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Phase-field lattice Boltzmann equation for wettable particle fluid dynamics

Lin Zheng ,1 Song Zheng,2,* and Qinglan Zhai3
1MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering,

Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China
2School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018, People’s Republic of China

3School of Economics Management and Law, Chaohu University, Chaohu 238000, People’s Republic of China

(Received 12 August 2022; revised 13 May 2023; accepted 11 July 2023; published 7 August 2023)

In this paper a phase-field based lattice Boltzmann equation (LBE) is developed to simulate wettable particles
fluid dynamics together with the smoothed-profile method (SPM). In this model the evolution of a fluid-fluid
interface is captured by the conservative Allen-Cahn equation (CACE) LBE, and the flow field is solved by a
classical incompressible LBE. The solid particle is represent by SPM, and the fluid-solid interaction force is
calculated by direct force method. Some benchmark tests including a single wettable particle trapped at the
fluid-fluid interface without gravity, capillary interactions between two wettable particles under gravity, and
sinking of a horizontal cylinder through an air-water interface are carried out to validate present CACE LBE
for fluid-fluid-solid flows. Raft sinking of multiple horizontal cylinders (up to five cylinders) through an air-
water interface is further investigated with the present CACE LBE, and a nontrivial dynamics with an unusual
nonmonotonic motion of the multiple cylinders is observed in the vertical plane. Numerical results show that the
predictions by the present LBE are in good agreement with theoretical solutions and experimental data.
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I. INTRODUCTION

Multiphase flow of two immiscible fluids is frequently
observed in many natural and industrial processes such as
raindrops on the ground, gas-liquid or liquid-liquid two-phase
fluids in cooling systems, and enhanced oil recovery. The
imbalance of microscopic interaction of molecules between
different fluid phases generates a surface tension force along
the fluid-fluid interface. Due to the competition of the sur-
face tension force, viscous force, gravity force, and so on,
it is still a challenging task to correctly capture the complex
of transient morphological change of a fluid-fluid interface.
When a wettable solid structure is involved in the immiscible
fluid system, various solid structure hydrodynamics behaviors
will be observed as the result of different force interactions at
fluid-fluid-solid interfaces. When the characteristic length of
the solid structure is much larger than the capillary length,
the surface tension force can be negligible in comparison
with viscous force, gravity force on the solid. On the other
hand, when the characteristic length is much smaller than the
capillary length, the surface force will play a crucial role in
the wettable solid structure fluid dynamic of the multiphase
system.

For the fluid-fluid interface capturing, some numerical
methods were developed to investigate interfacial dynamics
such as the front-tracking method [1], level set (LS) method
[2], volume of fluid (VOF) method [3], and diffuse interface
method [4]. Due to an artificial interface rupture based upon
some ad hoc criteria [1], the front-tracking method is not
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suitable for simulating multiphase fluids with interface break-
ing and coalescing, while the VOF and LS methods require
interface reconstruction or reinitialization to represent the in-
terface at each time increment, which may introduce some
unphysical results. In comparison with front tracking, LS,
and VOF methods, the diffuse interface method is an implicit
interface capturing over the sharp interface method, where the
phase interface is treated as a finite thickness transition layer,
and the physical properties of fluids vary continuously through
the interfacial transition layer but with almost uniform values
in the bulk regions. As one of the diffuse interface methods,
the lattice Boltzmann equation (LBE) method has obtained
successful applications to multiphase flow [5–19]. In the lit-
erature, pervious works demonstrated that the Allen-Cahn
equation (ACE) based LBE could give a good satisfactory
result for interface capturing [15–18]. Recently we proposed
a generalized conservative ACE (CACE) for N immiscible
fluids, and a LBE solver was designed accordingly [20,21].
The results showed the accuracy and capability of CACE-LBE
for N immiscible fluids with large density contrast.

When a solid structure is immersed into the fluid, the fluid-
solid boundary should be represented properly. In the LBE
community, the bounce-back scheme (BBS) is frequently ap-
plied to the fluid-solid boundary [22]. In Ref. [22] Ladd
proposed a half-way BBS for simulating particle suspension,
and a momentum exchange method was designed to evaluate
hydrodynamic force arising from the fluid-solid interaction;
the results showed that this simple boundary treatment and
fluid-solid interaction force calculation could give a satisfied
prediction. However, this type of boundary treatment leads to
a zigzag boundary in the simulation, and the zigzag bound-
ary further causes a fluctuation in the fluid-solid interaction
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during the motion of solid structure [23]. To improve the
accuracy, some interpolated-bounce-back schemes were also
proposed [24,25]. Alternatively, the smoothed-profile-method
(SPM) was developed to represent the fluid-solid boundary
[26], where an index function is used to capture the shape
of particles. In fact, the SPM can be viewed as one type of
diffuse interface method, where the sharp change of solid
boundary is presented by a finite thickness smoothed layer.
With this treatment, the limitations of a zigzag boundary
presentation and fluctuation fluid-solid interaction in BBS
are eliminated by SPM-LBE [27]. Moreover, the SPM-LBE
has been successfully applied to simulate the particle fluid
dynamics [27–29]. On the other hand, a diffuse-interface LBE
for the particle-fluid interaction was proposed [30]. The two
types of LBEs apply a diffuse-interface method to represent
the fluid-particle interaction, but with different force treatment
to incorporate fluid-particle interaction to the LBE. Recently
the SPM-LBE was extended to investigate the particle trapped
at the fluid-fluid interface [31,32]. In Ref. [31] Mino et al.
applied the combination of SPM and free-energy based LBE
to study a wettable particle trapped at the fluid interface under
gravity. In Ref. [32] the ternary fluid color-gradient LBE was
extended to model the two immiscible fluids involving solid
particles by coupling with the SPM. However, the property
of two immiscible fluids in their simulations was limited to
matched density [31,32].

