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Variational quantitative phase-field modeling of nonisothermal sintering process
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Phase-field modeling has become a powerful tool in describing the complex pore-structure evolution and the
intricate multiphysics in nonisothermal sintering processes. However, the quantitative validity of conventional
variational phase-field models involving diffusive processes is a challenge. Artificial interface effects, like the
trapping effects, may originate at the interface when the kinetic properties of two opposing phases are different.
On the other hand, models with prescribed antitrapping terms do not necessarily guarantee the thermodynamics
variational nature of the model. This issue has been solved for liquid-solid interfaces via the development
of the variational quantitative solidification phase-field model. However, there is no related work addressing
the interfaces in nonisothermal sintering, where the free surfaces between the solid phase and surrounding
pore regions exhibit strong asymmetry of mass and thermal properties. Also, additional challenges arise due
to the conserved order parameter describing the free surfaces. In this work, we present a variational and
quantitative phase-field model for nonisothermal sintering processes. The model is derived via an extended
nondiagonal phase-field model. The model evolution equations have naturally cross-coupling terms between
the conserved kinetics (i.e., mass and thermal transfer) and the nonconserved one (grain growth). These terms
are shown via asymptotic analysis to be instrumental in ensuring the elimination of interface artifacts, while
also examined to not modify the thermodynamic equilibrium condition (characterized by a dihedral angle).
Moreover, we demonstrate that the trapping effects and the existence of surface diffusion in conservation laws are
direction-dependent. An anisotropic interpolation scheme of the kinetic mobilities that differentiates between the
normal and tangential directions along the interface is discussed. Numerically, we demonstrate the importance
of the cross-couplings and the anisotropic interpolation by presenting thermal-microstructural evolutions.
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I. INTRODUCTION

Sintering is a typical densification technique in thermal
processing of bulk materials from packed powders [1–3].
At present, many new techniques based on sintering have
been proposed and broadly applied in the industry, where
the thermal bonding effect is introduced by treatments other
than direct heating, such as laser scan, electrical current, and
electromagnetic field [3–6]. These techniques are collectively
termed “unconventional” sintering [7,8]. Due to the distinct
heating mechanisms among unconventional sintering tech-
niques, the effects of nonisothermal factors on the properties
of products, such as the heating/cooling rate and temperature
inhomogeneity, have gained increasing attention alongside
those of conventional techniques such as the chemical com-
position as well as the size of powders, atmosphere, and
pressure.

Therefore, it is essential to identify and understand the
physical effects and interactions of these factors in the con-
text of bridging the process parameters, microstructure, and
properties of the materials to further tailor the performance
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for applications of interest. Two major types of interfaces are
essential for the sintering process, namely the free surface
between pore and substance, and the grain boundary be-
tween adjacent crystal grains. There are analytical models for
describing the evolution of pores/grains, the two-particle coa-
lescence model [9,10], the dodeca-/tetrakaidecahedron grain
model [11], and various models treating the pores/grains
through assumed geometries such as spheres or cylinders
[12,13]. Nevertheless, complex grain/pore geometry and en-
tangled multiple physics during sintering exceeds the capacity
of these models.

For such purposes, phase-field modeling and simulation
are promising. In the conventional variational phase-field
theory, order parameters (OPs) are applied to represent the
spatiotemporal distribution of microstructure, i.e., pores and
grain orientations in the case of sintering. The thermody-
namic potential of the microstructure can then be formulated
by an energy functional with respect to the OPs, including
the interface contribution through the corresponding gradi-
ent terms of OPs. From nonequilibrium thermodynamics,
the evolution equations of the OPs can be derived on the
basis of the variational theory. It circumvents the neces-
sity of interface tracking. There are variational phase-field
sintering models considering an isothermal scenario. For in-
stance, Kazaryan et al. [14] and Wang [15] proposed a line
of a phase-field model, which was used later for studying
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two-particle necking and coalescence [16–22] and densifica-
tion of a porous microstructure [17,23], and in simulating the
overall microstructure evolution of the particle aggregation
[24] or particle stack [15,25]. Rigid-body motions were also
incorporated within the model [15,20,21,25]. Furthermore,
a phase-field sintering model adopting the grand potential
concept was also developed [26,27]. To simulate the sintering
process under a highly heterogeneous thermal environment,
the phase-field sintering model coupled with transient heat
and/or chemical diffusion simulations are needed. The phase-
field approach allows such a consideration through additive
inclusion of the energy contributions by the related physical
fields, such as temperature or chemical concentration. In our
previous work [28], a variational nonisothermal phase-field
sintering model was proposed, which was applied for sim-
ulations of the selective laser sintering on single-layer and
multilayer [29] powder beds, and for sintering under a pre-
scribed high-temperature gradient [8].

On the other hand, one theoretical issue of the con-
ventional variational phase-field models involving the
thermal/chemical diffusive process is the quantitative validity.
Artificial interface effects may originate from violation of
conservation laws and discontinuity of the chemical/thermal
potentials at the interface (trapping effects) [30,31]. These
interface effects scale with the interface width. Theoretically,
via asymptotic analysis, phase-field models should be re-
duced to their associated free-boundary problems in order
to ensure their quantitative validity. Based on thin-interface
limit analysis, Karma and Rappel [32,33] first published a
quantitative phase-field model for the solidification of pure
materials with equal diffusivities in the solid and liquid
phases. Moreover, by introducing an antitrapping term in the
diffusion flux equation in order to eliminate the trapping ef-
fect, Karma [34] presented a quantitative model for the case of
isothermal solidification of alloys with negligible diffusivity
in the solid phase. Furthermore, for the case with arbitrar-
ily different diffusivities in opposing phases, corresponding
antitrapping terms have also been proposed for isothermal
[35] and nonisothermal consideration [36]. Thereby, a new pa-
rameter relating the interface velocity and diffusion flux was
further introduced to ensure full elimination of all interface
artifacts.

It should be noted that modifying a variationally de-
rived evolution equation by prescribed antitrapping terms
does not necessarily guarantee the variational nature of the
model, which is, however, important for thermodynamics
soundness. Therefore, there have been efforts to develop
variational formulations of quantitative phase-field models.
Using phenomenological linear relations, variational formula-
tion of quantitative phase-field models has been developed by
considering kinetic cross-coupling between the conserved dif-
fusion fields and the nonconserved OPs (nondiagonal model)
[37–40]. Time evolution equations of the models then exhibit
cross-coupling kinetic terms that are formulated in a similar
fashion due to Onsager’s symmetry. Furthermore, the param-
eters of these coupling terms are explicitly formulated in
terms of the model parameters by considering the relations be-
tween the models and their sharp-interface counterparts. The
cross-coupling term in the diffusion equations, which can
be likened to the antitrapping term alongside the coupling

term in the phase-field evolution equations, has been noted to
enable full elimination of artificial interface effects [40,41].
The nondiagonal model has been employed to investigate
quantitative phase-field simulations of dendritic growth [42]
and to examine quantitative simulations of eutectic and eu-
tectoid transformations [43] in which the necessity of the
cross-coupling terms was substantiated in both instances.

By separately considering the thermodynamic quantities
of two opposing phases and then treating the interface as
a mixture of the phases (two-phase variational approach),
Ohno et al. [44,45] presented quantitative variational phase-
field models for binary alloy solidification with two-sided
diffusion. In the two-phase formulation, the diffusion field
mixture laws are ensured at the interface as constraints im-
plemented by the Lagrange multiplier approach, and the flux
fields of each single-phase field are formulated variationally.
The emergence of Lagrange multipliers in the thermody-
namic potential formulation gives rise to cross-coupling terms
in the model time evolution equations that serve to elimi-
nate the artificial interface effects. Additionally, the necessity
of an anisotropic interpolation of the diffusivity (different
interpolations for the normal and the tangential directions
across the diffuse interface) is demonstrated in eliminating the
anomalous interface effects. Though the two-phase variational
approach is promising for the study of quantitative validity,
the variational nature of the model is only implicitly imple-
mented through variationally formulated single-phase fluxes.
The variational behavior of the final model after inserting the
Lagrange multiplier still needs to be examined. Moreover,
due to the assumptions of a negligible temperature jump or
a chemical potential jump across the diffuse interface, the
models in Refs. [44,45] are applicable mostly for slow solidi-
fication processes.

Based on a literature review, there is currently no vari-
ational quantitative phase-field model for nonisothermal
sintering. In comparison to the nonisothermal solidification
models with nonconserved OPs, an additional challenge can
be expected due to the conserved OPs involved here. In this
work, we derive a variational formulation of a quantitative
phase-field model for nonisothermal sintering processes in
which the free surfaces between the solid phase and the sur-
rounding atmosphere/pore regions have strong asymmetry of
both mass and thermal properties. The model is derived via
an extension of the nondiagonal phase-field model. Differ-
ent from the conventional variational nonisothermal sintering
phase-field models, the derived model contains cross-coupling
terms in the diffusion and phase-field evolution equations,
which are essential to ensure the quantitative validity of the
model. Furthermore, we demonstrate that the existence of
the trapping effects and the presence of surface diffusion in
conservation laws are direction-dependent. This highlights the
need for an anisotropic interpolation of the diffusivity tensor.

