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Simulation of binary collision of liquid drops using smoothed particle hydrodynamics
with adaptive spatial resolution
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The binary collision of water drops in the air is studied by two-dimensional numerical simulation utilizing
smoothed particle hydrodynamics with adaptive spatial resolution. The numerical method is validated by
comparing the simulation with experiment. Three basic modes of equal-size drop collision are observed in
numerical simulations at Weber number 3 � We � 120 and impact parameter 0 � x � 0.8, namely, reflexive
separation, stretching separation, and coalescence collision. Based on the numerical results of different collision
modes, the specific phenomena, evolution patterns, and physical principles are discussed. In particular, the
detailed processes of the necking phenomenon and the propagation of surface wave in separation collision
are obtained, corroborating the “end-pinching” theory proposed in the literature. At higher Weber numbers,
the recoalescence of satellite drops is observed. The collision of unequal-size drops is also investigated. The
effects of three dimensionless parameters, namely, drop diameter ratio, Weber number, and impact parameter are
discussed. The physical mechanisms of some special phenomena are expressed in detail.
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I. INTRODUCTION

Drop collision is a widespread physical phenomenon in
nature and engineering applications such as thermal spray,
spray cooling, and the internal combustion engine [1]. The
collision process is often accompanied by the deformation, ag-
gregation, and separation of the drops, which has a significant
impact on the shape, size, and velocity of the drops [2], form-
ing a drop system with complex microscopic composition
and macroscopic characteristics. For example, in an internal
combustion engine, a large number of drops are generated
after the atomization of liquid fuel injected in the cylinder.
Especially in the core area of the fuel spray with high drop
density, the collision phenomenon plays a decisive role in the
geometric features and the state of motion of the drops [3],
which can directly change the characteristics of the spray field
in the cylinder. Thus drop collision has a significant impact on
the efficiency of the internal combustion engine [4]. In addi-
tion, the collision phenomenon of drops is also encountered
in ink-jet printing, additive manufacturing, and liquid rocket
engines [5–7]. Therefore, the study of drop collision is of great
importance for engineering applications.

Among the complex drop collision phenomena, the op-
posite collision of two spherical drops is a basic case, as
illustrated in Fig. 1. As the drops approach each other, the gas
in the gap is compressed, due to which the drops are deformed
with the opposite motion hindered. Most of the kinetic energy
of the opposite motion is converted into capillary potential
energy, while a small part of it is dissipated through the

*xyang@bit.edu.cn

liquid flow inside the drops and the gas flow in the gap. If
the scale of the gap finally reaches the range of intermolec-
ular interaction, the drops will merge; otherwise they will
rebound.

The drop collision phenomenon is controlled by a number
of factors, the results of which depend not only on the motion
parameters of the drops but also on the physical properties of
the liquid and the surrounding gas, such as surface tension
coefficient, viscosity, etc. In the present paper, the binary
collision of drops occurs at room temperature and atmospheric
pressure. The drop collision problem in this situation can be
described by liquid density ρ; viscosity μ; surface tension
coefficient σ ; the diameters of two drops, respectively, dl

and ds; and their velocities, respectively, ul and us. Here the
subscript “s” stands for the smaller drop, and “l” for the larger
one.

For a more concise description of motion, the relative
velocity is often used for the collision system of only two
drops:

u = ul + us. (1)

In addition, the relative position of the drops will also have
a significant impact on the result of collision. Therefore, the
impact parameter X is defined to represent the distance from
the center of one drop to the relative velocity vector of another
drop.

According to dimensional analysis on the variables men-
tioned above, four dimensionless parameters can be obtained:
Reynolds number Re, Weber number We, drop diameter ratio
�, and dimensionless impact parameter x, which are defined
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FIG. 1. Schematic diagram of drop collision.

as follows:

Re = ρdl u

μ
, (2)

We = ρdsu2

σ
, (3)

� = ds

dl
, (4)

x = 2X

dl + ds
. (5)

The Reynolds number Re characterizes the effect of iner-
tia and viscous forces. Previous studies showed that within
the range of Reynolds number 500–4000, the outcome of
binary drop collision does not vary significantly with the
Reynolds number [8]. Therefore, the collision phenomenon
can be described by the Weber number We, drop diameter
ratio �, and dimensionless impact parameter x. According to
the definition, x = 0 and x = 1 represent head-on and grazing
collisions, respectively. In the case of 0 < x < 1, the system
experiences off-center collision.

In the literature, a number of experiments have been carried
out to study the problem of drop collision. Brazier-Smith
et al. [8] conducted an experimental study on the collision
of water drops, and established their prediction equation for
collision outcomes based on energy theory. Ashgriz and Poo
[9] carried out more systematic experiments on the collision
of water drops. With the aid of high-speed video technology,
the drop morphology and mass transferring in the collision
process was recorded in detail. By summarizing the outcomes
under different collision parameters, the range of various
collision regions was measured. Relevant theoretical models
were proposed to predict reflexive and stretching separations.
In addition, the collision of nonwater drops has also been
experimentally investigated, from which more complex colli-
sion phenomena were discovered. Jiang et al. [10] reported on
the nonmonotonic behavior of hydrocarbon drop collision, for
which phenomenological explanations were provided. Qian
and Law [11] conducted experimental research on the bi-
nary collision of water and hydrocarbon drops in various
gaseous environments at different pressures, extending and
unifying previous observations obtained at the atmospheric
pressure. Planchette et al. [12] investigated the binary col-
lisions of immiscible liquid drops and discussed effective
methods for achieving liquid encapsulation. Special mecha-
nisms such as single-reflex separation and crossing separation
were experimentally validated and summarized, with the pro-

cess being controlled by the viscosity ratio and momentum
ratio.

