performed with higher efficiency.
In this section, we demonstrate the CNO-based stability
analysis on both examples above and compare its running time
with that of traditional PDE solvers.

Conventionally, one adds some small perturbations into the
solitary waves, i.e.,

ψ (x, 0) = φ(x) + ε�φ(x), (20)

and then evaluates the responses of the system after a period
of evolution, which is known as the linear stability analysis.
If the perturbation is not amplified, then the soliton is said to
be linearly stable. Otherwise, the soliton is said to be linearly
unstable. Solitary waves can also be unstable in a nonlinear
fashion, which means the instability arises from the nonlinear-
ity as ε is large enough to exceed the linear response regime.
To fully understand the stability of a soliton, both linear and
nonlinear effects should be considered.

We carry out the stability analysis of the two examples by
feeding the trained CNO with perturbed initial states ψ (x, 0)
[Eq. (20)], where �φ(x) = ∑

n cnξn is randomly generated
using the basis Eqs. (16) and (19), and ε denotes the over-
all amplitude of perturbation. After an evolution time of T ,
the response to perturbations is embedded in the output of
CNO, i.e., ψpred(x, T ). We then examine several observables
to quantify the responses. For the first example, we look at the
center of mass of the BEC xt={0,T } = |〈x(t )〉| and its envelop

width �xt={0,T } =
√

〈x2(t )〉 − 〈x(t )〉2, where

〈x(t )〉 = 1

N

∫
dxx|ψpred(x, t )|2,

〈x2(t )〉 = 1

N

∫
dxx2|ψpred(x, t )|2. (21)

The additional overscore on the R.H.S. of the xt and �xt

means to take a further average on different perturbations
�φ(x) under a fixed ε. For the second example, since the
BEC always spreads diffusely inside the box with density
modulations, we hence replace �xt by the visibility of density,
i.e.,

Vt = |ψpred(x, t )|2max − |ψpred(x, t )|2min

ρavg
, (22)

with |ψpred(x, t )|2max,min being the maximal (minimal) density
and ρavg = N/2R denoting the averaged density.

Figures 4(a) and 4(b) display the stability calculations of
the two examples using the CNO, respectively. To be more
specific, the left panels in Figs. 4(a1) and 4(b1) show x0

(dashed lines) and xT (dotted lines) of the third soliton φ3

(circles) and the fifth soliton φ5 (diamonds) as functions of
the perturbation strength ε; the right panel in Fig. 4(a2) shows
the envelop width �x0 (dashed lines) and �xT (dotted lines)
of the first example (homogeneous GP equation); Fig. 4(b2)
shows the density visibility V0 (dashed lines) and VT (dotted

FIG. 4. Stability analysis. Panels (a) and (b) correspond to the
cases of the homogeneous and inhomogeneous GP equations. Panels
(a1) and (b1) show the center of mass x as a function of ε, where the
dashed lines denote x of the initial state ψ (x, 0); the dotted lines and
the solid lines indicate x of the final state ψ (x, T ) using the CNO
and the RK method, respectively. Panel (a2) shows the variation of
the envelop width �x. Panel (b2) shows the variation of the density
visibility V . In each panel, circles and diamonds correspond to the
results of the third and the fifth solitons, respectively.

lines) of the second example (inhomogeneous GP equation).
In each panel, the black solid line (xRK

T , �xRK
T , or V RK

T ) is plot-
ted using the traditional RK finite-difference method which
uses the fourth-order RK formula to deal with the time and the
finite difference for the spatial discretization. The RK results
serve as the ground truth of the evolution. One can clearly
observe in Fig. 4 that the CNO predictions are in qualitative
agreement with those obtained by the RK method, especially
in the regime of small ε. Furthermore, for either x or �x,
the response at time t = T is always smaller than that at the
initial time t = 0, which indicates the solitons found out by
the CNO are stable. Particularly in the linear response regime
ε � 1, the responses are roughly linear in ε, whereas, for ε far
away from the linear response regime, both examples exhibit
apparent nonlinear behaviors.

Finally, let us compare the running time of CNO and tra-
ditional PDE solvers. Two traditional algorithms, explicit RK
(same as before) and explicit Euler’s methods, are considered
here. Practically, we evolve the perturbed φ3 state (with fixed
ε = 0.1) from t = 0 to t = T = 1/ω, repeat this process 100
times, and then take the average of the total running time.
Figures 5(a) and 5(b) respectively show the running time
of various methods in the homogeneous and inhomogeneous
examples, where the horizontal axis is a time-space ratio [54]

r = δt

δx2
, (23)

with δt and δx being the minimal steps in time and space,
respectively. r can be seen as the generalized Courant num-
ber [56], being closely related to the stability of algorithms.
Generally, explicit algorithms would become unstable as r
increases. We remind that the stability here refers to the sta-
bility condition of a PDE solver, rather than the stability of
the soliton solutions mentioned above. Algorithms that do not
satisfy the stability condition would generate exponentially
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FIG. 5. Running time as a function of the time-space ratio r on
the examples of (a) homogeneous and (b) inhomogeneous GP equa-
tions. In each panel, dashed lines, triangles, and diamonds indicate
the running time of CNO, explicit Euler, and explicit RK methods,
respectively. For the later two methods, the connected dotted and
solid lines label out the regions where algorithms are stable.