The paper is structured as follows. The formulations of
the quantitative model (denoted as the “quantitative model”
hereafter) are derived in Sec. II, where the entropy func-
tional and time evolution equations are explicitly given. A
sharp-interface description across solid free surfaces is briefly
explained in Sec. III. Afterwards, a linkage between model
parameters and sharp-interface equations using a reduction
procedure is demonstrated in Sec. IV. Section V shows the
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verification and importance of the quantitative model followed
by a comparison with the nonisothermal sintering model pro-
posed in our former work (denoted as the “existing model”
hereafter). Conclusions are presented in Sec. VI.

II. MODEL FORMULATION

Underlying physical processes involved in nonisothermal
sintering can be classified as, but not limited to, (a) the
mass/heat transport, including diffusion through sorts of paths
(volume, surface, and grain boundaries) and mass flows (vis-
cous or fluid flow); (b) the structural relaxation, including the
rigid-body motions of powders and interface (mostly the grain
boundaries) migration. All underlying interactive processes
collectively lead to two significant phenomena: one is the
densification (eliminating the pores), in which the total surface
energy should be reduced; the other is the grain coarsening,
in which the total grain-boundary energy should decrease
[1,2,46]. In the following, we then present a framework for
deriving the nonisothermal variational quantitative phase-field
sintering model, with its quantitative validity engendered by
asymptotic analysis.

A. Entropy and free-energy functionals

In this model, a conserved OP ρ denoting the solid den-
sity fraction is used to indicate the solid region (ρ = 1) and
the atmosphere/pores region (ρ = 0) while a series of non-
conserved OPs {ηi} are used to represent the different grain
orientations of the solid grains. Considering a nonisothermal
scenario, the entropy functional S for a subdomain � within
the sintering system is defined as

S(e, ρ, {ηi}) =
∫

�

[
s(e, ρ, {ηi}) − κρ

2
|∇ρ|2

− κη

2

∑
i

|∇ηi|2
]

d�,

with

s = 1 + h(ρ)

2
sss(ess) + 1 − h(ρ)

2
sat (eat ) + scf(ρ, {ηi}), (1)

where s is the local entropy density, e is the internal energy
density, while κρ and κη are the gradient energy coefficients
associated with ρ and {ηi}, respectively. sss is the solid phase
bulk entropy density and is dependent on the internal energy
density of the solid ess. The bulk entropy density of the at-
mosphere sat is dependent on the internal energy density of
the atmosphere eat. h(ρ) = 2ρ − 1 is an interpolation func-
tion. The configurational entropy scf is related to the spatial
distribution of entropy density proportional to ρ and {ηi}. It is
formulated in the form of a Landau-type polynomial similar
to the one given by Ref. [15] as

scf(ρ, {ηi}) = Ccf[ρ
2(1 − ρ)2] + Dcf

[
ρ2 + 6(1 − ρ)

×
∑

i

η2
i − 4(2 − ρ)

∑
i

η3
i + 3

(∑
i

η2
i

)2]
,

(2)

where Ccf and Dcf are constants. The multiwell potential in
Eq. (2) can be seen to exhibit minimally at various regions
such as atmosphere (ρ = 0, {η1 = 0, . . . , ηn = 0}) and solid
grains at different orientations (ρ = 1, {η1 = 1, . . . , ηn =
0}), . . . , (ρ = 1, {η1 = 0, . . . , ηn = 1}). One advantage of
this potential form is that its constant parameters can be di-
rectly linked to material properties [17].

Assume e can be expressed as

e = 1 + h(ρ)

2
ess + 1 − h(ρ)

2
eat + ept(ρ, {ηi}), (3)

where ept accounts for the spatial distribution of the internal
energy proportional to ρ and {ηi} and is also formulated simi-
lar to scf as

ept(ρ, {ηi}) = Cpt[ρ
2(1 − ρ)2] + Dpt

[
ρ2 + 6(1 − ρ)

×
∑

i

η2
i − 4(2 − ρ)

∑
i

η3
i + 3

(∑
i

η2
i

)2]
,

(4)

where Cpt and Dpt are constants.
Following the Legendre transformation, we can obtain the

free-energy functional F as

F (T, ρ, {ηi}) =
∫

�

[
f (T, ρ, {ηi}) + T κρ

2
|∇ρ|2

+ T κη

2

∑
i

|∇ηi|2
]

d�, (5)

with

f (T, ρ, {ηi}) = 1 + h(ρ)

2
fss(T )

+ 1 − h(ρ)

2
fat (T ) + ept − T scf, (6)

where fss and fat are the free-energy densities of the solid
phase and the atmosphere, respectively, and T is the tempera-
ture. Substituting Eqs. (2) and (4) into Eq. (6), we obtain

f (T, ρ, {ηi}) = 1 + h(ρ)

2
fss(T ) + 1 − h(ρ)

2
fat (T )

+C[ρ2(1 − ρ)2] + D

[
ρ2 + 6(1 − ρ)

×
∑

i

η2
i − 4(2 − ρ)

∑
i

η3
i + 3

(∑
i

η2
i

)2]
,

(7)

with

C = Cpt − TCcf,

D = Dpt − T Dcf.
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B. Kinetic equations

Considering that ρ and e are conserved OPs, they satisfy
mass and energy conservation laws, respectively:

ρ̇ = −∇ · Jρ, (8)

ė = −∇ · Je, (9)

where Jρ is the mass diffusion flux and Je is the energy flux.
Following our previous work [8], the non-negative entropy

production σ in the subdomain can be formulated as

σ =
∫

�

[
Jρ · ∇ δS

δρ
+ Je · ∇ δS

δe
+

∑
i

η̇i
δS

δηi

]
d�, (10)

with

δS

δρ
= − 1

T

δF

δρ
,

δS

δηi
= − 1

T

δF

δηi
,

δS

δe
= 1

T
,

where ∇(δS/δρ ) is the driving force associated with Jρ ,
∇(δS/δe) is the driving force associated with Je, and δS/δηi

is the driving force associated with η̇i.
In view of the phenomenological linear laws of nonequi-

librium thermodynamics and also ensuring non-negative
production of the entropy, we can define the relationships
between the fluxes, the nonconserved OPs time evolution
equations, and their driving forces as

⎡
⎢⎢⎢⎢⎣

Jρ

Je

η̇1
...

η̇n

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Lρρ Lρe Lρη1 · · · Lρηn

Leρ Lee Leη1 · · · Leηn

Lη1ρ Lη1e Lη1η1 · · · Lη1ηn
...

...
...

. . .
...

Lηnρ Lηne Lηnη1 · · · Lηnηn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∇(
μ

T

)
∇(

1
T

)
δS
δη1

...
δS
δηn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(11)

where μ = δF/δρ is defined as the chemical potential and n
represents the total number of grain orientations. Lρρ , Lρe,
Leρ , and Lee are positively defined rank 2 tensors, and for i =
1, 2, . . . , n, Lρηi , Leηi , Lηiρ , and Lηi,e are positively defined
rank 1 tensors while Lηiηi is a positively defined rank 0 tensor.

Diagonal terms Lρρ and Lee are the diffusional mobilities
of mass and energy diffusion, respectively. The mobility term
associated with the grain orientations, Lηiηi , is simply a scalar
function and is thereafter taken as Lη where we assume an
isotropic condition taking it to be the same regardless of i.
The nondiagonal terms in the Onsager matrix in Eq. (11)
represent cross-couplings between the various OPs. Based on
the Onsager reciprocal relations, we have Lρe = Leρ , Lρηi =
Lηiρ , and Leηi = Lηie. Note that the cross-coupling between
the different grain orientations is not considered, resulting
in similar η̇i formulation for all i. Hence we consider only
one η̇i whose formulation is representative for all i. The
quantities Lρe and Leρ are associated with the mass flux due
to temperature gradient (thermophoresis effect) and with the
energy flux due to chemical potential gradient (Dufour effect),
respectively. Examination of these effects has been done in
our previous work [8] and is not the main priority of this work.
Therefore, the terms associated with Lρe and Leρ in the fluxes

formulations are dropped. The time evolution equations can
then be written as

ρ̇ = ∇ ·
[

Lρρ · ∇
(

μ

T

)]
+ ∇ ·

[
1

T

∑
i

Lρηi

δF

δηi

]
, (12a)

ė = ∇ ·
[

Lee · ∇T

T 2

]
+ ∇ ·

[
1

T

∑
i

Leηi

δF

δηi

]
, (12b)