According to previous studies, the outcomes of drop colli-
sion can be generally divided into four categories: bouncing,
coalescence, separation, and shattering collisions. For bounc-
ing collision, the contact of two drops is prevented by the
compressed gas layer. As a result, the drops deform and
rebound without mass transfer. Coalescence refers to the phe-
nomenon where two drops merge permanently after collision.
For separation collision, the drops also coalesce briefly after
contact; then they break up into multiple subdrops arranged
regularly. Shattering collision often occurs at higher veloc-
ity, and the drops experience a significant deformation and
decompose into a large number of smaller drops. It should
be noted that for the collision of drops under atmospheric
pressure, which is the main concern of this paper, it is very
difficult for bouncing collision to take place [11]. Shattering
collision, which has been proved to be dominated by a differ-
ent mechanism [9], is also not the focus of the present study.

Many experimental investigations in the literature were
focused on the outcomes of drop collision and the influencing
factors. However, performing analysis and prediction only
from the perspective of phenomenology is not satisfactory.
Limited by technology, most of the previous experimental
work focuses on the observation and summary of phenomena,
and much of the underlying physics remains to be explored. In
addition, since the actual influencing factors of drop collision
are quite complex, it is rather expensive and difficult to con-
duct detailed experimental investigations on such problems.
In contrast, the numerical simulation based on computational
fluid dynamics (CFD) has lower cost and better adaptability,
and it is hardly affected by external factors. Thus, it is able
to overcome many limitations of experimental conditions. By
solving the partial differential equations of mass, momentum,
and energy, we can obtain information that is difficult to
directly measure or observe in experiments. This helps us
to understand the drop collision problem at a deep level and
also provides convincing evidence for the existing theoretical
models.

The simulation of drop collision has to consider the com-
plex interfaces between drops and ambient gas. For mesh
based CFD methods, the interface tracking techniques are
often required to simulate multiphase flows. The volume of
fluid (VOF) model is a commonly used interface tracking
technique, and it has the advantage of global and local volume
conservation [13]. To simulate drop collision, an improved
VOF technique [14] that tracks the gas-liquid interface with
the aid of an adaptive mesh refinement algorithm was applied.
A consistent geometric VOF method was proposed to sim-
ulate vaporizing drops [15]. The level-set method is also an
interface tracking technique used in numerous works in the lit-
erature. The main advantage of the level-set method is that it is
able to naturally capture the change of interface [16]. Coupled
with direct numerical simulation, the level-set method can be
used to simulate the process of drop impact [17]. An alterna-
tive approach for interface capturing is the diffuse-interface
method based on the phase field concept [18]. Kajzer and Po-
zorski [19] proposed a diffuse-interface approach based on the
modified conservative Allen-Cahn equation for simulation on
low-speed, two-phase flows. The off-center collision of liquid
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drops serves as a good example of the method, which is in
good agreement with experiments under the given resolution.
To improve the capturing of complex interfaces, a promising
method is to couple different models, such as the coupling of
the level-set and VOF methods [20], and the coupling of the
level-set and immersed boundary methods [21].

However, due to the complex deformation of drops such
as drop coalescence, rotation, fragmentation, and separation,
the simulation of drop collision is still a challenge for CFD.
This paper presents a mesh-free particle method based on
smoothed particle hydrodynamics (SPH) for the simulation of
drop collision. The SPH method was originally proposed to
solve the problem of planetary motion in open space [22,23]
and then gradually expanded to the fields of free surface flow,
multiphase flow, fluid-structure interaction, large deformation,
and moving boundary [24–28]. As a pure Lagrangian method,
the SPH method completely discards grids. Instead, discrete
particles are utilized to describe the motion state and boundary
position of the material system. Since the particles are not only
interpolation points but also material points carrying physical
properties, the system can be pictured quite intuitively. The
SPH method has developed rapidly in recent years, because
it has a couple of advantages. First, SPH can capture the
complex interfaces of different phases without using addi-
tional interface capturing techniques. In addition, the breakup
and merging of interfaces can be simulated directly without
using breakup and merging criteria. Second, SPH is able to
simulate the large deformation of fluid or solid. Third, the
SPH method has the advantage of mass conservation. Fourth,
it is easy in SPH to treat complex geometries and moving
boundaries. The SPH method also has some drawbacks, such
as the challenges related to accuracy and adaptive resolution.
More SPH challenges are defined in Ref. [29].

To save computational costs of CFD simulations, the tech-
nique of adaptive resolution is usually applied in simulations
with high spatial resolution. For mesh based CFD methods,
many techniques of adaptive resolution or mesh refinement
have been developed, such as the adaptive octree/quadtree
mesh for the VOF [15] and level-set [16] methods, and
the adaptive mesh refinement (AMR) algorithm for the lat-
tice Boltzmann method (LBM) [30,31]. Watanabe and Aoki
[30] proposed a LBM-AMR method for large-scale free -
surface flow simulations on multiple graphics processing units
(GPUs). Wu et al. [31] developed a mesh refinement proce-
dure called the multi-relaxation-time (MRT) LBM to capture
the rapid variation of the flow properties in the near-wall re-
gion and perform the simulations on a GPU cluster. However,
it is difficult to develop an adaptive resolution algorithm for
the SPH method because of the movement of SPH particles.
When the SPH method is applied to simulate incompressible
flows, the initial particles are usually uniformly distributed
in space. This inevitably leads to particles in the “region of
no interest” taking up computational resources unnecessarily,
hereby incurring high computational costs [32]. In order to
solve this problem, a SPH model with adaptive spatial res-
olution (ASR) [32–34] is employed in the present study to
carry out numerical simulations on the binary collision of
water drops in the air. The main characteristic of this method
is that the particle spacing varies according to the distance
between the particles and the gas-liquid interface, so as to real-

ize adaptive particle distribution in the computational domain
and improve the computational efficiency. By comparing with
relevant experimental results, it is verified that the simulation
results are of high credibility within the allowable error range.

The preliminary goal of this work is to study the modes
of drop collision and the corresponding characteristics and
mechanisms by numerical simulation using the SPH-ASR
method. The effects of three dimensionless parameters,
namely, the Weber number, impact parameter, and drop di-
ameter ratio, on drop collision are investigated. Through the
analysis and induction of simulation results, different colli-
sion modes and their boundaries are obtained. Subsequently,
the typical physical processes of these collision modes are
described in detail, while the physical mechanisms behind
some phenomena are discussed.