With the aforementioned reviews, in this work we will
investigate the particle hydrodynamics in a two immiscible
fluids system with large fluid density contrast within the
framework of the SPM. To this end, we develop the CACE-
LBE with the SPM to study the particle-fluid-fluid three-phase
hydrodynamics. The rest of this paper is organized as follows:
In Sec. II the SPM is briefly introduced, and the CACE-
LBE is applied to the flow field and interface capturing in
Sec. III, Some tests are carried out to show the capability
of CACE-LBE for particle hydrodynamics with large fluid
density contrast in Sec. IV, and finally a brief conclusion is
given in Sec. V.

II. MULTIPHASE FLOW WITH SOLID
PARTICLE BY THE SPM

The SPM was first proposed to resolve particle hydrody-
namic interactions in an incompressible single-phase fluid
[26]. In this method the original sharp solid-fluid interface
between solid particle and the fluid was represented by
a smoothed interface with a finite thickness Dp, where a
smoothed index function φp is used to distinguish solid and
fluid regions, i.e., in the fluid region, φp = 0, while φp = 1
in the solid region and it smoothly changes through the fluid-
solid interface. With this treatment, the solid-fluid boundary
can be smoothly captured. In this work, the following hyper-
bolic function is used:

φp(x) = 1

2
+ 1

2
tanh

(
2

Rp − |x − xp|
Dp

)
, (1)

where x is a local position in space, Rp is radius of solid
particle, and xp is the mass center of the solid particle.

The translational and rotational motions of circular or
spherical particle can be derived by

Mp
dV p

dt
= Fh + F p + Fg, (2)

Ip · d�p

dt
= T h, (3)

where Mp, V p, �p, and Ip are the mass, translational velocity,
angular velocity, and inertial tensor of the particle, respec-
tively. Fh and T h are the hydrodynamic force and torque.
F p is the particle-particle interaction force. Fg is the force
arising from the gravitational and buoyant forces as Fg =
Mp(1 − ρ/ρp)g, where ρ and ρp are the density of the am-
bient fluid and particle, respectively, and g is the gravitational
acceleration.

In Eq. (2) the key point is to compute the hydrody-
namic force Fh. There are several types of methods proposed
for evaluating Fh such as the momentum exchange method
[22,33], stress integration method [34], and direct force
method [26,27]. As mentioned in the previous section, the
momentum exchange method can cause a fluctuation of the
fluid-solid interaction [23]. The stress integration method
has a complex extrapolation operation to calculate the stress
tensor along the surface of the particle, which may induce
more instability issues, while the direct force method sim-
ply evaluates the force on the forcing point to satisfy the
nonslip boundary condition. Once the hydrodynamic force
Fh is obtained, the hydrodynamic torque T h can be com-
puted, and then the translational and angular velocities are
updated by Eqs. (2) and (3). One merit of SPM is the
calculation of the hydrodynamic interaction force Fh on
the particle as one of the direct force methods, which can
be obtained by the summation of the fluid-solid interac-
tion force f p at the position x. Therefore, we need to
determine the local value of f p. Actually, in a time in-
terval δt , it can be uniformly expressed by the following
equation [26,27]:

f p(x, t ) = φp(x, t )ρ(x, t )[u∗(x, t ) − up(x, t )]/δt, (4)

where u∗ is an intermediate velocity of the fluid without the
effect of solid particle, and up is the particle velocity defined
by

up = V p + �p × (x − xp). (5)

Then the hydrodynamic force and torque can be simply com-
puted by [26,27]

Fh =
∑

x

f p(x, t ), (6)

T h =
∑

x

(x − xp) × f p(x, t ). (7)

When the solid particle immerses into two immiscible flu-
ids, the hydrodynamic transport phenomena of the immiscible
fluids should be correctly captured. Due to the explicit expres-
sion of the pressure tensor, surface tension force, and chemical
potential in phase-field theory, the phase-field theory-based
method has received considerable attention [11,12,14,31–33].
In this theory, the fluid-fluid interface of two immiscible fluids
is assumed to have a finite thickness, and the fluid properties
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are changed smoothly through the interface region. One of
the important points in phase-field theory is the explicit form
of the mixed free energy E functional for the multiphase
fluid system, which can derive the fluid quantities such as
the chemical potential by the model parameters in E as an
example. In this work the following mixture of free energy
is used to model the two-phase flow system, which can be
written by [4]