η̇i = −Lηiρ · ∇
(

μ

T

)
− Lηi,e · ∇T

T 2
− Lη

1

T

δF

δηi
. (12c)

Formulations expressed in Eqs. (11) and (12) present the
fluxes and time evolution equations of the associated OPs in
terms of the driving forces. However, for consistency with
previous nondiagonal models [38,40] as well as ease of re-
lating our model to the sharp-interface counterpart, as will be
discussed later, we reformulate the phenomenological linear
relations employing the linear relations of the driving forces
in terms of the fluxes and time evolution equations such that

−∇
(μ

T

)
= L−1

ρρ · Jρ + L−1
ρηi

∑
i

η̇i, (13a)

−∇T

T 2
= L−1

ee · Je + L−1
eηi

∑
i

η̇i, (13b)

− 1

T

δF

δηi
= L−1

ηiρ
· Jρ + L−1

ηi,e · Je + L−1
η η̇i. (13c)

Since the variation of mass density and internal energy is
found across free surfaces of the solid grains, the cross-
coupling terms L−1

ρηi
= L−1

ηiρ
and L−1

eηi
= L−1

ηie should be defined
such that they are only evaluated at the free surfaces. Also, the
nonequilibrium effects associated with these cross terms scale
with the diffuse interface width l . Accordingly, following
Refs. [37,38,40], we propose the following formulations:

L−1
ρηi

= L−1
ηiρ

= M1(ρ)l∇ρ, (14a)

L−1
eηi

= L−1
ηie = M2(ρ)l∇ρ, (14b)

where M1 and M2 are scalar functions used to parametrize
the associated cross-coupling terms. l∇ρ is a vector normal
to the free surfaces and has a magnitude of 1 at the center
of the free surfaces assuming the parameter α used to adjust
the definition of l in Ref. [47] equals 2 [28]. Substituting
Eq. (13) into (10) and taking into account the aforementioned,
we obtain the entropy production in the subdomain as

σ =
∫

�

[
L−1

ρρ · Jρ · Jρ + L−1
ee · Je · Je + L−1

η

( ∑
i

η̇i

)2

+ 2l∇ρ
∑

i

η̇i · (M1Jρ + M2Je)

]
d�. (15)

Furthermore, time evolution equations can be obtained as

ρ̇ = ∇ ·
[

Lρρ ·
(

∇
(μ

T

)
+ M1l∇ρ

∑
i

η̇i

)]
, (16a)

crṪ + ∂e

∂ρ
ρ̇ +

∑
i

∂e

∂ηi
η̇i

= ∇ ·
[

Lee ·
(∇T

T 2
+ M2l∇ρ

∑
i

η̇i

)]
, (16b)
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L̂−1
η η̇i = κη∇2ηi − 1

T

∂ f

∂ηi
+ l∇ρ

·
[

M1Lρρ · ∇
(μ

T

)
+ M2Lee · ∇T

T 2

]
, (16c)

with

L̂−1
η = L−1

η − [M2
1 l2∇ρ · Lρρ + M2

2 l2∇ρ · Lee] · ∇ρ. (17)

Hereby cr = 1+h(ρ)
2 css + 1−h(ρ)

2 cat is the relative specific
heat, where css = ∂ess/∂T and cat = ∂eat/∂T are the volumet-
ric specific heat of solid and atmosphere, respectively.

Comparing the heat-transfer equation [Eq. (16b)] to that
of conventional quantitative phase-field model [36], the sec-
ond term on the right-hand side (RHS) can be likened to
the thermal antitrapping current related to the elimination
of thermal trapping (associated with temperature jump) at
the free surfaces. Similarly, the second term on the RHS of
Eq. (16a) represents some form of antitrapping current valued
only at the free surfaces. Similar to solutal antitrapping current
[34,48] associated with solute trapping due to a jump of chem-
ical potential, this term is termed as the mass antitrapping
current in this work. The last two terms on the RHS of the
grain orientation time evolution equations [Eq. (16c)] repre-
sent cross-coupling terms associated with mass and energy
diffusion across the free surfaces, respectively. These terms
alongside the antitrapping terms are absent in time evolution
equations of conventional nonisothermal phase-field sintering
models but are very vital in the elimination of artificial inter-
face effects such as the trapping effects at the free surfaces of
the solid phase.

Moreover, considering no variation of solid density and
thermal properties across the grain boundaries, Eq. (16c) has
no cross-coupling terms and simply takes a form of the Allen-
Cahn equation at the grain boundaries. Consequently, we limit
our subsequent analysis and derivations to the free surfaces
where the cross-coupling terms are significant.

III. SHARP-INTERFACE DESCRIPTION ACROSS
FREE SURFACES

Considering a simple nonisothermal system consisting of a
sharp free surface between a solid grain and the atmosphere,
the following set of sharp-interface equations can be described
in the bulk regions:

∂ρ

∂t
= ∇ · (Mrg∇μ), (18)

crg
∂T

∂t
= ∇ · (krg∇T ), (19)

where for a bulk region rg (“ss” for solid and “at” for atmo-
sphere), Mrg, crg, and krg represent the region’s effective-mass
mobility coefficient, volumetric specific heat, and effective
thermal conductivity, respectively. ρ here adopts the physical
meaning of normalized density of the solid. Equations (18)
and (19) describe mass and heat transfer in the bulk regions.
For the bulk atmosphere region in particular, Mat describes the
effective mobility considering mass transfer mechanisms, no-
tably evaporation and condensation. Hence, the driving force
∇μ for mass transfer in the atmosphere takes into account

vapor pressure differences due to local curvature [1,2]. Sim-
ilarly, kat describes effective thermal conductivity taking into
account convection and radiation.

Furthermore, the energy conservation condition at the free
surface can be described as

vess + kss ∇T |ss · nsf = veat + kat ∇T |at · nsf = JT , (20)

where v is the velocity of the migrating free surface, and
∇T |ss and ∇T |at are the spatial gradients of the temperature
at the solid and atmosphere sides of the free surface, respec-
tively. nsf is the unit vector normal to the free surface. JT is the
normal heat flux flowing through the free surface. Similarly,
explicit formulation of mass conservation at the free surface
is given as

v(ρss − ρat ) = − Mss ∇μ|ss · nsf + Mat ∇μ|at · nsf

+ Msf∇2
sfμ, (21)

where ρss and ρat are the bulk densities in the solid and
atmosphere, and ∇μ|ss and ∇μ|at are the spatial gradients of
the chemical potential at the solid and atmosphere sides of
the free surface, respectively. Msf represents surface diffusion
mobility. ∇2

sf is a surface Laplacian. The last term in Eq. (21)
describes surface diffusion typical of a sharp-interface de-
scription of mass transfer in sintering [18]. Moreover, v can
be defined as

v = vs + vb, (22)

where vs and vb are the velocities contributed by surface
diffusion and bulk/volume diffusion, respectively, and they
can be expressed in terms of their corresponding mass fluxes,

vs = −Vm∇sf · Jsf, vb = −VmJb · nsf, (23)

where Vm is the molar volume and ∇sf is the surface gradient.
Jsf is the mass flux along the free surface associated with the
surface gradient of the free surface curvature ksf; Jsf ∝ ∇sf ksf.
Jb is mass flux from the solid bulk to the free surface asso-
ciated with the gradient of the chemical potential in the solid
bulk grains μss; Jb ∝ ∇μss [18,49].

In addition, the chemical potential and temperature at the
free surface obey the following relations:

μ|ss = μ|at, (24a)

T |ss − T |at = JT Rs, (24b)

where μ|ss and μ|at represent chemical potentials at the solid
and atmosphere sides of the free surface, respectively. T |ss and
T |at represent the temperatures at the solid and atmosphere
sides of the free surface, respectively. Rs represents Kapitza-
type thermal resistance. In this work, we assume negligible
Rs, thereby Eqs. (24a) and (24b) indicate the imposed zero
chemical potential and temperature jumps at the free surface.