II. NUMERICAL METHOD

A. SPH for fluid mechanics

The basic idea of approximation in the SPH method is
as follows: (a) Representing continuous functions and their
derivatives as the integral form of smoothing kernel functions;
(b) discretizing the computational domain with distributed
particles. A field variable on a particle can be approximated by
a summation of the values corresponding to the neighboring
particles in the support domain.

The integral representation of a function f by approxima-
tion is as follows,

〈 f (x)〉 =
∫

�

f (x′)W (x − x′, h)dx′, (6)

where x is the position vector, � is the integral domain con-
taining x, and W (x−x′, h) is the smoothing kernel function
with h the smoothing length.

Subsequently, the above formula is discretized using parti-
cle summations as follows,

〈 f (xi )〉 =
∑

j

m j

ρ j
f jW (ri j, h), (7)

where the subscripts i and j denote particles; mj and ρ j ,
respectively, represent the mass and density of particles; ri j

is the distance between two particles; and N is the number of
particles. The physical meaning of this step is to discretize
continuous material into particles with physical properties.

Similarly, the approximation of the derivative of the func-
tion f can be written as

〈∇ f (xi )〉 =
∑

j

m j

ρ j
( f j − fi )∇iW (ri j, h). (8)

For fluid dynamics, by applying the above approximation
to all relevant terms of governing equations, the discretization
of the differential equations in the computational domain can
be realized. The Navier-Stokes equations, namely, the con-
tinuity equation and the momentum equation, are written in
their Lagrangian form,

dρ

dt
= −ρ∇ · u, (9)

du
dt

= g − ∇p

ρ
+ μ

ρ
∇2u + 1

ρ
FS, (10)

where ρ is density, u is velocity, p is pressure, and μ is the
dynamic viscosity. The gravitational acceleration g will be
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omitted below due to the negligence of gravity in this study.
The surface tension FS is defined by the continuum surface
force (CSF) model [35] as follows,

FS = −σκnδS = σ (∇ · n)∇c, (11)

where σ , κ , n , δS , and c denote the coefficient of surface
tension, the surface curvature, the surface unit normal, the
surface delta function, and a color function, respectively.

In the present work, the kernel function suggested by Yang
and Liu [36,37] is employed to get rid of the tensile instability
problem that may appear in the SPH simulation of fluid flows,

W (s, h) = 1

3πh2

⎧⎨
⎩

s3 − 6s + 6, 0 � s < 1
(2 − s)3, 1 � s < 2
0, 2 � s

, (12)

where s = r/h.

It should be noted that in the SPH method with adaptive
spatial resolution, the particle spacing is variable. Thus, the
smoothing length should also be variable. The symmetrical
expression of kernel function suggested by Hernquist and
Katz [38] is utilized to satisfy the conservation of momentum:

W i j = 1
2 [W (ri j, hi ) + W (ri j, h j )], (13)

∇iWi j = 1
2 [∇iW (ri j, hi ) + ∇iW (ri j, h j )]. (14)

In summary, based on the particle approximation principle
of the SPH method, the Navier-Stokes equations can be writ-
ten in discrete form as follows,

dρi

dt
=

∑
j

m j (ui − u j ) · ∇iWi j, (15)

dui

dt
= −

∑
j
m j

(
pi + p j

ρiρ j
+ 	i j

)
∇iWi j +

∑
j

4mjμiμ j (ri − r j ) · ∇iWi j

ρiρ j (μi + μ j )
(
r2

i j + η
) (ui − u j )

+ 2σi

Vi

∑
j (ni − n j ) · Vj∇iWi j∑

j

∣∣(ri − r j ) · Vj∇iWi j

∣∣
∑

j

V 2
i + V 2

j

ρi + ρ j
∇iWi j, (16)

where 	i j is the artificial viscosity proposed by Monaghan [39]:

	i j =
{−α(ci+c j )μi j+2βμ2

i j

ρi+ρ j
, (ui − u j ) · (ri − r j ) < 0

0, (ui − u j ) · (ri − r j ) � 0
, (17)

μi j = (hi + h j )(ui − u j ) · (ri − r j )

2(r2
i j + η)

. (18)

Here α and β are utilized to regulate the strength of arti-
ficial viscosity. The artificial viscosity is used to reduce the
nonphysical oscillation in SPH simulations. Since the non-
physical oscillation of the gas SPH particles is larger than the
liquid SPH particles in the same simulation, the strength of
artificial viscosity for the gas phase is larger than for the liquid
phase. In our simulations, α = 0.01 and β = 0 for the liquid
phase; α = 0.1 and β = 0.2 for the gas phase.

B. Adaptive resolution

In the present work, the numerical simulation on drop
collision employs adaptive resolution, which uses nonuniform
particle distribution instead of uniform particle distribution.
The adaptive resolution can reduce unnecessary calculations
and achieve a balance between calculation accuracy and effi-
ciency.

The adaptive resolution used in this work was originally
proposed by Yang and Kong [32]. The basic idea of adaptive
particle distribution is as follows. Based on the distance be-
tween each particle and the interface, a reference spacing is
defined, and the reference mass of the particle is determined
accordingly. Then the ratio of the actual mass of this particle
to its reference mass is calculated. If this ratio is larger than
the critical value for particle splitting, the particle will be split

into two particles. On the contrary, if the mass ratio is less
than the critical value for particle merging, the particle will
be merged with a neighboring particle. As a consequence, an
adaptive particle distribution is obtained.

To implement the adaptive resolution, a reference particle
spacing is introduced, which varies with the distance between
the selected particle and the interface of different phases. For
particles that are further away from the interface, the reference
particle spacing is larger and vice versa. Now introduce the
concept of “particle band,” as shown in Fig. 2. The thick,
black dashed line on the left side of the picture represents
the interface. In the same particle band, the particles share the
same value of reference spacing.