E =
∫ [

E0 + κ

2
|∇c|2

]
d�, (8)

where E0 is a bulk free energy, which is often approximated
by E0(c) = βc2(c − 1)2 with β as a model parameter. κ is
a gradient coefficient related to fluid surface tension σ and
interface thickness D. c is an order parameter, i.e., c = 0
in one fluid region while c = 1 in another fluid region. The
relation between β, κ , D, and σ can be written as

β = 12σ

D
, κ = 3Dσ

2
. (9)

In the literature, the evolution of the order parameter c is
governed by the well-known Cahn-Hilliard equation (CHE)
[35] or ACE [36], and these two types of interface-capturing
methods obtain successful applications in two-phase or mul-
ticomponent immiscible fluids. In the CHE, the driven force
is proportional to the gradient of chemical potential, where it
is complicated to design a compact and efficient discretization
scheme for the fourth-order gradients, whereas only second-
order derivatives appeared in ACE and make it much simpler
for discretization. Therefore, one of the ACEs, i.e., the CACE,
is used for interface capturing in the present work, which can
be written by [37]

∂t c + ∇ · (cu) = ∇ ·
{

M

[
∇c − 4c(c − 1)

D
n
]}

, (10)

where u is fluid velocity, M is the mobility, and n = ∇c/|∇c|
is an outward pointing unit normal vector.

When the CACE is coupled with velocity field, the hy-
drodynamic equation for the incompressible immiscible fluids
can be written by

∇ · u = 0, (11)

∂t (ρu) + ∇ · (ρuu) = −∇p + ∇ · S + F, (12)

where p is the hydrodynamic pressure, and S = η(∇u + u∇)
is the viscous stress term with η as dynamic viscosity. F =
μ∇c − Fh is the interface force minus hydrodynamic force
on the particle; here μ is the chemical potential, and it can
be derived by the variational derivative of mixing free en-
ergy with respect to the order parameter c, that is, μ =
δE/δc = μ0 − κ∇2c with μ0 = ∂E0/∂c as the bulk chemical
potential.

III. LBE FOR HYDRODYNAMICS AND
INTERFACE CAPTURING

A. LBE for hydrodynamic equations

The hydrodynamic equations of Eqs. (11) and (12) can be
solved by a two-phase LBE. In the model, the evolution of

incompressible fluid flow can be achieved by introducing a
density distribution function fi, and its evolution equation can
be derived by [7,10,14]

fi(x + ξiδt, t + δt ) − fi(x, t )

= − 1

τ f

(
fi − f (eq)

i

) + δt

(
1 − 1

2τ f

)
{F · (ξi − u)�i(u)

+ (ξi − u) · ∇(
ρc2

s

)
[�i(u) − �i(0)]}, (13)

where ξi is molecular velocity, δt is time increment, τ f is
single relaxation time, and f (eq)

i is defined by

f (eq)
i = ωi

{
p + ρc2

s

[
ξi · u

c2
s

+ 1

2

((
ξi · u

c2
s

)2

− u2

c2
s

)]}
,

(14)

with ωi as the weight coefficient and cs as sound speed. �i(u)
is given by

�i(u) = ωi

{
1 + ξi · u

c2
s

+ 1

2

[(
ξi · u

c2
s

)2

− u2

c2
s

]}
, (15)

The dynamic pressure and velocity of fluid can be cal-
culated by the zeroth and first velocity moments of fi,
respectively, which are given by

p =
∑

i

fi + δt

2
u · ∇ρc2

s , ρc2
s u =

∑
i

ξi fi + δt

2
F, (16)

and the value of τ can be determined by η through the relation
η = ρ(τ f − 1/2)c2

s δt .

B. CACE LBE solver

In the past decades, two types of phase-field theory-based
LBE were developed for interface capturing: one was CHE-
based LBE; another was ACE-based LBE. Recently CACE-
based LBE as one of the ACE LBEs has received particular
attention on athermal two-phase flow. Compared with CHE-
based LBE, numerical results demonstrated that CACE-based
LBE could give more efficient and less dispersive for interface
capturing with large density contrast. Therefore, the CACE-
based LBE is used for interface capturing, and its evolution
equation can be given as [14,38]

hi(x + ξiδt, t + δt ) − hi(x, t )

= − 1

τh
(hi − h(eq)

i ) + δt

(
1 − 1

2τh

)
Si, (17)

where τh is single relaxation time, h(eq)
i is the equilibrium

distribution function, which is defined by

h(eq)
i = ωi

{
Hi + c

[
ξi · u

c2
s

+ 1

2

((
ξi · u

c2
s

)2

− u2

c2
s

)]}
, (18)

with

Hi =
{

[c − (1 − ω0)�hc]/ω0, i = 0,

�hc, i > 0,
(19)
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and �h is an adjustable parameter. The source term Si in
Eq. (17) is defined by