Moreover, we infer that the jump in chemical potential δμ

across the free surface is conjugated to v and also that the
temperature jump δT across the free surface is conjugated to
JT . The kinetic boundary conditions can then be expressed in
the framework of phenomenological linear relations as [50,51]

δμ = Av + BJT , (25)

δT = Bv + CJT , (26)
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FIG. 1. (a) Asymptotic schematic across a free surface; the blue solid line represents the phase-field profile at equilibrium, and the red
large-dashed line represents the sharp-interface profile; the blue dotted line shows the profile of ρ with slightly deviated values. (b) Asymptotic
schematic across a grain boundary; blue solid and dashed lines represent phase-field profiles, and red large-dashed and dotted lines represent
sharp-interface profiles.

where A, B, and C are kinetic coefficients of the positive-
definite Onsager matrix. Entropy production at the free
surface σs can be formulated as

σs = vδμ + JT δT . (27)

Substituting Eqs. (25) and (26) into (27), we obtain

σs = Av2 + CJ2
T + 2BvJT . (28)

IV. THIN INTERFACE LIMIT: LINKING MODEL
WITH SHARP-INTERFACE DESCRIPTION

In this section, still considering a system consisting of a
free surface between a solid grain and the atmosphere, we
establish the relationships between A, B, and C and the phase-
field parameters following the reduction procedure presented
in Ref. [38]. Considering a 1D system with the free surface
centered at x = 0 [shown in Fig. 1(a)], we have ρ and η

vary from a semifinite solid region (−∞) to a semifinite
atmosphere region (+∞). For simplicity, the notation (·)′ is
adopted to represent the derivative with respect to the spatial
coordinate x. It is worth noting that we consider the pro-
file of ρ between two bulk values that are slightly deviated
from the ideal ones, i.e., ρss in the substance and ρat in the
pore/atmosphere. The origin and the thermodynamic outcome
of these deviated bulk values of ρ are explicitly examined and
discussed in the Appendix.

According to the phase-field method, the entropy produc-
tion [Eq. (15)] for the system considered can be formulated as

σ =
∫ −l/2

−∞

[
J2
ρ (x)

Lss
ρρ

+ J2
e (x)

Lss
ee

]
dx +

∫ ∞

l/2

[
J2
ρ (x)

Lat
ρρ

+ J2
e (x)

Lat
ee

]
dx

+
∫ l/2

−l/2

[
J2
ρ (x)

Lρρ

+ J2
e (x)

Lee
+ L−1

η,sfη̇
2

+ 2lρ ′(x)η̇[M1Jρ (x) + M2Je(x)]

]
dx, (29)

where Lss
ρρ = Lρρ (ρ = ρss ) and Lat

ρρ = Lρρ (ρ = ρat ) are the
effective-mass mobilities in the corresponding regions. Also,
Lss

ee = Lee(ρ = ρss) and Lat
ee = Lee(ρ = ρat ) are the effective

energy mobilities in the corresponding regions. Lη,sf is the

mobility of η at the free surface. It can be noted that in the
bulk regions (|x| > l/2), only the fluxes Jρ (x) and Je(x)
contribute to entropy production as η̇ and ρ ′(x) both go to
zero. The entropy production of the system considered can be
formulated within the sharp-interface description as∫ 0

−∞

[
J2
ρ (x)

Lss
ρρ

+ J2
e (x)

Lss
ee

]
dx +

∫ ∞

0

[
J2
ρ (x)

Lat
ρρ

+ J2
e (x)

Lat
ee

]
dx + σs.

(30)

Comparing Eqs. (29) and (30), we obtain entropy produc-
tion at the free surface within the phase-field model as

σs =
∫ l/2

−l/2

[
J2
ρ (x)

Lρρ

+ J2
e (x)

Lee
+ L−1

η,sfη̇
2 + 2lρ ′(x)η̇(M1Jρ (x)

+ M2Je(x))

]
dx −

∫ 0

−l/2

[
J2

ss(ρ)

Lss
ρρ

+ J2
ss(e)

Lss
ee

]
dx

−
∫ l/2

0

[
J2

at(ρ)

Lat
ρρ

+ J2
at(e)

Lat
ee

]
dx, (31)

where for a region rg (“ss” for solid and “at” for atmosphere),
Jrg(ρ) and Jrg(e) represent the region’s bulk mass and energy
fluxes, respectively.

For the purpose of making direct relations between Eq. (31)
and its sharp-interface counterpart, Eq. (28), we express Jρ (x),
Je(x), and η̇ in terms of v and JT . First, we perform an analysis
considering only fluxes that are flowing through the free sur-
face along the x direction (i.e., normal to the free surface),
thereby we tentatively drop the contribution of the surface
diffusion flux Jsf to v since it is tangential to the free surface.
Second, we employ a quasisteady approximation that assumes
large gradients of ρ, e, and η across the free surface such that
we define their time derivatives as

ρ̇ ≈ −vρ ′(x), ė ≈ −ve′(x), η̇ ≈ −vη′(x). (32)

We integrate both sides of the conservation laws, ė =
−J ′

e(x) and ρ̇ = −J ′
ρ (x), after substituting Eq. (32),∫ Jat(ρ)

Jss(ρ)

dJρ = v

∫ ρss
eq

ρat
eq

dρ,

∫ Jat(e)

Jss(e)

dJe = v

∫ eat
eq

ess
eq

de (33)
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with the boundary values as

Jss(ρ) ≈ vρss
eq, Jat(ρ) ≈ vρat

eq,
(34)

Jss(e) ≈ vess
eq − JT , Jat(e) ≈ veat

eq − JT ,

where ρ
eq
rg and eat

rg (rg = ss, at) are the equilibrium con-
served OP and internal energies, respectively. The integrals
in Eq. (33) yield

Je(x) ≈ ve(x) − JT , Jρ (x) ≈ vρ(x). (35)

Furthermore, we adopt the sigmoid formulation for the pro-
files of ρ(x) and η(x) in this work as

ρ(x) = 1

2

[
(ρss + ρat ) + (ρss − ρat ) tanh

2x

l

]
, (36)

η(x) = 1

2

[
1 + tanh

(
2x

l

)]
(37)

with the diffuse interface width l . Taking into account all the
aforementioned, we obtain σs as

σs =
∫ l/2

−l/2

[
[vρ(x)]2

Lρρ

− (vρss)2

2Lss
ρρ

− (vρat )2

2Lat
ρρ

]
dx

+
∫ l/2

−l/2

[
[ve(x) − JT ]2

Lee
− (vess − JT )2

2Lss
ee

− (veat − JT )2

2Lat
ee

]
dx −

∫ l/2

−l/2
4lρ ′(x)η′(x)v

× [M1[vρ(x)] + M2[ve(x) − JT ]] dx

+
∫ l/2

−l/2
L−1

η,sfv
2[η′(x)]2 dx. (38)

It should be noted that the integration range of Eq. (38)
can also be taken from −∞ and +∞ without σs chang-
ing. In this regard, we extend the integration interval from
[−l/2,+l/2] to [−∞,+∞] in the following discussion.
Comparing Eqs. (28) and (38), we obtain

A =
∫ ∞

−∞

[
ρ2(x)

Lρρ

− (ρss)2

2Lss
ρρ

− (ρat )2

2Lat
ρρ

]
dx − 4

×
∫ ∞

−∞
M1lρ ′(x)η′(x)ρ(x) dx

+
∫ ∞

−∞

[
e2(x)

Lee
− (ess)2

2Lss
ee

− (eat )2

2Lat
ee

]
dx − 4

×
∫ ∞

−∞
M2lρ ′(x)η′(x)e(x) dx

+
∫ ∞

−∞
L−1

η,sf[η
′(x)]2 dx, (39)

B =
∫ ∞

−∞
2M2lρ ′(x)η′(x) dx

−
∫ ∞

−∞

[
e(x)

Lee
− ess

2Lss
ee

− eat

2Lat
ee

]
dx, (40)

C =
∫ ∞

−∞

[
1

Lee
− 1

2Lss
ee

− 1

2Lat
ee

]
dx. (41)

The explicit formulations of A, B, and C imply that
the phase-field parameters can be carefully tuned so as to
obtain A = 0, B = 0, and C = 0, which guarantees δμ = 0
and δT = 0 across a migrating free surface. However, Alm-
gren [30] has shown that conservation laws reproduced
by phase-field models with asymmetric mobilities can be
altered by two effects, namely interface stretching and sur-
face diffusion, even though δμ = δT = 0 is guaranteed.
In the sintering system, interface stretching represents ex-
cess mass and internal energy along the arclength of the
free surfaces of the solid phase [48], and these excesses
can both be eliminated if

∫ ∞
−∞ dx[ρ − ρss/2 − ρat/2] = 0 and∫ ∞

−∞ dx[e − ess/2 − eat/2] = 0, respectively [30,40]. Taking
ρ as defined in Eq. (36) ensures that the interface excess of
ρ is eliminated. Also, the interface excess of e is eliminated
if h(ρ) is taken as an odd function. Furthermore, surface
diffusion terms in the mass and energy conservation laws at
the free surfaces of the solid are parametrized, respectively, by
the mobilities Lsf