The width of the particle band is K�S, where �S is the
reference particle spacing, and K is employed as a parameter
controlling the width. The reference particle spacing of adja-
cent particle bands is defined as

�Sk+1 = Cr�Sk, (19)

where k denotes different particle bands. Cr , named the adap-
tive number, is defined as the ratio of the reference particle
spacing between two adjacent particle bands. This parameter
is introduced to control the degree of local refinement of
particles. When Cr = 1, the particle bands are distributed with
equal width and the reference particle spacing is uniform,
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FIG. 2. Schematic diagram of particle band.

which does not lead to an adaptive resolution. When Cr > 1,
the particle spacing becomes bigger with the increase of dis-
tance from the interface, and this trend accelerates with the
enlargement of Cr . This means that the resolution of particles
in the computational domain changes adaptively.

As shown in Fig. 2, the distance between the particles and
the interface is determined by the particle band. The particle
bands are found as follows: (a) Find the particles at the in-
terface, (b) find the first particle band based on the distance
between the particles and the interface particles, (c) find the
next particle band based on the distance between the rest of
the particles and the particles of the previous particle band,
and (d) continue to find all the particle bands until there are
no particles left outside the particle bands.

The adaptive distribution of particles is controlled by ref-
erence mass. In a two-dimensional simulation, the reference
mass is defined as

mr = ρr (�S)2. (20)

Obviously, for particles of the same substance, the refer-
ence mass is related to the reference particle spacing. For a
particle, if the ratio of its real mass to its reference mass is
greater than the set value for particle splitting, we have

m

mr
> γs. (21)

The particle will split into two smaller particles, the posi-
tions of which are calculated as follows:

ri1,i2 = ri ± λ

2
�sie. (22)

Here the subscripts i1 and i2 denote the two particles after
the splitting of particle i, λ = 0.6, and e denotes the unit

FIG. 3. Typical particle distribution of SPH method with adap-
tive spatial resolution.

vector perpendicular to the line connecting particles i and its
nearest neighbor particle.

If the ratio is less than the set value for merging, we have

m

mr
< γm. (23)

The particle will merge with its nearest neighbor particle.
The position of the new particle is the center of the mass of
the two particles before merging, which can be calculated as
follows:

rk = miri + mjr j

mi + mj
. (24)

Here the subscript k denotes the new particle after merging;
i and j denote the two particles before merging.

III. BINARY COLLISION OF EQUAL-SIZE DROPS

In this section, the SPH-ASR method is utilized to perform
numerical simulation on the collision of two water drops of
equal diameter (� = 1). The typical distribution of particles
based on the above adaptive resolution method is shown in
Fig. 3. The dense and uniformly distributed particles are em-
ployed to precisely track the evolution of drop morphology
during collision, while the adaptive resolution is applied in
the surrounding gas to save computing resources. It should
be noted that the simulations performed in the present paper
are in two spatial dimensions. The spatial scale is referenced
by the drop diameter. The computational domain is set to a
rectangle 30 times the drop diameter in length and 20 times
in width. The initial particle spacing is set to 1/40 of the drop
diameter. The time step is set to 0.05 ms.

A. Verification

In order to verify the reliability of the numerical method
presented in this paper, the simulation results are compared
with the binary collision experiments of water drops by Ash-
griz and Poo [9]. Within the scope of the main focus of
this paper, two typical collision modes exist: coalescence and
separation collision. For these two types of collision, the nu-
merical results based on the adaptive SPH method can be in
good agreement with the experimental results. As shown in
Figs. 4 and 5, the numerical simulation images show high
similarity with the experimental photos. The collision process
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FIG. 4. Comparison of coalescence collision (We = 10, x = 0.5)
between SPH simulation (top) and experiment (bottom) [9].

and morphological characteristics of the drop are basically the
same.

B. Coalescence collision

Figure 6 shows the process of head-on collision of two
equal-size water drops at We = 3. It can be seen from the
figure that the two water drops coalesce at first after contact-
ing, forming a large drop. Subsequently, the coalesced drop
contracts inward along the direction of the velocity vectors
and pushes the liquid out from the center to form a flat disk
or torus. At this time, the liquids on both sides meet on the
central plane of impact and extend around, and then retreat
in the directions perpendicular to the plane, driving the coa-
lesced drop to stretch and deform outward. For the cases with
relatively low Weber numbers, this reflexive motion cannot
overcome the limit of surface tension of the coalesced drop,
and the liquid mass will be pulled back and oscillate with
amplitude attenuation. During this process, in addition to the
large-scale oscillating deformation of the drop as a whole,
small fluctuations propagating outward from the collision cen-
ter were also observed on the surface. As a result, the two
initial drops merge permanently to maintain a stable spherical
shape. This type of collision is called “coalescence collision.”

Figure 7 shows the change in air pressure during the ap-
proach of liquid drops. As the two drops gradually move
toward each other, the air pressure in the gap increases accord-
ingly and reaches an extreme value at the minimum distance

FIG. 5. Comparison of separation collision (We = 53, x = 0.38)
between SPH simulation (top) and experiment (bottom) [9].

FIG. 6. Coalescence collision of equal-size drops at We = 3 and
x = 0.

between the drops. This phenomenon is consistent with the
qualitative inference in the Introduction of this paper.

Figure 8 shows the evolution of pressure distribution in
liquid drops during contact and deformation. As shown in
Fig. 9(a), when two drops are in contact, the maximum pres-
sure appears near the contact point due to extrusion at the im-
pact area. From Figs. 8(b)–8(d), it can be seen that as the ex-
trusion area extends on the symmetry plane of impact, the
high-pressure area between the two drops also continues to
expand, and the maximum pressure gradually shifts to the
position with the maximum curvature at the upper and lower
ends of the coalescing drop on the contact plane. When the
two drops are completely coalesced, the maximum pressure
inside is also transferred to the edge with large curvature. As
shown in Figs. 8(e)–8(h), this area then expands to the indirect
impact area on the left and right sides.

C. Reflexive separation

For the cases of head-on collision of two liquid drops,
when the Weber number increases and exceeds a certain crit-
ical value, the coalesced drop will separate and generate two
independent subdrops.

FIG. 7. Evolution of the nearby air pressure during the approach
of liquid drops (We = 3, x = 0).
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FIG. 8. Evolution of pressure inside the liquid drop(s) during
impact (We = 3, x = 0).

