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Kinetic model and Vlasov simulation verification of two-ion decay instability
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A kinetic theory is developed to describe the longitudinal decay of two-ion decay (TID): The pump ion-
acoustic wave (IAW) decays into two daughter IAWs with a longer wavelength. The instability growth rate and
threshold are given by the theory. Both the simulations of full kinetic Vlasov and hybrid Vlasov (kinetic ions
and Boltzmann electrons) are employed to verify the theory and have a high quantitative agreement with the
theory for 8 � ZTe/Ti � 15, where Z is the ion charge number and Ti(Te) is the ion (electron) temperature. The
kinetic model developed here solves a long-standing problem that the simple fluid theory underestimates growth
rate by a factor of 2 ∼ 3. Also, a reasonable explanation is given to the typical characteristics of TID that the
dependence curves of subharmonic growth rate γ and wave number k.
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I. INTRODUCTION

Ion acoustic waves (IAWs), as fundamental electrostatic
waves in plasma, widely exist in astrophysics, space plasma,
and fusion plasma. In inertial confinement fusion (ICF) ex-
periments, laser light passes through the hohlraums, interacts
with the plasma, and overlaps with multiple crossing laser
beams. Understanding the control of the onset and saturation
of stimulated Brillouin scattering (SBS) and crossed-beam
energy transfer (CBET) mediated by IAWs is crucial to
avoid laser energy loss and damage to expensive optical
elements [1,2]. This decay of IAWs can act as an effective
saturation mechanism for SBS and CBET, resulting in a crash
in IAW amplitude that provokes a loss of plasma reflectivity.

Two-ion decay (TID) is a kind of parametric decay pro-
cess [3,4], which is the decay of pump IAW into two daughter
IAWs with longer wavelength. There are also several waves
with similar linear dispersion relations shown in experi-
ments and simulations to undergo decay to longer wavelength
modes similarly, such as electron acoustic waves [5,6] and
Trivelpiece-Gould waves [7–11]. The effect of TID on SBS
saturation has been observed directly in Thomson scatter-
ing experiments [12–14]. Some numerical studies have also
identified IAW decay during SBS saturation [15,16], e.g.,
a one-dimensional Vlasov simulation in Ref. [15] showed
that the instantaneous SBS reflectivity saturates at ∼30% and
drops to ∼0% due to TID. Also, some numerical work has
studied IAW decay in isolation to avoid other effects that
might interfere with the results [17–21], e.g., Ref. [17] showed
a clear physical picture of the IAW decay into turbulence by
one-dimensional (1D) Vlasov simulation.

*liuzj@iapcm.ac.cn

Pesme et al. used seven-wave decay model in which the
fundamental and the second-harmonic components of the
IAW couple to a low-frequency daughter wave and to their
Stokes and anti-Stokes satellites to study the stability of driven
coherent IAW [22]. Three branches of instabilities (H1, H2,
and modulation instability) were found to appear. The oc-
currence of each instability is discussed as a function of
the frequency mismatch ωmis ≡ ωdri − ωres, where ωdri is the
driver frequency, ωres is the plasma response frequency. Both
the H2 and modulation instability have the same scaling of
γ ∝ ϕm

2, while the H1 instability, also known as TID, has
a scaling of γ ∝ ϕm, where ϕm is the pump IAW amplitude.
Therefore, in the small perturbation region (ϕ � 1) studied in
this paper, TID is the dominant instability mechanism as long
as TID can occur. H2 instability involves seven-wave cou-
pling [22], modulation instability involves four-wave coupling
[23]. While the H1 instability is a three-wave coupling pro-
cess, and the three-wave model [17,18,24,25] is sufficient to
describe it.

Through two-dimensional (2D) Vlasov simulation, Chap-
man et al. found that IAWs are susceptible to at least two
distinct decay processes, the transversal decay channel of
IAWs is still not clear so far, the longitudinal decay is known
as TID, and the TID growth rate in 2D simulation is the same
as the results obtained by the 1D system [19]. For IAW, the
dispersion relation exhibits a near-linear behavior, whereby
the wave vectors of three IAWs of TID parallel and pointed in
the same direction due to three-wave matching. The resonant
TID is prohibited in a strict sense in 1D cases. However, this
process could be allowed when the dispersion spectrum is
broadened. The existence of a finite amplitude pump wave
can assess the frequency shift in a way that the resonance
conditions are fulfilled, thus leading to TID [26]. Therefore,
the TID theory typically focuses on longitudinal decay in one
dimension [27].
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The fluid theories of TID were developed during the 1970s
and 1980s (see Refs. [24,25]), and have attracted considerable
attention in the last several decades. Where three-wave exact
resonance was assumed, and the effect of harmonics was not
taken into account. However, numerical studies have showed
that the simple fluid model underestimate the growth rate
by a factor of about 2 ∼ 3, and the threshold is often found
to be overestimated by an order of magnitude [15,17,19].
Also, the simple fluid model cannot capture the independence
of the subharmonic growth rate with the plasma parameters
ZTe/Ti, k0λDe [17] (Z is the ion charge number, Te(Ti) is the
electron (ion) thermal temperature, k0 is the pump IAW wave
number, and λDe is the electron Debye length), which is vital
for selecting the appropriate experimental parameters. Re-
cently, an improved fluid model was proposed in Ref. [18] to
describe TID, and the vortex-merging in ion phase space was
found in the hybrid Vlasov simulation to result in a saturation
of TID. Reference [28] considers the nonlinear frequency shift
caused by superthermal electrons and finds it has a significant
effect on the TID threshold and growth rate.