ρρ = ∫ ∞
−∞ dx[Lρρ (ρ) − Lss

ρρ/2 − Lat
ρρ/2] and

Lsf
ee = ∫ ∞

−∞ dx[Lee(ρ) − Lss
ee/2 − Lat

ee/2] [30,40].
To make δT = 0, we need to ensure that B = C = 0. Con-

sequently, Lee should be formulated such that it gives the bulk
region energy mobilities at the corresponding regions, ensures
C = 0, and also guarantees that the model replicates the sharp-
interface energy conservation law [Eq. (20)] where there is
no surface diffusion effect (i.e., Lsf

ee = 0). To achieve this,
Almgren [30] proposed a mobility interpolation function that
is a combination of odd functions with parameters adjusted
relative to the bulk mobilities. This method is contended
by Ohno et al. [44] as the mobility interpolation function
produces a nonmonotonic function and also contributes to a
limited ratio of the possible bulk mobilities. Nevertheless, it
is vital to note that while simultaneous elimination of δT and
the surface diffusion effect put somewhat of a constraint on
a scalar formulation of Lee, the emergence of both effects is
actually direction-dependent [52]. An Lee formulation con-
straint due to δT [Eq. (41)] emerges under the consideration
of flux components normal to the free surfaces as seen in the
analysis done above, while the integral associated with the
surface diffusion effect modification of energy conservation
emanates due to consideration of flux components in the tan-
gential direction to the free surfaces [52]. Therefore, ensuring
C = 0 and eliminating the surface diffusion term in the en-
ergy conservation equation, respectively, are pertinent only
at the normal and tangential directions of the free surfaces.
Considering all the aforementioned details and also taking
into account the physical context of the energy mobility, we
propose an anisotropic Lee for the full sintering description
and relate it to the anisotropic thermal conductivity as

Lee = [k⊥Nsf + k‖Tsf + kgbTgb]T 2

= L⊥
eeNsf + L‖

eeTsf + Lgb
ee Tgb, (42)

with

k⊥ =
[

1 + g(ρ)

2kss
+ 1 − g(ρ)

2kat

]−1

, (43)

k‖ = 1 + g(ρ)

2
kss + 1 − g(ρ)

2
kat, (44)

kgb = 16
∑
i 	= j

η2
i η

2
j kgb, (45)
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and

Nsf = nsf ⊗ nsf,

Tsf = I − nsf ⊗ nsf,

Tgb = I − ngb ⊗ ngb. (46)

In Eq. (42), L⊥
ee is the energy mobility in the normal direc-

tion to the free surfaces defined to ensure C = 0, L‖
ee is the

energy mobility in the tangential direction to the free surfaces
formulated to ensure Lsf

ee = 0 in the energy conservation law,
and Lgb

ee represents the energy mobility in the grain bound-
ary. Similarly, k⊥ and k‖ represent the thermal conductivities
at the normal and tangential directions to the free surfaces,
respectively, while kgb represent the thermal conductivity in
the grain boundary. kss and kat are, respectively, the effective
thermal conductivities in the solid phase and the atmosphere
region, and kgb is the effective thermal conductivity in the
grain boundary. Surface and grain boundary normal vectors
are calculated from the gradient of corresponding OPs, e.g.,
nsf ≡ ∇ρ/|∇ρ|. I is the identity tensor and ⊗ represents the
dyadic product. g(ρ) = 2ρ − 1 is an odd function that satisfies
g(ρ = ρss) = 1 and g(ρ = ρat ) = −1.

Noting that L⊥
ee = k⊥T 2 and therefore substituting Eq. (43)

into (40), we obtain

B = 2χM2 − βl

2T 2

(
1

2kss
− 1

2kat

)
, (47)

with

χ = l
∫ ∞

−∞
ρ ′(x)η′(x) dx = 2(ρss − ρat )/3, (48)

β = eht

l

∫ ∞

−∞
[h(ρ)g(ρ) − 1] dx = −eht(ρss − ρat )

2, (49)

where eht = ess − eat. The functions defined in Eqs. (37) and
(36) are adopted to calculate integrals in Eqs. (48) and (49).

Therefore, to obtain B = 0, we take

M2 = βl

4χT 2

(
1

2kss
− 1

2kat

)
. (50)

Following [8,17,53] whereby the different mass diffusion
routes in the sintering process, i.e., bulk/volume diffusion,
surface diffusion along the free surfaces, and grain boundary
diffusion are taken into account, we propose an anisotropic
Lρρ and relate it to the anisotropic diffusivity as

Lρρ = [DvI + Dsf Tsf + DgbTgb]/sv

= Lv
ρρI + Lsf

ρρTsf + Lgb
ρρTgb, (51)

with

Dv =
[

1 + g(ρ)

2Dss
+ 1 − g(ρ)

2Dat

]−1

, (52)

Dsf = 16ρ2(1 − ρ)2Dsf, (53)

Dgb = 16
∑
i 	= j

η2
i η

2
j Dgb, (54)

and the volumetric entropy as

sv = 1

T

∂μ

∂ρ
, (55)

where the linear approximation is sometimes taken as sv ≈
R/Vm with the ideal gas constant R and molar volume Vm

[8,17,54]. In Eq. (51), Lv
ρρ is the mass mobility in the normal

direction to the free surfaces associated with the bulk/volume
diffusion in solid phase and atmosphere region, and Lsf

ρρ is
the mass mobility in the tangential direction to the free sur-
faces associated with mass transport via surface diffusion.
Consideration of Lsf

ρρ ensures that the model replicates the
sharp-interface mass conservation law Eq. (21) where surface
diffusion is considered. Lgb

ρρ represent the mass mobility in the
grain boundary. Similarly, Dv represents the volume diffusiv-
ity, which is interpolated by the effective diffusivities in the
solid phase (Dss) and atmosphere region (Dat). Dsf and Dgb

are the effective diffusivities in the free surfaces and grain
boundary, respectively.

We propose M1 to have a similar form to that of M2 in
Eq. (50),

M1 = −3lsv

16

(
Ass

2Dss
− Aat

2Dat

)
, (56)

with

Ass = ρss + ρat, (57)

Aat = 3Ass − 2. (58)

Substituting Eqs. (50) and (56) into (39), we then obtain

A = ψL−1
η,sf

l
− l (ρss − ρat )2

4

[
svAss

Dss
+ ζ

T 2

(
1

2kss
+ 1

2kat

)]
,

(59)

with

ζ = e2
ht

l

∫ ∞

−∞
[1 − h2(ρ)] dx = e2

ht (60)

and

ψ = l
∫ ∞

−∞
[η′(x)]2 dx = 2/3, (61)

also taking into account∫ ∞

−∞
[[ρ(x)]2 + g(ρ)[ρ(x)]2 − 1] dx

= −3l

4
Ass(ρss − ρat )

2, (62)∫ ∞

−∞
[[ρ(x)]2[1 − g(ρ)]] dx = l

4
Aat (ρss − ρat )

2. (63)

The functions defined in Eqs. (37) and (36) are again adopted
to calculate integrals in Eqs. (61) and (60)–(63).

Therefore, in order to ensure A = 0, we take

L−1
η,sf = l2(ρss − ρat )2

4ψ

[
svAss

Dss
+ ζ

T 2

(
1

2kss
+ 1

2kat

)]
. (64)

The mobility L−1
η,gb of {ηi} can be obtained from the physical

grain boundary mobility Geff
gb and grain boundary energy γgb as
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[8,55]

L−1
η,gb = κη

Geff
gbγgb

. (65)

Recalling Eqs. (16c) and (17), it is worth mentioning that
this mobility is defined under the driving force represented
by entropy, which should be distinguished from the original
formulation in Ref. [55] as here κη adopts the dimension of
the entropy per length. Accordingly, for L−1

η as regards the
full sintering description, we then take

L−1
η = 16ρ2(1 − ρ)2L−1

η,sf + L−1
η,gb. (66)

Recalling the anisotropic definitions of Lee and Lρρ in
Eqs. (42) and (51), calculation of L̂−1

η in Eq. (17) can be
further simplified as

L̂−1
η = L−1

η − l2|∇ρ|2[M2
1 Lv

ρρ + M2
2 L⊥

ee

]
, (67)

as L⊥
ee and Lv

ρρ are, respectively, one of the eigenvalues of Lee

and Lρρ , corresponding to the eigendirection of nsf (nsf ≡
∇ρ/|∇ρ|).

It is worth noting that M1 and M2 are derived based on
the constant postulate, i.e., M1 and M2 are spatiotemporal
independent constants for a sintering system with known mass
diffusivities and thermal conductivities of substance and at-
mosphere as well as given diffuse interface width, since the
spatiotemporal dependency of all OP-related terms [Eqs. (48)
and (49), (61), and (60)–(63)] vanish after integral. More
importantly, the quantitative phase-field model degenerates to
the conventional one when the system has no differences in
mass diffusivity and thermal conductivity between solid and
atmosphere. In that sense, when Dss = Dat, M1 = 0 and also
when kss = kat, M2 = 0, demonstrating that the antitrapping
terms in Eqs. (16a) and (16b) and the cross-coupling term in
Eq. (16c) reduce to zero. In addition, we note that variational
quantitative phase-field models such as the one presented in
this work do not generally demonstrate high numerical ac-
curacy [33,44,45]. Correct mapping of the variational model
onto the associated sharp-interface equations only guarantees
its quantitative validity and not its numerical efficiency needed
for realistic utilization [44]. Therefore, a nonvariational form
of the model might be best suited for practicability. The non-
variational form can be simply developed via modification
of model parameters and functions while ensuring that the
thin-interface asymptotic remains consistent.