Reflexive separation is one of the subclasses of separation
collision, which can also be said to be a special case of
coalescence collision. In this type of collision, the motion
of the inner part of the coalesced drop is similar to that in
coalescence collision, but the intensity is increased. Due to the
strengthening of the reflexive action, the mass of the coalesced
drop is concentrated at both ends, forming a dumbbell-shaped
liquid column, and finally pulling apart and separating into
two subdrops. During the whole process, there is very little
mass exchange on both sides of the collision system; that is,
the composition of the subdrops is almost the same as that of
the initial drops on the same side before the collision.

At the last stage before separation, because of the effect
of surface tension and the movement of liquid, the radius of
the connecting part of the liquid column gradually shrinks,
forming an obvious necking band. The formation and fracture
mechanisms of this necking band are one of the core issues
in the study of separation collision. The pressure evolution in
this process is shown in Fig. 9.

It can be seen from the figure that when the coalesced
drop is about to separate, the pressure at the necking zone
increases significantly, and the capillary potential energy of
the system reaches a maximum, which is consistent with the
“end-pinching” theory proposed by Stone et al. [40]. Then the
necking band breaks instantaneously, and the pressure propa-
gates rapidly to both sides in opposite directions (this is also
proved by the instantaneous loss of pressure of the residual
particles between the two subdrops). During this process, the
capillary potential energy accumulated in the necking zone
provides kinetic energy for the split subdrops to move away
from each other, and causes significant fluctuations on the
surface. This part of the energy is gradually dissipated with

FIG. 9. Evolution of pressure at the moment of separation (We =
30, x = 0).

FIG. 10. Evolution of pressure during the recoalescence of satel-
lite drops (We = 119, x = 0).

the internal viscous flow of subdrops, and the oscillation is
also attenuated.

As the Weber number continues to increase, the coalesced
drop generated by impact elongates significantly, forming a
narrower and longer liquid column. When the Weber num-
ber reaches a certain critical value, a “satellite” drop with
mixed mass is formed between the previous two subdrops.
The satellite drop has no regular shape at the beginning of
its generation, and only becomes stably circular after a long
period of oscillation. If the Weber number increases further,
the volume of the satellite drop will continue to increase and
gradually exceed the primary drops on both sides, presenting
more violent oscillations. When the intensity of the internal
flow exceeds the limit that the surface tension can withstand,
the satellite drop will continue to split from the sides to the
center, generating multiple smaller subdrops. In this case, the
satellite drops are still arranged roughly along a straight line,
while the amount increases with the increase of the Weber
number.

At higher Weber numbers, the recoalescence of closely
adjacent satellite drops disconnected from the coalesced liq-
uid column is observed. Compared with the primary drops
and other satellites, the satellite drops near the middle have
little remaining kinetic energy when they break away from
the liquid column, and the relative motion between them is
very weak. At this point, the adjacent satellite drops may make
contact again and recombine. Due to the extremely low speed
upon contact, coalescence occurs slowly under the control of
intermolecular forces [11]. When the smallest gap between
the drop interfaces reaches the range of molecular interactions
(usually of the order of 102 Å) [41], the gas film in the middle
is discharged, and the drops come into contact, forming a long
coalesced drop. Subsequently, the drop is pulled into a sphere
by surface tension, essentially without oscillations. The pres-
sure distribution inside the drops during this process is shown
in Fig. 10. It can be seen that the pressure gradient inside
the drops is significantly smaller than that at the moment of
previously mentioned impact, and the pressure distribution
presents a gradual characteristic, which quickly returns to the
normal level.

To be distinguished from the aforementioned coalescence
collision (designated “hard collision”), this situation is also
referred to as “soft collision” [42], or “coalescence after mi-
nor deformation.” In hard collision, the gas film between the
drop interfaces is squeezed out forcibly, and the facing region
of both drops is significantly deformed. Coalescence occurs
when the impact inertia is sufficient to overcome both the
viscous loss caused by drop deformation and the gas resis-
tance in the gap, so in this case, the coalescence behavior
is mainly induced by the initial kinetic energy of the drops.
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However, in soft collision, the drops’ approach speed is low,
the gas film has enough time to slowly release, and the drops’
shape does not change dramatically. According to the analysis
of previous experimental works about soft collision [11], the
contact and the following combination of drops are mainly
related to intermolecular effects.

When the liquid drops’ approach rate is between the above
two states, there is an intermediate state whose initial kinetic
energy is sufficient to rapidly squeeze the gas film, creating
a large resistance and causing significant deformation of the
drops, but it is unable to further compress the gas film to
achieve contact. In this process, the kinetic energy is first fully
converted into capillary potential energy with a small amount
of dissipation, and then converted back into kinetic energy,
resulting in drop rebound. This collision mode has also been
confirmed in some experimental works [11,42,43].

However, due to the relatively high surface tension and
low viscosity, water drops are usually less deformed with less
viscous dissipation than other materials such as hydrocarbons,
and thus are more prone to coalesce, especially in collisions
with lower Weber numbers. Therefore, as mentioned in the
Introduction, bouncing collision is unlikely to occur in the
binary collision of water drops at 1 atm pressure without artifi-
cially controlling gas density [11]. Another result that follows
is that although the two types of coalescence collision based
on soft and hard collision have different physical mechanisms,
it is difficult to determine the boundaries of their influencing
factors through intuitive collision phenomena. However, the
soft collision can be easily identified in the recoalescence
phenomenon of reflexively separated satellite drops, because
there is theoretically no strong opposite motion between sub-
drops, which means that the gas film in the gap cannot be
compressed sharply.

It is worth mentioning that such drop coalescence is usu-
ally difficult to simulate with traditional numerical methods.
For those grid based methods coupled with interface captur-
ing technology, the identification of merging surfaces usually
meets difficulty at lower Weber numbers. As a possible
consequence, the coalescence after minor deformation is erro-
neously represented as bouncing collision; that is, the impact
inertia cannot overcome the gas film resistance [44]. For the
SPH method, since all the objects are described by different
sets of material particles possessing physical properties, the
interacting regions are formed naturally, so the destruction and
regeneration of interfaces can be better reflected.