Si = ωi�hξi · s, (20)

where s = 4c(c − 1)n/D.
With Eqs. (17)–(20), c can be updated and calculated by

summation of the distribution function hi as

c =
∑

i

hi, (21)

and the relation between mobility M and τh can be given by
M = �h(τh − 1/2)c2

s δt .
When a wettable particle immerses into the two immisci-

ble fluids, the wettability boundary condition for the particle
should be properly implemented. Similar to Ref. [39], in this
work a uniform value of cw imposed at the particle can be used
to tune the particle’s wettability, and its value varies from 0 to
1. Obviously, the neutral wetting particle can be realized by
setting cw = 0.5. However, the free energy in Eq. (8) shows
that it is a two-well profile with two minimums at c = 0, 1.
Therefore, the diffusion between the solid and surrounding
fluids appears with such a wettability boundary condition
when the wettable particle immerses into two immersible
fluids. To suppress this effect, the following treatment is added
to the source term Si at the interface region �int in Eq. (17)

Sm,i =
∫
� f

(c0 − c)d�∫
�int

d�
�i(u), (22)

where c0 is the initial value of order parameter c at fluid
domain � f , and �int is the interface region. In Eq. (22) the
numerator

∫
� f

(c0 − c)d� represents the total change of c in
comparison with its initial value c0 in � f , and the denomina-
tor

∫
�int

d� represents the fluid-fluid interface region, where
the value of c varies from 0.1 to 0.9 in this work. Therefore,
the ratio between the two integrals means that the total change
of c is uniformly distributed at the fluid-fluid interface region.
To implement the wettability of the solid particle, the direct
force method used in Eq. (10) can be similarly applied to
realize the desired value of cw at the particle, which can be
achieved by adding a source term Sc,i to Eq. (17):

Sc,i = ωiφp(cw − c). (23)

With this modification, the value of c inside the particle is
replaced by cw, i.e., the current order parameter c̄ should
be modified by c̄ = c + φp(cw − c), where c̄ = c in the fluid
region with φp = 0, and c̄ = cw in the solid particle region
with φp = 1.

In Eqs. (13), (16), (17), and (20), the gradient terms appear
in the force and source terms and the calculations of fluid
quantities, therefore, the spatial discretization should be prop-
erly used to evaluate their values. In this work the following
second-order isotropic schemes are applied to discretize the
gradient and the Laplacian operators [40]:

∇φ(x, t ) =
∑

k

wkξkφ(x + ξkδt, t )

c2
s δt

, (24)

∇2φ(x, t ) =
∑

k

2wk[φ(x + ξkδt, t ) − φ(x, t )]

c2
s δt2

, (25)

where φ is any physical variable.

It should be pointed out that Mino and Shinto proposed
a free-energy-based LBE for the wettable particle trapped at
the fluid-fluid interface [31]. In their work a modified free
energy including the solid particle wettability parameter and
a sufficiently large value of the artificial parameter is applied
to enforce the same value of order parameter inside the solid
particle as the desired solid particle wettability. Nevertheless,
the two immiscible fluids in the particle-fluid-fluid multiphase
system are limited to matched density. However, the standard
free energy of a two-phase flow system used in the literature
is applied without modification in the present work, and the
wettability of the particle is realized by Eq. (23). Due to this
simple treatment, the wettability of the particle becomes a
source of the order parameter in the particle-fluid-fluid mul-
tiphase system. To suppress this effect, the source term of
Eq. (22) is designed and added to Eq. (17). Moreover, with
such a treatment, the particle-fluid-fluid system is not limited
to the matched fluid density but with a large density contrast
by the present LBE.

IV. NUMERICAL SIMULATIONS

In this section some benchmark problems such as a
wettable cylindrical particle trapped at the fluid-fluid inter-
face, capillary interactions between two wettable cylindrical
particles, and sinking of a horizontal cylinder or multi-
ple horizontal cylinders through an air-water interface are
carried out to validate the present CACE LBE coupled
with the SPM for particle hydrodynamics in two immis-
cible fluids system, where the numerical results predicted
by the present work are compared with the analytical so-
lutions and/or available data. In the following simulation,
the standard two-dimensional nine discrete velocities model
is applied to present CACE LBE with ωi given as ω0 =
4/9, ω1−4 = 1/9, and ω5−8 = 1/36, and the nondimensional
quantities such as density ratios, ρk = ρ̃k/ρ̃r , and viscos-
ity ratios, ηk = η̃k/η̃r are used, where ρ̃k and η̃k are the
physical density and viscosity of the kth phase with k =
l (liquid) or g (gas), and ρ̃r and η̃r are the reference
density, viscosity, respectively. Without being otherwise spec-
ified, some model parameters are set by D = 5, Dp = 2,
and M = 0.1.