V. RESULTS AND DISCUSSION

A. Model verification for an elliptical inclusion

To examine the capability of the model in ensuring δμ =
δT = 0 at the free surface, we perform diffusion-driven re-
shaping simulations of an elliptical inclusion with major
axis A and minor axis B morphing into a circle. We set
up a simulation domain with the lengths Lx and Ly in the
x and y directions, respectively. The domain is further sub-
jected to an initial temperature gradient ∇T = g0 along the
x-axis. ρ is taken to vary smoothly from 1 in the inclusion
(ρss = 1) to 0 outside (ρat = 0) with l = 1. A full schematic
of the simulation setup is given in Fig. 2(a). The normal-
ized values of the employed model parameters are given in
Table I.

TABLE I. Set of dimensionless quantities and parameters em-
ployed for the simulations in this work.

Lx Ly g0 C D eht Lη,gb sv

60 50 0.01 1 0.062 1 1 1

First, we consider a case of asymmetric mass transport
where Dat/Dss = 2. We set kat/kss = 1, hence only employ-
ing the mass antitrapping current term associated with mass
diffusion while the thermal antitrapping current is tentatively
dropped. The profile of chemical potential μ(x) across the
moving free surface is presented for the cases M1 = 0 and
M1 	= 0 in Figs. 2(c) and 2(d), respectively. An extrapolation
of μ(x) gives the chemical potential jump (δμ) at the center
of the free surface ρ = 0.5. Typically, δμ 	= 0 implies an
exchange of mass between the solid and atmosphere, which
can be likened to the trans-interface diffusion phenomenon.
However, no mass exchange is expected between the solid
and atmosphere regions during sintering. Therefore, δμ = 0
should be held in phase-field simulations in order to achieve
realistic mass diffusion. It is obvious from Figs. 2(c) and 2(d)
that the case with M1 = 0 shows a significantly larger δμ

compared to the one with M1 	= 0, in which the relatively
small δμ is attributed to possible numerical errors. The results
demonstrate that the mass antitrapping current parametrized
by M1 is necessary in order to eliminate the artificial diffu-
sion flux across the interface during sintering for cases of
asymmetric mass transport. Figures 2(c) and 2(d) also show
the gap in space δx between the center of the free surface
and the point where the extrapolations of μ meet. Note that
δx = 0 when δμ = 0, indicating the coherence between the
numerically predicted interface by ρ ≈ 0.5 and the theoretical
sharp interface where δμ = 0. Similar to δμ, the numerical
results demonstrate a significantly larger δx for the case with
M1 = 0 compared to the one with M1 	= 0, implying an appar-
ent deviation in the position between the predicted interface
and the theoretical sharp interface.

We also note the existence of another chemical potential
drop �μ across the free surface, characterizing the differences
between the bulk values, as depicted in Figs. 2(c) and 2(d).
This �μ, which is identical for both cases at a time point,
was numerically examined to be the outcome of the deviated
bulk values of ρ, i.e., ρss and ρat that are slightly deviated
from ideal (equilibrium) 1 and 0, respectively, as listed in
Table S1 (see Supplemental Material [61]). Such a chemical
potential drop generally does not appear in the conventional
sharp-interface interpretation of the sintering [1,2]. Mean-
while, the deviated bulk values of the conserved mass OP have
been depicted in previous works [56–60] with theoretical and
numerical analyses given in Refs. [59] and [60], which are
further discussed in the Appendix.

Furthermore, Fig. 2(b) shows a comparison of δμ versus
diffuse interface width l between the cases with/without M1

parametrized. It can be observed that both cases present the
convergence δμ → 0 as l → 0, replicating the sharp-interface
condition when l tends to infinitesimal. However, as l in-
creases, δμ presents a relatively rapid growth in the case with
M1 = 0 compared to the one with M1 	= 0, demonstrating that

025301-9



OYEDEJI, YANG, EGGER, AND XU PHYSICAL REVIEW E 108, 025301 (2023)

FIG. 2. (a) Schematic of the simulation setup in 2D simulation of an elliptical inclusion. (b) Comparison of chemical potential jump δμ

across the free surface with respect to interface width; blue triangle symbols represent the model with M1 = 0, while red diamond symbols
represent the model with M1 	= 0. Plots of μ and ρ across the free surface as a function of x with l = 1, Dat/Dss = 2 for (c) M1 	= 0 and
(d) M1 = 0. δμ is obtained using an extrapolation of μ at the center of the free surface ρ = 0.5. �μ is the chemical potential difference
between the bulk values.

the employment of mass antitrapping current parametrized
by M1 can significantly reduce the artificial interface effect
(here the growing δμ) along with increasing diffuse inter-
face width. In this sense, mass antitrapping current allows
reasonable quantitative simulations, especially at larger inter-
face widths. Furthermore, we note that the convergence of
both models might be well investigated considering a steady-
state free surface velocity. We hope to report this in our
upcoming work.

Additionally, we investigate a case of asymmetric heat
transport with kat/kss = 0.05. Similar to previous simulation,
we examine the thermal antitrapping term associated with heat
transport. The mass antitrapping term is tentatively dropped
by setting Dat/Dss = 1. Simulations are performed for the
existing model (i.e., M2 = 0) and the quantitative model with
M2 	= 0. Further details of the results are given in the sup-
plemental material (Fig. S2) [61]. δT = 0 realized at the
sharp-interface is expected to be obtained during phase-field
simulations in order to guarantee quantitative simulations.
For the model with M2 = 0, however, emerging δT 	= 0
demonstrates the importance of the thermal antitrapping cur-

rent. Here, it is important to note that measured δT has a
relatively low magnitude compared to the bulk temperature at
the free surface. The importance of the thermal antitrapping
term M2 in eliminating the temperature jump for asymmetric
heat transport has also been demonstrated in Ref. [41], where
the nondiagonal phase-field model was also used.

B. Comparison between the quantitative and the existing models

In this section, we perform simulations for grain coales-
cence of two spherical grains with distinct sizes. Comparisons
of microstructure and temperature distribution are made be-
tween the quantitative model where antitrapping terms are
taken into account, and the existing model where these terms
are not considered. The two models are referred to as the
model with ATs and the model without ATs in the following
discussions.

We set up a simulation domain with the lengths Lx and
Ly in the x and y direction, respectively. Similar to the pre-
vious setup, the domain is subjected to ∇T = g0 along the
x-axis. Simulations are performed for asymmetric mass and
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FIG. 3. Snapshots of grain coalescence of two spherical grains with distinct sizes. Dat/Dss = 2, l = 2, and kat/kss = 0.05 are set.
Comparison is made between models with ATs and without ATs. Temperature isolines are also indicated. t∗ = 103 unit.

heat transport where Dat/Dss = 2, kat/kss = 0.05 with l = 2.
A full schematic of the simulation setup is supplemented in
Fig. S4a (see Supplemental Material [61]).

Transient microstructures and temperature profiles for both
models are compared and presented in Fig. 3. First, we ob-
serve that mass transport was faster for the model without
ATs compared to the model with ATs. At t/t∗ = 0.633 and
0.815 in Figs. 3(c) and 3(d), respectively, a more coalesced
grain is obtained for the model without ATs compared to the
model with ATs. The difference in progress of coalescence
can be further explained by the visualization of mass diffusion
fluxes at the free surface ρ = 0.5 as presented in Fig. 4.
The free surface profile is colored by the local curvature
calculated as −∇ · nsf . Furthermore, mass diffusion fluxes
are indicated at two distinct points, namely a concave point
and a convex point. Typically, mass flux at any point on the
free surface is expected to be correctly captured along the
tangential direction to the free surface at that point. It can
be clearly observed that Jρ , which is the mass diffusion flux
without the mass antitrapping current, deviates in the direction
from the tangential direction (dash-dotted lines) to the free
surface at both the concave and the convex points. The mass
antitrapping flux Jρ,AT introduced in the quantitative model
can be seen flowing through the free surface in the normal
direction from the solid grain region to the atmosphere. The

combined mass flux J′
ρ = Jρ + Jρ,AT shows a corrected mass

flux flowing along the tangential direction to the free surface.
Therefore, the deviation of Jρ from its appropriate direction is
due to the existence of a chemical potential jump at the free
surface. Jρ,AT serves to eliminate this chemical potential jump,
which consequently corrects this deviation. Accordingly, this

FIG. 4. Surface profile (ρ = 0.5) colored by the curvature and
the mass diffusion fluxes, i.e., the fluxes before (Jρ) and after (J′

ρ)
correction with the antitrapping contribution (Jρ,AT), at two distinct
sites. The lengths of the visualized arrows have been scaled accord-
ing to the magnitude of the fluxes uniformly.
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Φ

(a) (b)

Fitted Semi-Circular
Tendencies

λ

FIG. 5. Time evolution of (a) sintering neck λ and (b) dihedral angle � during the nonisothermal sintering process, as shown in Fig. 3. The
time points reaching maximum values are indicated by colored vertical lines. The equilibrium dihedral angle �eq, calculated from the surface
and grain boundary energies, is also indicated by a black dotted line in (b). The total simulation time t∗ = 2084 unit.

demonstrates the faster mass transport observed for the model
without ATs. A chemical potential jump at the free surface
tends to act as an extra driving force for grain coalescence
leading to faster mass diffusion. The elimination of this jump
via the antitrapping current leads to a slower mass transport
for the model with ATs.