D. Stretching separation

Taking the off-center collision of water drops as an exam-
ple, consider the cases where the impact parameter x �= 0. Due
to the eccentricity between the two drops in the direction per-
pendicular to the relative velocity, only a portion of the mass
interacts upon impact, decelerating and spreading along the
tangent of the contact, while the rest is dominated by inertia
and has a tendency to stretch the coalesced drop along the
direction of initial velocity. Thus, the reflexive motion of the
coincident part is opposed to the facing motion of the nonco-
incident part, and the entire collision process can be regarded
as the superposition of the two actions. In this situation, the

FIG. 11. Stretching separation collision of equal-size drops at
We = 53 and x = 0.8.

mass transfer between the two drops becomes more obvious,
with the flow inside the drops being more complicated.

It is conceivable that there is a critical point of “equal
strength” for the above two competing effects. In this range,
the residual kinetic energy is no greater than the surface en-
ergy of the coalesced drop. As the impact parameter continues
to increase, the effect of the opposite stretching motion will
gradually surpass that of the reflexive separating motion, and
thus it dominates the outcomes of collision. Separation occurs
when the residual kinetic energy exceeds the surface energy,
which is referred to as stretching separation. The typical pro-
cess of stretching separation collision is shown in Fig. 11. It
can be seen that the drop system has undergone significant
stretching deformation during the process, accompanied by
obvious mass migration inside. Finally, subdrops with mixed
masses are generated. The main masses of the two initial
drops exchange their positions after collision and move to
each other’s half area, respectively.

In stretching separation collision, the effective kinetic en-
ergy comes from the inertial motion of the nonoverlapping
part and the tangential motion of the overlapping parts along
the contact plane. It is commonly recognized that the effective
kinetic energy overcomes the surface energy of the interact-
ing region, which leads to the final separation. However, by
further investigating the evolution of drop morphology and
velocity distribution during the process, we found that the
entire system has actually experienced quite complex varia-
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FIG. 12. Evolution of horizontal velocity distribution in stretch-
ing separation (We = 53, x = 0.8).

tions. Figure 12 shows the distribution and evolution of the
horizontal velocity of the drops during the stretching and
separation process.

The first column of Fig. 12 shows the process from the
impact of the drops to the moment before separation. At the
moment of contact, a region with zero velocity is formed
between two opposing drops, which can be seen as the result
of the counterbalance between the reflexive movement and
the stretching movement of the drop system. Subsequently,
the noncoincident parts of the system maintain the original
state of motion under the action of inertia, pulling the co-
alesced drop to stretch and deform on both sides, while a
necking band is formed in the middle. Meantime, the static
area also continues to elongate under the action of stretching,
with the affected area gradually expanding. Being dragged
by the central part, both ends of the coalesced liquid column
experience a continuous decrease in velocity, which means
that the remaining kinetic energy of the noncoincident parts
of the drop system is being transformed into the increment of
capillary potential energy. It is worth mentioning that not only
the mass connected to the necking band is dragged, but the
liquid at both ends of the liquid column is also decelerated
under the action of local surface tension.

It is noted that due to the nonaxisymmetric nature of the
drop system, the separating motion at both ends of the liquid
column is not uniformly restrained. The liquid on the exten-
sion line of the necking zone has a greater decline in kinetic
energy, while the other parts still maintain a relatively high
velocity. These high-speed liquids pull the coalesced liquid
column to further stretch and gradually occupy the positions
at both ends of the liquid column.

In the collision experiments performed on tetrad cane
droplets by Qian and Law [11], the overall rotation of the

coalesced drop was also observed. From the numerical simu-
lation in the present paper, we can determine with confidence
that this rotational motion occurs after the first stretching of
the coalesced drop. Before extending to the maximum length,
both ends of the coalesced column maintain translational mo-
tion, and the subsequent angular velocity is imparted by the
tension of the necking band. As can be seen from Fig. 12,
this asymmetrical tension acts more on the inner side of the
coalesced system, thus shortening the liquid column in the
length direction on the one hand, and producing a rotational
motion on the other hand.

The process after separation is shown in the second column
of Fig. 12. When the necking band breaks, the tips of the two
subdrops rapidly rebound and collapse into tail ends with high
kinetic energy. Meanwhile, with the air resistance ignored,
the local speed at the far ends of the subdrops continues to
decrease since the overall total momentum remains basically
unchanged. When the tips are fully contracted, the velocity
in these areas has almost dropped to 0. Then, the tail ends
with relatively higher speed push the subdrops to continue
moving oppositely along their initial directions. After that,
although the drop system maintains approximately transla-
tional motion, and the internal liquid composition still has a
relatively stable distribution, its deformation and oscillation
are not completely symmetrical. It can be observed that on
top of the reciprocating oscillations of the overall drop shape
in mutually orthogonal directions, a surface wave propagating
in the counterclockwise direction is superimposed, and the
curvature increases as it passes. This rotational motion is also
caused by the nonuniformity of the system mentioned above.
Compared with the overall rotation of the coalesced column
mentioned above, here the motion occurs mainly on the sur-
face of subdrops. Under the effects of large-scale deformation
and oscillation, the speed of the drops decreases sharply.

Looking back at the entire stretching separation process,
we can clearly see the path of energy conversion. After impact,
the remaining kinetic energy of the initial drops is first trans-
formed into the capillary potential energy of the coalesced
system. With the fracture and contraction of the necking band,
the capillary potential energy returns kinetic energy to the
separated drops. In the end, the kinetic energy of drops is
continuously dissipated along with the oscillation, and the
system tends to be stable.