A. A wettable cylindrical particle on fluid-fluid interface

A wettable cylindrical particle trapped at the fluid-fluid
interface without gravity force is a good test to show the
accuracy and capability of the present CACE LBE for sim-
ulating particle-fluid-fluid flow. In this problem, the physical
domain x × y = [−L/2, L/2] × [−L/2, L/2] is divided into
two layers with a periodic boundary in the x direction and
nonslip boundary conditions at other wall boundaries, that is,
the upper layer of the domain (0 < y � L/2) is filled with
one fluid, and the lower layer (−L/2 � y < 0) is filled with
another fluid. In the upper layer, the fluid properties are set as
density ρg, viscosity ηg, while the fluid properties of density
ρl , viscosity ηl are imposed in the lower layer. Initially, the
mass center of cylindrical particle with radius Rp and mass
density ρp is located at the center of the physical domain. Due
to the interaction of the fluid-solid particle, the balance of the
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FIG. 1. Snapshots of mechanical equilibrium state for single wet-
table particle trapped at the fluid-fluid interface without gravity. (a)
χ = 0.2, (b) χ = 0.5, and (c) χ = 0.8.

capillary force from the fluid-fluid and fluid-solid determines
the equilibrium state of the particle, where the equilibrium po-
sition of particle heq (the distance from the fluid-fluid interface
to particle center) can be obtained similarly as Ref. [39] by

cos θ = heq

Rp
= σpg − σpl

σlg
= (2χ − 1)

(
1 − 2χ2 + 2χ

)
,

(26)
where θ is the contact angle, and σpl and σpg are respectively
the interfacial tension between the particle and fluid. χ is an
affinity parameter related to the wettability of the particle,
which can be determined by cw, namely, χ = cw. Therefore,
the change of χ can achieve a wide range of the particle’s
wettability, and it can further affect the wetting behavior of
the particle.

In the simulation, the computational domain is divided into
a 150 × 150 mesh. The physical properties of two fluids are
chosen as σlg = 1.0 × 10−2, ρl = 1.0, ρg = 0.001, ηl/ηg =
1.0, the mass density of solid particle with Rp = 15 is given by
ρp = 1.2, and the relaxation times are set by τ f = τh = 1.0. In
Fig. 1 the equilibrium state of the wettable cylindrical particle
trapped at the fluid-fluid interface is presented by the effect of
affinity parameter χ on the wetting behavior of the particle.
It is shown that the particle immerses into the gas phase with
a small value of χ < 0.5 while it enters into the liquid phase
with a large value of χ > 0.5. For the neutral wetting parti-
cle (χ = 0.5), the solid particle keeps the initial location at
the fluid-fluid interface. Numerical predictions also show that
the wettability effect of the particle on the particle behavior is
qualitatively captured by the present LBE. For the quantitative
comparison, we further compare the numerical predictions of
the equilibrium position of the particle with the theoretical
results predicted by Eq. (26). In Fig. 2 the effect of the affinity
parameter χ on the normalized equilibrium position cos θ =

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

χ

co
sθ

Theory
Present LBE

FIG. 2. Comparison of cos θ = h/Rp as a function of χ between
the present LBE and theory by Eq. (26).

0 0.5 1 1.5

(a) (b)

2
x 105

0.85

0.9

0.95

1

1.05

t/δt

M
( t
)/
M
(0
)

Without
With Sm,i

Sm,i

FIG. 3. Results of a single wettable cylindrical particle (χ = 0.8)
trapped at the fluid-fluid interface without gravity. (a) Snapshot of the
single wettable cylindrical particle trapped at the fluid-fluid interface
by the present LBE without Sm,i at t = 2 × 105δt . (b) Comparison of
M(t )/M(0) vs t between the present LBE with and without Sm,i.

heq/Rp is presented. It is shown that the present numerical
predictions agree with the analytical solutions, and further
demonstrated that the wetting behavior of the solid particle
is well simulated and captured by the present LBE with large
fluid density contrast.

In Fig. 3 the effect of the remedial term Sm,i in Eq. (22)
is investigated by the present LBE with χ = 0.8 as an ex-
ample. It can be observed that the region of the liquid phase
becomes less at t = 2 × 105δt by the present LBE without
Sm,i as shown in Fig. 3(a), while the result of the mechanical
equilibrium state in Fig. 1(c) shows the present LBE with Sm,i

is free of this issue. To give a quantitative comparison, we
measure the transient total volume fraction M(t ) = ∫

� f
cd�

for the present LBE with and without Sm,i, and the ratio be-
tween M(t ) and M(0) is plotted in Fig. 3(b). The results show
that the ratio M(t )/M(0) is first increased and then reduced
with the time t by the present LBE without Sm,i. When Sm,i

is considered by the present LBE, the initial value of M(0) is
well maintained. Therefore, the remedial term Sm,i should be
included in Eq. (17).