Furthermore, the results in Fig. 3 also show a compar-
ison of the temperature profiles obtained for both models.
The distribution of the temperature isolines shows faster heat
transport for the model without ATs compared to the model
with ATs. An example is given for isoline T = 0.71. Even
though it initially tends to migrate towards the high-T side, at
t/t∗ = 0.023, this tendency stops for the model without ATs,
where the isoline starts to move towards the low-T side, but it
continues for the model with ATs. The result at t/t∗ = 0.815
in Fig. 3(d) indicates a colder grain for the model with ATs
compared to the model without ATs. Similar to the mass
transport fluxes explanation for both models, the temperature
jump at the free surface can be seen as an extra driving force
for heat transport in the model without ATs. This jump is
eliminated for the model with ATs via the thermal antitrapping
term, thereby obtaining a slower heat transport. The presented
thermal-microstructure evolution once more demonstrates the
importance of the antitrapping currents for mass and heat
diffusion.

We further examine the in-process sintering neck λ and
dihedral angle � of the simulation as presented in Fig. 3. λ

and � are calculated by

λ =
∫

�

16
∑

i 	= j η
2
i η

2
j

l
d�,

(68)

� = arctan

(
∂Cηi

∂x

)
neck

− arctan

(
∂Cη j

∂x

)
neck

,

where Cηi and Cη j are the fitted semicircular tendencies by
coordinates of contour ηi = 0.5 and η j = 0.5, respectively.
∂Cηi
∂x and

∂Cη j

∂x then provide the slopes of Cηi and Cη j . In this
sense, � is calculated using the difference between these two
angles of slope at the neck point, as shown in inset of Fig. 5(b),
adapted from Ref. [62]. Meanwhile, the equilibrium dihedral

angle �eq can also be evaluated by the surface (γsf ) and grain
boundary (γgb) energies, i.e.,

�eq = 2 arctan
γgb

2γsf
. (69)

It is worth noting that � approaches �eq when two particles
with identical size are sintered isothermally, as λ reaches the
maximum and stays constant, i.e., the system reaches equilib-
rium [8]. With varying interface width l , � deviates from the
theoretically determined �eq [Eq. (69)], as shown in Fig. S3
(see Supplemental Material [61]). This deviation is reduced
in a similar fashion for both models with/without ATs as l
decreases. This implies no modification to the thermodynamic
equilibrium condition (characterized by �eq) by applying the
kinetic antitrapping terms. For two nonidentical grains, the
time evolutions of λ and � are presented in Fig. 5. A compar-
ison is made for the model with ATs and the model without
ATs. It can be observed that for both models, � approaches
�eq at the points where λ attains maximum values. However,
the progress of � towards �eq is faster for the model without
ATs compared to the model with ATs. This implies that while
thermodynamic conditions are attained for both models, the
antitrapping terms tend to modify the progress of neck growth
and grain coalescence by removing the extra flux perpendicu-
lar to the free surface, as shown in Figs. 3 and 4.

C. Importance of anisotropic interpolations
of the mobility tensor

Here, we demonstrate in particular the importance of the
anisotropic interpolations of the kinetic mobilities. First, we
investigate a steady-state heat-transfer case. The numerical
validation test proposed by Nicoli et al. [52] is used and
extended. We consider a square simulation domain defined as
[0,1] and [0,1] in the x and y direction, respectively, and sub-
jected to ∇T = −2 along the x-axis. The domain consists of
a stationary disk-shaped solid grain with radius R surrounded
by an atmosphere region. A schematic of the simulation setup
is supplemented in Fig. S5a (see Supplemental Material [61]).
For kat/kss = 10, four cases of thermal conductivity interpo-
lations are examined. We consider the form of interpolation
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FIG. 6. (a) Comparison of Je,x vs l/R for different thermal conductivity interpolations: direct interpolation (red diamonds), inverse
interpolation (blue circles), special function interpolation (green hexagons), and anisotropic interpolation (orange triangles) for kat/kss = 10,
where corresponding color lines are fitted simulation data lines, and black dash-dotted lines represent the plot of a case in which no artificial
interface effects exist. (b) Temperature isolines across the free surface for different thermal conductivity interpolations at l/R = 0.05. (c) Time
evolution of Jρ,x using different diffusivity interpolations: isotropic (dash-dotted lines) and anisotropic (solid lines) for varied values of Dsf/Dss.
Local zooms around the neck of the grains using (d1) isotropic interpolation of diffusivity, and (d2) anisotropic interpolation of diffusivity.
t∗ = 14 × 103 unit.

utilized in the current phase-field models of nonisothermal
sintering [8,28]. This interpolation form is similar to the for-
mulation given in Eq. (44) and is thereafter referred to as
the direct interpolation. Also, we consider another form of
interpolation given in Ref. [63] to ensure heat flux conserva-
tion across the interface. This form of interpolation, thereafter
referred to as the inverse interpolation, has its formulation
as in Eq. (43). Moreover, a form of interpolation proposed
by Almgren [30] was used in Refs. [41] and [43] for their
nondiagonal phase-field models. The interpolation, thereafter
called the special function (SF) interpolation, is also examined
and can be expressed as

1

k(ρ)
=

(
1

2kss
+ 1

2kat

)
+ psf(ρ)

(
1

2kss
− 1

2kat

)
, (70)

with

psf(ρ) = (2ρ − 1)[1 + 4aρ(1 − ρ)], (71)

where a ≈ 0.90 for kat/kss = 10. Here, it is important to note
that the formulation in Eq. (70) is adopted from Ref. [43]
because φ in Ref. [43] varies from 0 to 1 similar to ρ. Lastly,
we consider the anisotropic form of thermal conductivity pro-
posed in this work as expressed in Eq. (42). Artificial interface
effects are quantified by obtaining the average heat flux, Je,x,
in the domain at x = 1. The plot of Je,x against normalized
interface widths l/R is presented in Fig. 6(a) for different
interpolation forms. The black line in Fig. 6(a) indicates a
reference case where no artificial interface effect exists, i.e.,
Je,x |l=0 = Je,x |l>0. Figure 6(b) shows the temperature iso-
lines across the free surface for the different interpolation
forms. As shown in Fig. 6(a), the direct and inverse interpo-
lations show significant deviations from the reference case,
implying the deficit of these interpolation forms in eliminating
interface effects. The SF interpolation also shows consider-
able deviation from the reference case. This deviation, which
might be attributed to the nonmonotonic form of psf(ρ) [44],
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reinforces the limitation of the SF interpolation. On the other
hand, the results obtained by using the anisotropic inter-
polation show very convincing agreement. The outstanding
performance of the anisotropic form of interpolation necessi-
tates its consideration for subsequent nondiagonal phase-field
modeling. Note that for common sintering scenarios (the re-
sult is supplemented in Fig. S5b (see Supplemental Material
[61]) for kat/kss = 0.2), the SF interpolation might be utilized
for quantitative simulations. The anisotropic form of inter-
polation, however, finds great importance in other processes
where kat/kss is higher, such as the case studies in Ref. [64].

Also, we consider mass transport during grain coales-
cence of two identical spheres using two mass diffusivity
interpolations. A full schematic of the simulation setup is
supplemented in Fig. S4b (see Supplemental Material [61]).
We make comparisons between the anisotropic interpolation
presented in this work, Eq. (51), and an isotropic interpolation
expressed as [15]

D = pss(ρ)Dss + pat (ρ)Dat + psf(ρ)Dsf + pgb(ηi )Dgb, (72)

where pss(ρ) and pat (ρ) are interpolation functions valued as
1 only in the solid phase and atmosphere region, respectively.
Average mass flux Jρ,x is obtained across a grain with the plots
of Jρ,x against normalized time t shown in Fig. 6(c).