E. Phase diagram

Figure 13(a) shows the regimes of drop collision obtained
from numerical simulations compared with experiments from
the literature. The range of Weber numbers in the numerical
simulation is 3 � We � 120, and the range of impact pa-
rameter is 0 � x � 0.8 . The curves are obtained from the
analytical models provided by Ashgriz and Poo [9], which
are in good agreement with the experimental results and
are widely adopted as a reference. The experimental results
for equal-size water drop collisions under the same condi-
tions are shown in Figs. 13(b) and 13(c). Compared with
the experimental results, the present numerical simulations
have some difficulty in identifying the coalescence collision
with the impact parameter lying between the two collision-
mode boundaries at Weber numbers higher than 20. This is
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FIG. 13. Regime diagram of equal-size drop collision: (a) obtained from numerical simulation with the present SPH method, (b) reproduced
from experiments by Ashgriz and Poo [9], and (c) reproduced from experiments by Rabe et al. [45].

mainly due to the higher ratio of the internal flow kinetic
energy to the surface energy of the nominal spherical drop
in two-dimensional simulations, which makes it easier for the
coalesced drop to separate.

IV. BINARY COLLISION OF UNEQUAL-SIZE DROPS

Although the binary collision of equal-size drops plays a
rather basic part in research, it is very rare see it in reality.
In order to obtain a deeper understanding of the physics in
drop collision problems, it is quite necessary to investigate the
collision of unequal-size drops. In such problems, our primary
concern is undoubtedly the variation law of the collision phe-
nomenon with the drop diameter ratio, which is the starting
point of this section.

Compared with equal-size drops, one of the significant
features of unequal-size drop collisions is that there are parts
in the system that do not directly participate in the collision.
These liquids have a tendency to maintain the original state of
motion and thus have a significant pulling effect on the mass
of other parts. In addition, the pressure asymmetry on the two
sides of the drop system due to different curvatures will lead

to additional flow along the axis, increasing the complexity of
the phenomenon.

A. Coalescence collision

The head-on collision of drops with a diameter ratio of 0.5
at We = 30 is shown in Fig. 14. A translation of the whole
system is observed, which shares the same direction with the
initial velocity of the larger drop. Looking back at Fig. 13,it
can be seen that under the current Weber number of 30, the
equal-size drops have undergone reflexive separation, while
the unequal-size drops still remain coalesced. In this situa-
tion, the kinetic energy injected by the smaller drop into the
larger one is not enough to break the limit of overall surface
tension, which is consistent with our intuitive impression. It
can be concluded from this phenomenon that two drops of
different sizes are more difficult to separate after collision, so
a higher Weber number is usually required for the occurrence
of separation collision.

It is also observed that the coalesced drop generated by
unequal-size drops has relatively slower oscillation. This is
mainly caused by the additional inertial force introduced by
the larger drop, since the oscillation period of the coalesced
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FIG. 14. Coalescence collision of unequal-size drops with � =
0.5 (We = 30, x = 0).

drop is negatively related to the inertial force. In the initial
stage of collision, the velocity of the smaller drop decreases
more significantly, as shown in Fig. 15. As the drop diameter
ratio increases, the stagnation point of liquid flow shifts to the
side of the smaller drop. For the cases with larger differences
in drop size, as shown in Figs. 15(b) and 15(c), the stagnation
point is almost completely located in the small drop.

For the collision of unequal-size drops, the coalesced body
formed after contact no longer expands into a symmetrical
disk shape on the impact plane, but a “bowl” shape recessed to
one side. This phenomenon starts with the liquid splash at the
vicinity of the contact point, as shown in Fig. 16. It can be seen
in the figure that the splashed liquid comes from both of the
two drops, which indicates two related actions that are almost
equally important. On the one hand, the directly impacted part
in the larger drop changes its original trajectory and deflects to
both sides of the stagnation point. On the other hand, the edge

FIG. 15. Evolution of velocity distribution in drop systems with
different diameter ratios (We = 30, x = 0).

FIG. 16. Distribution of velocity vectors at the impact area
(We = 30, � = 0.25).

part of the smaller drop obtains a reverse movement due to the
impact of the opposite part of the larger drop. The above two
parts converge and extend along the interface of two drops
to the outside of the overall envelope, forming a splashing
phenomenon.

Subsequently, the liquid in the smaller drop merges into
the coalesced drop and expands to both sides, while the unim-
peached part of the larger drop tends to maintain its original
state of motion. The splashing phenomenon is thus intensified,
and gradually develops from local flow to the bending of the
whole coalesced drop, as shown in Fig. 17.

The above bending phenomenon results in a special os-
cillation mode. In these circumstances, the coalesced drop
not only oscillates alternately along two mutually orthogonal
directions, but also shows mass flow back and forth between
both ends of the drop along the axis. This process is shown
in Fig. 18. The energy comes from the kinetic energy of
the nonimpacting part of the larger drop, which is gradually
dissipated with the round trips of the liquid.

B. Separation collision

In the separation collision of unequal-size drops, many
phenomena, such as the formation and evolution of satellite
drops, are very similar to those in the collision of equal-
size drops. However, for the cases where only two subdrops
are generated, we can often observe the unique phenomenon
where the drop diameter ratio changes after collision. The
redistribution of mass usually causes significant changes in
the morphology of drop systems, especially in spray fields
containing a large number of drops.

Experiments have proved that the reflexive separation col-
lision of unequal-size drops usually leads to the uniformity
of drop mass in the system; that is, the volume difference

FIG. 17. Coalescence process of unequal-size drops (We = 30,
� = 0.25).

025302-11



XINSHUO ZHANG AND XIUFENG YANG PHYSICAL REVIEW E 108, 025302 (2023)

FIG. 18. Shape development of coalesced drop (We = 30, � =
0.5).

between two drops decreases after collision. However, in
stretching separation collision, results of both increased or
decreased mass difference may occur [9]. That means the
physical mechanisms controlling the two collision modes
should not be exactly the same.

The separation collision of unequal-size drops can often
reflect the antagonism of two opposing effects. One is the
same for reflexive and stretching separation collisions, which
is called “drop drainage.” As shown in Fig. 19, this is a
phenomenon in quasistatic flows. When two drops of different
sizes come into contact and form a connected area, there is an
additional pressure difference at both ends of the coalesced
drop due to different surface curvatures, which leads to a
tendency of liquid to flow from the smaller drop to the larger
one. From the energy point of view, this flow will reduce the
capillary potential energy of the system, thereby gradually
stabilizing.