B. Capillary interactions between two wettable
cylindrical particles

Capillary interactions between two wettable cylindrical
particles in the presence of gravity are another good test to
demonstrate the capability of the present CACE LBE, where
the two wettable cylindrical particles are freely floating at
the fluid-fluid interface. As shown in the previous subsection,
when the particle’s weight or the gravity force is ignored,
the fluid-fluid interface maintains a flat shape at equilibrium.
However, when the particle’s weight cannot be neglected with
ρp �= ρ, the fluid-fluid interface becomes deformed in the
presence of gravity. This deformed interface can induce the
capillary interactions between particles trapped at the same
fluid-fluid interface. In this work, three simulations are car-
ried out to investigate the capillary interactions between two
wettable cylindrical particles in a physical domain 2L × 2L:
(1) two identical heavy-weight particles, (2) two identical
light-weight particles, and (3) one heavy-weight particle and
one light-weight particle, where the particles are trapped at the
fluid-fluid interface and freely move in the vertical direction.
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FIG. 4. Snapshots of the mechanical equilibrium state for the
capillary interaction between two cylindrical particles trapped at the
deformable fluid-fluid interface with δ varied from 24δx to 64δx
at |Bo| = 0.257 and contact angle θ = π/2. (a) ρp1 = ρp2 = 1.5,
(b) ρp1 = ρp2 = 0.5 and (c) ρp1 = 1.5, ρp2 = 0.5. ϕ and ϕ′ are the
slope angle of the fluid-fluid interface at the contact point between
the interface and particle surface. δ is the distance of the mass center
of the cylindrical particle to the vertical center line of the physical
domain, h is the downward displacement from the fluid-fluid inter-
face to the cylindrical particle center, d is the half vertical separation
distance between the two cylindrical particles, and L is the half
distance of physical domain in horizontal direction. From left to right
columns correspond to δ = 24δx, 48δx, 64δx, respectively.

Initially, the horizontal flat interface of the two immiscible
fluids separates the physical domain equally with upper fluid
density ρg and lower fluid density ρl , and the distance of
the mass center of two particles to the vertical center line
of the physical domain is δ as shown in Fig. 4. The two
wettable cylindrical particles experience a capillary force (lat-
eral force) F lat in the horizontal direction during the particles
reaching a vertically stable equilibrium position under gravity.
When the system reaches a mechanically equilibrium state,
the force balance at the contact point gives the following
analytical expression for the capillary force in the horizontal
direction [31]:

F lat = σ [cos ϕ − cos ϕ′] + Rp

[
− sin

(
π

2
− θ + ϕ

)

+ sin

(
π

2
− θ + ϕ′

)]
δp, (27)

where ϕ and ϕ′ are the slope angle of the fluid-fluid interface
at the contact point between the interface and particle surface

as shown in Fig. 4, δp is the pressure difference between the
two immiscible fluids.

In the simulation, the computational domain is divided
into a 256 × 256 grid with the same boundary conditions
as the previous case. The properties of the fluids and cylin-
drical particles are given by ρl = ρg = 1, ηl/ηg = 1.0, and
(ρp1, ρp2) = (1.5, 1.5), (0.5, 0.5), and (1.5, 0.5) for cases (1),
(2), and (3), respectively, and Bond number |Bo| = 0.257
[Bo = (ρp − ρ)R2

pg/σ ]. The other input parameters are the
same as the previous test. Initially, the mass center of cylindri-
cal particles with radius Rp = 20 is trapped at the fluid-fluid
interface. The mechanical equilibrium state of the two cylin-
drical particles trapped at the fluid-fluid interface is shown
in Fig. 4 with neutral wetting particle and the distance 2δ

between the mass center of the cylindrical particles varied
from 48δx − 128δx. In case (1), the two heavy cylindrical
particles immerse into the lower fluid region, and the two
cylindrical particles will immerse into the upper fluid region
in case (2), while one heavy cylindrical particle immerses
into the lower fluid region and one light cylindrical particle
immerses into the upper fluid region in case (3). From Fig. 4,
it can be found qualitatively that the heavy (light) cylindrical
particles will immerse into the lower (upper) fluid region
deeper with small δ than that with large one in case (1) [case
(2)], while the vertical separation 2d of the two cylindrical
particles in case (3) is increased with δ. To give a quantitative
comparison, the equilibrium cylindrical particle position is
measured and compared with the theoretical prediction in
Ref. [31] for different contact angle θ and δ in Fig. 5(a). It
is observed that the magnitude of the downward displacement
h/δx is decreased with the increase of θ or δ in case (1), but
with an opposite trend in case (2). For case (3), the vertical
separation d is increased with δ, but the numerical predictions
are almost overlapped by different contact angle as shown in
Fig. 5(a). This implies that it is not sensitive to the value of
particle wettability for case (3), which is consistent with the
theoretical prediction by Ref. [31]. The results also show that
numerical predictions by the present LBE agree well with the
theoretical ones. We further measured the capillary force in
the horizontal direction for cases (1) and (3) in Fig. 5(b), and
the results show that the magnitude of F lat is strengthened
with small δ and it becomes negligible at δ = 64δx due to the
symmetric capillary interactions in the two cylindrical particle
fluid-solid system. Similar to the results of cases (1) and (3) in
Fig. 5(a), the magnitude of F lat is decreased with the increase
of θ or δ in case (1), and it is not sensitive to the value of par-
ticle wettability in case (3), where the numerical predictions
are almost overlapped. This can be explained from Eq. (27),
where the zero curvature for the fluid-fluid interface in case
(3) gives δp = 0 and causes an independent contact angle θ

lateral force F lat . The theoretical predictions are plotted in
Fig. 5(b) for the further validation of the present LBE together
with the subplot for ρp1 = ρp2 = 1.5; it is clearly shown that
the present measured value of F lat agrees with the theory.