The thin-interface limit analysis showed that eliminat-
ing the chemical potential jump across the free surface
does not require a specific mass diffusivity interpolation.
Correspondingly, it has been derived in Refs. [65,66] that
the Cahn-Hilliard equation recovers the sharp-interface limit
equation of motion for surface diffusion regardless of the mass
diffusivity form. Therefore, the Jρ,x versus t curve is expected
to be the same for both interpolations of mass diffusivity,
since theoretically no artificial interface effect is related to
the diffusivity interpolation. However, as shown in Fig. 6(c),
there exist surprisingly Jρ,x numerical deviations. This can
be explained by close comparison of flux details at the free
surface region. Figures 6(d1) and 6(d2) demonstrate the cal-
culated flux by using the isotropic and anisotropic diffusivity
form, respectively. We observe that the anisotropic form of
diffusivity delivers a more reasonable description of the di-
rections of the fluxes. Around the free surface in Fig. 6(d1)
where we used isotropic diffusivity, there exist nontangential
fluxes at the free surface where only tangential fluxes are
expected to contribute to surface diffusion. On the other hand,
in Fig. 6(d2) where the anisotropic diffusivity form is used,
only fluxes that are tangential to the free-surface region exist
to describe surface diffusion. Accordingly, it is imperative
that, while asymptotic analysis confers no restriction on the
diffusivity form as regards effecting quantitative simulations
in mass diffusion, the anisotropic diffusivity form makes it
possible that the directions of fluxes are effectively described
analogous to the sharp-interface description.

VI. CONCLUSIONS

In this work, we have developed a variational quantitative
phase-field model for nonisothermal sintering processes fol-
lowing the nondiagonal phase-field approach introduced in
Refs. [37,39]. The model was formulated to eliminate artificial
interface effects due to the diffuse-interface description of the

free surfaces. Moreover, model formulations are derived in a
variational manner guaranteeing thermodynamic consistency.
The proposed model differs from conventional nonisothermal
sintering models due to that fact that cross-coupling terms
between conserved kinetics (mass and heat transfer) and the
nonconserved kinetics (grain growth) are taken into the ac-
count. These terms parametrized by functions M1 and M2 can
be likened to antitrapping currents in quantitative phase-field
modeling. The above-mentioned terms are particularly essen-
tial for correct projection of the model to its sharp-interface
descriptions. Also, we derive formulations of M1 and M2 in
terms of the model parameters using an asymptotic analysis
procedure presented in Ref. [38]. In addition, we showed
that anisotropic interpolations of kinetic mobilities are also
important to ascertain the elimination of artificial interface
effects at the free surface.

Numerical tests were done to highlight the importance of
these cross-coupling terms. The results presented showed the
emergence of a chemical potential jump (δμ) and a tem-
perature jump (δT ) at the free surface when M1 = 0 and
M2 = 0. δμ 	= 0 and δT 	= 0 negate the sharp-interface sin-
tering description. However, employing M1 	= 0 and M2 	= 0
as described in the quantitative model eliminates these jumps.
The convergence behavior of δμ with respect to interface
width (l) was presented for the model with M1 = 0 and the
model with M1 	= 0. For both models, δμ → 0 as l → 0,
demonstrating their efficacy at relatively smaller l . The major
usefulness of the quantitative model is seen as l � 0, where
δμ is significantly large for the model with M1 = 0 compared
to the model where M1 	= 0. Additionally, the difference in
transient microstructure and temperature profiles was exam-
ined for the model with antitrapping currents and the model
without antitrapping currents. It was seen that the antitrapping
currents help to eliminate extra driving forces brought about
by δμ 	= 0 and δT 	= 0 at the free surface. Moreover, it was
demonstrated that the antitrapping currents only modify the
sintering kinetics and have no impact on the thermodynamic
conditions.

Furthermore, we demonstrated numerically how the
anisotropic interpolation of kinetic mobilities delivers an
effective description of diffusion fluxes comparable to the
sharp-interface description. Therefore, the proposed model
can serve as a great tool in studying quantitative simulations
of nonisothermal sintering and other related solid-state pro-
cesses. A major outlook of this work is to further investigate
the convergence of interface velocity with respect to interface
width obtained using the proposed model.

The authors declare that the data supporting the findings
of this study are available within the paper. Source codes
of MOOSE-based application NIsoS and related utilities are
provided in the online repository in Ref. [67].
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FIG. 7. The deviated bulk values of (a) ρ and (b) μ with respect to the diffuse interface width l . The deviated bulk values are read from the
numerical results presented in Fig. 2(a).
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APPENDIX: DEVIATION OF CONSERVED
ORDER PARAMETER

The analyses of Cahn-Hilliard dynamics in Refs. [59] and
[60] have shown that usage of a finite interface width com-
bined with a comparable curvature radius induces deviation
of the conserved order parameter (ρ in this work) in the bulk
regions. It has been demonstrated that the equilibrium bulk
values of ρ are contingent on the interface having negligible
volume compared to the bulk region, so that only the local
free energy finds minimization. Although this condition is
viable for planar interfaces, it is not maintained for curved

interfaces with concentrated energy. In this sense, the total
free energy can be reduced by shrinking the area enclosed by
the interface, which subsequently shifts the bulk values of ρ

from the equilibrium ones due to the finite volume precept
[59]. Here, we define the deviated quantities of ρ from its
equilibrium values (in this work, ρ

eq
ss = 1 and ρ

eq
at = 0) as

�ρss = ρss − 1 and �ρat = ρat. Both ρss and ρat are read from
numerical results in Fig. 2(a) with M1 = 0 when the particle
is in elliptical and circular shapes. The tendencies of �ρss

and �ρat versus l are shown in Fig. 7(a). Similar to results
obtained in Ref. [59], �ρss and �ρat increase with increasing
l . When in the elliptical shape (implying a nonequilibrium
condition), �ρat > �ρss holds for almost every selected l ,
while �ρss ≈ �ρat when in the circular shape (implying an
equilibrium condition). These differences can be attributed to
the curvature dependency of the analytical profile of ρ [60]. It
should be noted that �ρss and �ρat exist even for symmetric

FIG. 8. The antitrapping coefficients M1 and M2 with respect to (a) varying �ρss when �ρat = 0, (b) varying �ρat when �ρss = 0, and
(c) varying simultaneously �ρss and �ρat while holding �ρss = �ρat .

025301-15



OYEDEJI, YANG, EGGER, AND XU PHYSICAL REVIEW E 108, 025301 (2023)

mobilities with sufficiently large l , which is distinctive from
the known interface effects (such as trap effects) that are
incited by asymmetric kinetic mobilities. Moreover, the com-
parison of analytical values of �ρss and �ρat and numerical
values should be examined in further studies.

As one of the significant outcomes, deviated bulk val-
ues of ρ incite deviated chemical potential μ from its
equilibrium ones in the bulk regions, which may result in
the unexpected chemical potential drop as an extra driv-
ing force across the free surface. To examine this point,
we define the deviated quantities of μ in a similar fash-
ion to �ρss and �ρat, i.e., �μss = μss(ρss) − μeq = μss(ρss)
and �μat = μat (ρat ) − μ

eq
at = μat (ρat ), noting that μ

eq
ss (ρeq

ss =
1) = μ

eq
at (ρeq

at = 0) = 0. In Fig. 7(b), we present a similar
tendency of �μss and �μat versus l when the particle is in the
elliptical shape, where both �μss and �μat grow along with
increasing l , and �μss > �μat is depicted for every selected l ,
implying the existing chemical potential drop �μ = �μat −
�μss > 0 across the free surface at the semimajor axis, as
shown in Fig. 2(a). Notably, when the particle is in the circular

shape, �μss = �μat is formed without the dependency of l ,
indicating no chemical potential drop across the free surface,
i.e., �μ = �μat − �μss = 0. This also demonstrates that the
existing deviation in μ incited by �ρss and �ρat does not
affect the supposed equilibrium condition, as the particle stops
morphing in the circular shape.

Additionally, since the antitrapping coefficients M1 and M2

are dependent on the bulk values ρss and ρat, we examine the
variations of M1 and M2 with �ρss and �ρat up to 0.1, as
seen in Fig. 8. In Fig. 8(a), we take �ρat = 0 and examine
the variations of M1 and M2 with �ρss. Similarly, we take
�ρss = 0 and examine the variations of M1 and M2 with �ρat

in Fig. 8(b). Then, we present the variations of M1 and M2 with
�ρss = �ρat in Fig. 8(c). This demonstrates that M1 presents
a linear tendency versus increasing deviations of all cases. M2,
however, decreases along with growing �ρss but increases
with growing �ρat. For �ρss = �ρat, M2 stays constant. This
can be explained via Eq. (50), where M2 is proportional
to (ρss − ρat ), which is reduced to 1 when �ρss = �ρat as
(ρss − ρat ) = [(�ρss + 1) − �ρat] = 1.
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