large numerical errors. Our calculation shows that, in Fig. 5,
the solid line (RK) and the dotted line (Euler) connected areas
are the stable areas, and the unconnected areas on the right are
unstable. In our calculations, δx = 0.04� is fixed. To reduce r
means to reduce δt , and hence the total running time behaves
∝ 1/δt , i.e., a straight line with a slope of −1 in the log-log
plots.

It is clearly shown in Fig. 5 that, for a given stable δt (or r),
the computational time of CNO is significantly less time than
that of RK and Euler’s methods, and is also δt independent.
This is consistent with our complexity analysis in Sec. II B.
Specifically, we chose l = 4, which is thus a δt-independent
constant being much smaller than ts = T/δt . On the other
hand, for certain stable δt , Euler always consumes less time
than RK since Euler’s method performs fewer calculations
within one δt iteration.

V. SUMMARY AND DISCUSSION

We proposed a data-based approach to search for the soli-
tary solutions of dynamical PDEs. By extending the FNO
architecture to the complex field, we developed an architec-
ture called the CNO which can learn the complex mapping
between the initial and final states. A combination of the CNO
and an energy-restricted search algorithm allows us to identify
solitary waves within a limited space of states. Our approach
was demonstrated on one-dimensional GP equations with both
homogeneous and inhomogeneous nonlinearities, and the re-
sulting solitons exhibited a high overlap with those derived by
Newton’s method. We also showed the application of the CNO
to the stability analysis of solitons. In terms of computational
complexity, CNO-based calculations were more efficient than
traditional PDE solvers.

There are a number of follow-up questions. Extending our
algorithm to higher-dimensional systems is not as straight-
forward as one might expect. In the above 1D examples, we
used a dataset of size 104 to ensure that the FNO can capture
the initial-final state mapping G. In higher dimensions, much
more data points are needed, which places a heavy burden

on data generation. As a result, randomly generating data
in higher dimensions is no longer feasible. In addition, the
training process for larger FNO models is also slow and time
consuming. One possible solution is to adopt semi-supervised
learning algorithms, such as active learning [57–59], which
can serve as an efficient data acquisition strategy to optimize
the data generation and learning efficiency. Furthermore, al-
though symmetries are useful in reducing the search space,
as illustrated in the examples, this does not mean that all
symmetries are exploitable. In the case of the GP equa-
tion with spin-orbit coupling [60–62] or the Klein-Gordon
equation with negative mass [63,64], spontaneous symmetry
breaking would lead to phase transitions, such that the solitary
states exhibit lower symmetry than the Lagrangian. In such a
case, the broken symmetry cannot be used as a constraint. In
turn, this motivates us to think about how to use the CNO
or some other machine-learning algorithms to identify phase
transitions. We expect this work, as well as these questions,
to prompt more studies in the fields of machine learning and
many-body quantum physics.
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APPENDIX: COMPLIMENTS FOR THE
ENERGY-RESTRICTED SEARCH

In Figs. 2(c) and 3(c), we observed the energy error
�E exhibiting a decreasing tendency as n increases. This
phenomenon can be attributed to the fact that the energy
constraint [the last term in Eq. (7)] becomes increasingly
significant as Eψ (x,0) approaches the bound Emax, rendering
the searching algorithm less likely to be trapped in a local
minimum, as was mentioned in the paragraph above Eq. (18).
In the following, we provide a mathematical proof of this
statement.

Proposition 1. In the optimization problem (P): minψ �F
subject to Eψ � Emax, for any n (Eφn � Emax), there is Eψ∗

n
(or

�En) monotonically increasing about Emax, where ψ∗
n is the

optimal solution to the problem (P).
Proof. For any n, take E1

max (P1) and E2
max (P2), satisfying

Eφn � E2
max < E1

max. Denote the feasible region of problems
(P1) and (P2) being s1 and s2, respectively, then s2 ⊂ s1.

For the problem (P1), if ψ∗
n,1 ∈ s2, then ψ∗

n,1 = ψ∗
n,2. In this

case, Eψ∗
n,1

= Eψ∗
n,2

. Otherwise if ψ∗
n,1 ∈ s1\s2, and ψ∗

n,2 ∈ s2,
then Eψ∗

n,2
� E2

max < Eψ∗
n,1

.
In summary, when Eφn � E2

max < E1
max, there is Eψ∗

n,2
�

Eψ∗
n,1

(�E2
n � �E1

n ). That is, Eψ∗
n

(�En) monotonically in-
creases with respect to Emax. �
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