C. Sinking of a horizontal cylinder through
an air-water interface

Now the sinking of a horizontal cylinder through an air-
water interface is carried out to show the capability of the
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(a) (b)

FIG. 5. Comparison of numerical predictions in cases (1)–(3) by the present LBE and the theory for two cylindrical particles trapped at the
fluid-fluid interface under the gravity with contact angle varied from π/4 to 3π/4. (a) Downward displacement h/δx and vertical separation
2d/δx; (b) lateral force F lat between two cylindrical particles trapped at the fluid-fluid interface. Lines are theoretical results [31], and samples
are numerical predictions. •, �, and � are for contact angle π/4, π/2, and 3π/4, respectively, with ρp1 = ρp2 = 1.5; ◦, ×, and + are present
for contact angle π/4, π/2 and 3π/4 respectively with ρp1 = ρp2 = 0.5; and �, ∗, and � are present for contact angle π/4, π/2, and 3π/4
respectively with ρp1 = 1.5, ρp2 = 0.5.

present LBE for capturing the moving contact line with large
density contrast. This two-dimensional problem is widely
studied experimentally [41] and numerically [42,43]. As
shown in Fig. 6, half of the cylinder with diameter Dc is
immersed into the water and trapped at the air-water inter-
face. The characteristic time and length of this problem are
chosen as the experiment work [41] tc = (σ/ρl g3)1/4 and lc =
(σ/ρl g)1/2, where g is the acceleration of gravity. Initially, the
cylinder is stationary, then it starts to move by gravity as in
Ref. [41]. The physical domain of this problem is chosen as
12Dc × 5Dc, which is sufficiently wide to neglect the effect
of the capillary wave reflected by the cylinder. The nonslip
boundary condition is applied to the top and bottom walls,
and the periodic boundary condition is used in the horizon-
tal direction. In the simulation, the center of cylinder with
Dc = 100 is initially located at 0.0352lc below the air-water
interface, which is beneath the top wall with Dc. The input
parameters are chosen close to the experiment [41] as the
density ratio of water and air ρr = 772 and viscosity ratio 50,
ρp/ρl = 1.92, the wettability of the cylinder set by θ = 111◦,
Reynolds number Re = 250, Bond number Bo = 0.8649, and

FIG. 6. Physical configuration for sinking of a horizontal cylin-
der through an air-water interface.

Weber number We = 0.93. The snapshots of the sinking dy-
namics predicted by the present LBE and the experimental
results are compared in Fig. 7. The results show that the
sinking dynamics of the cylinder is captured qualitatively by
the present LBE, which agrees with the experimental results
at different time series t = 0.02 s, 0.04 s, 0.06 s, and 0.102 s.
In Fig. 8, the quantitative comparisons of the angle of the
contact line position to the mass center of the cylinder and
the nondimensional position of the cylinder relative to the air-
water interface denoted by β and H , respectively, are plotted
against the nondimensional time T = t/tc. It is shown that the
angle of the contact line and the positions of sinking cylinder
predicted by the present LBE agree with the experimental
data [41]. Moreover, the case of the cylinder centered above
the undeformed air-water interface is carried out for further
validation, and the time evolution of H is measured, where
ρp/ρl = 3.13, Bo = 0.3136, and We = 0.56. Initially, the
center of the cylinder is located at 0.3412lc above the air-water
interface. The numerical prediction of the nondimensional

FIG. 7. Snapshots of a circular cylinder sinking dynamics
through an air-water interface. The left and right halves in the sub-
figures are the results of experiment [41] and the present work,
respectively. Adopted with permission from [41], copyright © 2006
American Chemical Society.
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FIG. 8. Comparison of (a) the angle of contact line and (b) the position of the sinking cylinder between the present LBE and experimental
data [41].

position of the cylinder is shown in Fig. 9 together with the
experimental data; it is observed that numerical predictions
by the present LBE agree with the experimental data [41].

D. Raft sinking of multiple horizontal cylinders
through an air-water interface

In the fluid-fluid-solid multiphase system, the vertical com-
ponent of capillary force acting on the solid particle can make
it float at the fluid-fluid interface even with heavier solid parti-
cles than in either fluid phase. When more additional particles
are present, the particles will cluster together by the horizontal
component of capillary force. During the cluster process, the
particles move toward each other, and the interior meniscus
between the two particles may become small. This cause a
diminished vertical capillary force from the meniscus acting
on the solid particle, which induces the raft sinking of multiple
solid particles. This interesting phenomenon was studied by
theory [44] and experiment [45]. In Fig. 10 the maximum
weight Mp,max of a single horizontal cylinder with another
one floating at the air-water interface is investigated with (Bo,
We) = (0.25, 0.5) and (0.7225, 0.85), respectively, where
the two identical horizontal cylinders are separated by 2δ as
shown in Fig. 4(a). The property of air-water is same as the
case in Sec. IV C. The results show that Mp,max is diminished

0 1 2 3 4 5−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

T

H

Ref. [41] 
Present LBE

FIG. 9. Comparison of the position of sinking cylinder between
the present LBE and experimental data [41].

when two horizontal cylinders get closer. This implies that
the existence of an additional horizontal cylinder can cause
a sinking when they approach each other, which is consistent
with the work in Ref. [44].