In reflexive separation, the other antagonistic effect is the
axial mass movement mentioned in Sec. IV A. Since two
drops collide head on (or nearly head on) at a relatively
high speed in this situation, the smaller drop only main-
tains its shape and curvature for a very short time, and soon
merges into the coalesced body. Therefore, the quasistatic
drop drainage effect does not have enough time to fully take
effect. In contrast, the phenomenon of axial mass transfer is a
dynamic effect and thus plays a more critical role. After the
coalesced drop is formed, this action transports an amount of
liquid to one end of the original smaller drop, resulting in an
increase in the volume of the smaller subdrop after reflexive
separation, that is, “carrying away” some mass from the larger
drop. As a consequence, the drop system is homogenized to
a certain extent. The above discussion is consistent with the
outcomes observed in previous experiments.

For stretching separation, the other dominating effect is
different, called “drop stretching.” This effect, which refers
to the mutual cutting action of drops when eccentric collision
occurs, also exists in collisions of equal-size drops, but for two
drops of different sizes, the cutting effect of each drop is not
equal due to the geometric asymmetry of the collision system.
A comparison is shown in Fig. 20. As can be seen from
Fig. 20(b), the mass lost by the smaller drop is significantly
less than the mass it gains from the larger drop. In other words,

FIG. 19. Schematic diagram of drop drainage effect.

FIG. 20. Comparison between the cutting effects of equal-size
and unequal-size drops (in velocity vectors).

more liquid in the larger drop is “cut” away and becomes part
of the smaller subdrop.

In stretching separation, only some parts of the two drops
come into contact, so their geometrical shapes and edge cur-
vatures can be maintained for a relatively long time. In this
situation, both the effects of “drop drainage” and drop stretch-
ing are very significant, and thus their relative strength will
determine the diameter ratio of the generated subdrops. The
drop drainage effect helps to expand the size difference of the
subdrops, while the drop stretching effect works oppositely.
For collision systems with their initial drop diameter ratio
determined, the strength of the two effects is related to the
impact parameter and Weber number.

With the increase of impact parameter, the geometric cen-
ters of two drops become farther apart. As a result, the smaller
drop will cut off less mass of the larger drop, and the drop
stretching effect will be weakened. As shown in Fig. 21,
the size of the smaller subdrop is negatively correlated with
the impact parameter. In addition, as the impact parameter
increases, the mixing degree of the two drops is also reduced,
indicating that the cutting effect is weakening.

With the increase of Weber number, the drop system has a
higher relative speed and a shorter contact time. As a result,
the mass transfer caused by the pressure difference between
both ends cannot be fully carried out, and thus the drop
drainage effect is weakened.

It can be deduced that the sizes of the subdrops should be
more similar, which has been proved by previous experiments
[9]. However, we found that this pattern is not absolute. In
fact, due to the intense flow under higher Weber numbers,
the coalesced body deforms rapidly. Some liquid may break
through the limit of the surface tension locally and fracture
before the cutting action is completed, so a series of subdrops
with smaller volume and higher degree of fragmentation is
often observed, as shown in Fig. 22. This phenomenon usually
occurs when the size difference of the initial drops is not

FIG. 21. Comparison of the subdrop sizes of stretching separa-
tion under different impact parameters (We = 43, � = 0.5).
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FIG. 22. Comparison of the subdrop sizes of stretching separa-
tion under different Weber numbers (� = 0.5, x = 0.4).

too small and the impact parameter is not too large. In this
situation, most of the mass of the smaller drop is involved in
the impact, and the generated subdrops can also be regarded
as a result of the resplit of the coalesced drop.

V. CONCLUSIONS

In this paper, the binary collision problem of water drops
in air is numerically simulated by the SPH-ASR method.
The simulation outcomes are compared with experimental
results. The agreement between the numerical and experimen-
tal results indicates that the SPH-ASR method presented in
this paper is suitable for the simulation of the drop collision
problem.

Using the SPH-ASR method, a number of numerical simu-
lations were performed to study the collision of binary drops.
The collision of two equal-size drops was studied with the
focus on the specific phenomena, evolution patterns, and
physical principles. It is demonstrated that there are three
basic collision modes in the binary collision of equal-size
drops within the range of Weber number 3 � We � 120 and
impact parameter 0 � x � 0.8: coalescence, reflexive sepa-
ration, and stretching separation. For coalescence collision,
the variation of air pressure and liquid pressure in the sys-
tem was intensively investigated. For reflexive separation, the
necking process, being a symbol of separation, was depicted
in full steps, which supports the end-pinching theory on the

formation and fracture process of the necking band proposed
in the literature [40]. With the evolution of pressure distribu-
tion, the propagation of the surface wave was shown clearly.
At higher Weber numbers, the recoalescence of satellite drops
was investigated as a good supplement to the regimes of coa-
lescence collision. It is proved that the SPH-ASR method has
obvious advantages in simulating the evolution of interfaces.
For stretching separation, the morphological and kinematic
processes of the drops were described in detail, which indi-
cated the path of energy conversion in the collision system.
By analyzing the velocity distribution and evolution of the
collision system, the rotational motion of the subdrops after
separation is discovered, and the differences in phenomenon
and principle between this rotation and the overall rotation
observed in Qian and Law’s experiments [11] are expounded.

The collision of two drops with different sizes is also stud-
ied. The effects of the three dimensionless numbers, namely,
the drop diameter ratio, Weber number, and impact parameter,
on collision outcomes are studied. In particular, the physical
mechanisms of some special phenomena are explained, espe-
cially the oscillation pattern of coalescence collision and the
mass transfer in separation collision. It is shown by numerical
simulation that there are two main roots for those special phe-
nomena: (a) the geometric asymmetry of the drop system, that
is, the quasistatic flow caused by the irregularity in the shape
of the system, which is typically manifested by the additional
pressure difference caused by different surface curvatures; and
(b) the motion asymmetry of the drop system, that is, the
motion tendency caused by the unequal motion properties of
different parts of the system, which is typically manifested
by the spillover kinetic energy of the nonimpact part of the
larger drop. In addition, there are some influencing factors
that reflect the above two points at the same time, such as
the drop stretching effect. Sometimes, both of the above two
points work at the same time, as seen in the drop stretching
effect.
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