Finally, we conduct an additional simulation to show the
capability of the present LBE for raft sinking of two, three,
and five horizontal cylinders through the air-water interface.
The physical configuration is the same as Fig. 6 except for
more additional cylinders, where the cylinders are symmet-
rically distributed at the air-water interface with respect to
the vertical center line of the domain and a uniform gap Dc

is imposed between the cylinder and its neighboring ones at
the beginning. In the simulation, the input parameters are the
same as the case in Sec. IV C except for Bo = 0.7225 and
We = 0.85. Figure 11 shows the snapshots of raft sinking
of the cylinders through the air-water interface at different
nondimensional time series. At the early stage, the cylinders
are pulled together by the capillary force. As the time goes on,
the gap and the interior meniscus between cylinders become
small. When the capillary force cannot support the cylinders
in the floating at air-water interface, the raft sinking of the
cylinders is observed at a later stage. Similar raft sinking
phenomena were also observed in Refs. [43,45]. The

0 0.25 0.5 0.75 1 1.25 1.52

2.5

3

3.5

4

4.5

δ

M
p
,m
a
x

Bo=0.25
Bo=0.7225

FIG. 10. Maximum weight of horizontal cylinder vs δ that makes
the cylinder float at the air-water interface with (Bo, We) = (0.25,
0.5) and (0.7225, 0.85).
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FIG. 11. Snapshots of raft sinking of two, three, and five circular cylinders through the air-water interface. (a)–(d) Two circular cylinders,
(e)–(h) three circular cylinders, (i)–(l) five circular cylinders.

quantitative motion of the initial position of the first cylin-
der from the left side vs time T is presented in Fig. 12 as
an example to show the raft sinking process. The horizontal
position in Fig. 12(a) shows that the first cylinder distributed
initially at the left side gradually moves to the center of the
domain, and it reaches a maximum value and then it starts to
leave the central region and reach a stable position. During
the horizontal position approaching the maximum value, the
horizontal cylinder floats up and down as its vertical position
shown in Fig. 12(b). After that, the cylinder starts to sink. For
example, the sinking of the cylinder starts at time around T =
20, 30, and 45, respectively for the raft sinking of two, three,
and five horizontal cylinders through an air-water interface.

Moreover, the normalized position of the raft sinking of three
and five horizontal cylinders vs time T is plotted in Fig. 13
together with the overall mass center (xav , yav) of multiple
horizontal cylinders. The results in Fig. 13(a) and 13(c) further
show that the cylinders first approach the central region and
then separate to their stable positions. The vertical position yp

of the multiple horizontal cylinders in Figs. 13(b) and 13(d)
demonstrates that an unusual nonmonotonic motion of the
multiple horizontal cylinders is observed in the vertical plane
rather than the sinking of a horizontal cylinder with a mono-
tonic descent motion in Sec. IV C. However, the overall mass
center of multiple horizontal cylinders xav is almost along the
centerline of the domain, while yav is a nonmonotonic motion

(a) (b)

FIG. 12. Normalized position of the first cylinder distributed initially at the left side in the raft sinking of multiple horizontal cylinders vs
time T . (a) Horizontal position xp; (b) vertical position yp.

025304-9



LIN ZHENG, SONG ZHENG, AND QINGLAN ZHAI PHYSICAL REVIEW E 108, 025304 (2023)

0 10 20 30 40 50
3

4

5

6

7

8

9

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50
0

2

4

6

8

10

12

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

(a) (b)

(c) (d)

FIG. 13. Normalized position of the raft sinking of three and five horizontal cylinders vs time T together with the overall mass center
(xav , yav) of multiple cylinders. (a), (c) Horizontal position xp; (b), (d) vertical position yp.

as the motion of an individual horizontal cylinder in the raft
sinking of multiple horizontal cylinders.

V. CONCLUSION

In this work a phase-field based LBE is developed for wet-
table particle hydrodynamics with a large fluid properties con-
trast. The flow field is calculated by classical incompressible
LBE, and the evolution of the fluid-fluid interface is captured
by CACE LBE. Due to the merit of the SPM for describing the
particle and computing the fluid-solid interaction force, the
solid particle is represented by the SPM and the fluid-solid
interaction force is calculated by the direct force method.
However, the diffusion problem between the wettable solid
and surrounding fluids occurs in the present SPM-LBE when
the wettable particle immerses into two immersible fluids.
Then a remedial strategy is introduced to solve this problem.

Some classical problems including a single wettable par-
ticle trapped at the fluid-fluid interface without gravity,
capillary interactions between two wettable particles under

gravity, and sinking of a horizontal cylinder through an air-
water interface were carried out to validate the capability and
accuracy of the present LBE for fluid-fluid-solid three-phase
flows. All numerical results showed that the predictions of
the wettable particles hydrodynamics by the present LBE
agreed with analytical solutions and available experimental
data. Moreover, the phenomena of raft sinking of multiple
circular cylinders were observed by the present SPM-LBE.
Numerical results showed that an unusual nonmonotonic mo-
tion of the multiple horizontal cylinders was observed in the
vertical plane rather than a monotonic descent motion by
sinking of a horizontal cylinder.
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