The fluid model, [17,24,25] which starts with the fluid
equation of motion, cannot take into account the change in
the distribution function, and thus cannot describe the effect
of wave-particle interactions on instability. Although TID is
a wave-wave interaction dominated process, wave-particle in-
teractions also play an essential role in this instability. Strong
evidence that trapped particles reduce the instability threshold
below fluid models was provided by quantitative experiments
on the parametric decay instability of Trivelpiece-Gould
waves provided in Ref. [9]. In Ref. [20], the comparison of full
and hybrid particle-in-cell simulation showed that the kinetic
effect of electrons plays an essential role in the nonlinear
evolution of a driven IAW, which will promote TID (only
qualitative analysis is available), and saturate IAW at a low
level. Therefore, it is necessary to develop a kinetic theory to
further describe the TID.

In this paper, we developed a general kinetic model to
describe the longitudinal decay of TID based on mode-mode
coupling and multiple time-scale expansion. In the limit of
zero detuning and damping, the growth rate is presented as
γ0 = Q(vp)

√
k′k′′|ϕm|. It is proportional to the pump IAW

amplitude ϕm. And the TID has a maximum growth rate when
both the wave number of the two daughter modes (k′, k′′) are
half of the pump IAW wave number k0. The coefficient Q(vp)
reflects the coupling strength between the wave modes, is a
function of phase velocity vp, and dependent upon plasma
parameters k0λDe, ZTe/Ti. Both the fluid and kinetic theory
based on mode-mode coupling have similar forms, and the
differences are expressed in coefficient function Q(vp). It is
a key quantity that determines the threshold and growth rate
of TID. Comparing the theoretically predicted Q(vp) under
different initial distribution conditions, it is found that the
initial distribution function has a significant influence on the
TID, which cannot be described by any fluid model.

Vlasov simulation under the parameter range 2.5 �
ZTe/Ti � 50, k0λDe = 0.3162 is taken to validate our theory.
Within the parameter range of 8 � ZTe/Ti � 20, the results
of full kinetic simulation and hybrid simulation are consis-
tent and highly consistent with our theory. Furthermore, the

typical characteristics of TID that the dependence of subhar-
monic growth rate γ on wave number k takes the form of
| sin(kπ/k0)| is explained by drawing on the wave-train model
[11] of Trivelpiece-Gould waves.

The paper is organized as follows: In Sec. II, the kinetic
model of TID is given, including the coupling equation be-
tween wave modes in Sec. II A, growth rate and threshold
of TID in Sec. II B, and TID in the initial non-Maxwell
case given in Sec. II C. The simulation setup and results are
presented to verify the theory in Sec. III. Finally, some dis-
cussions and a summary are given in Secs. IV and V.

II. THEORETICAL ANALYSIS

A. Wave-wave coupling equations

Similar to the derivation of the decay instability of electron
acoustic waves [7], we start with the one-dimensional Vlasov-
Poisson equation instead of the fluid equations to capture the
kinetic effect

∂t fs + v∂xfs − qs

ms
∂xϕ∂vfs = 0,

∂2
x ϕ = −4π

∑
s=i,e

qs

∫
fsdv,

(1)

where fs, qs, ms are the velocity distribution function, charge
and mass of species s, s including electron and ion, ϕ is the
electric potential. One can expand the distribution function
and the potential into the Fourier series

fs(x, v, t ) = ns0

(
Fs0(v, t ) +

∞∑′

m=−∞
fs,m(v, t )eikmx

)
, (2)

ϕ =
∞∑′

m=−∞
ϕm(x, t )eikmx, (3)

where
∑′ denote that m = 0 is not included in the summation,

ns0 is the initial unperturbed number density of species s,
fs,m(v, t ) is the mth Fourier component, satisfies fs,−m(v, t ) =
f ∗
s,m(v, t ). After substitution of Eqs. (2) and (3) into Eq. (1),

one finds the Fourier components satisfy

∂t fs,m(v, t ) + ikmvfs,m(v, t ) − i
qs

ms
kmϕm(t )∂νFs,0(v, t )

= i
qs

ms

∞∑
m′=−∞

(km − km′ )ϕm−m′ (t )∂νfs,m′ (v, t ). (4)

The left-hand side of the above equation describes the linear
oscillation of the perturbation mode, and the right-hand side of
the equation is physical quantities that characterize the mode-
mode coupling.

Assuming that the perturbation term | fs,m| � Fs0, one can
employ multiple time-scale expansion [29]

fs,m(v, t ) 
 εf (1)
s,m(v, τ0, τ1, . . .) + ε2f (2)

s,m(v, τ0, τ1, . . .) + . . .

ϕm(t ) 
 εϕ(1)
m (τ0, τ1, . . .) + ε2ϕ(2)

m (τ0, τ1, . . .) + . . .

Fs0(v, t ) 
 F (0)
s0 (v, τ0, τ1, . . .) + εF (1)

s0 (v, τ0, τ1, . . .) + . . . ,

(5)

where ε � 1 is a small quantity that measures the
magnitude of the perturbation. The time scales satisfy
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∂tτ0 = 1, ∂tτ1 = ε, ∂tτ2 = ε2. So the time derivative is
expanded as ∂t = ∂τ0 + ε∂τ1 + ε2∂τ2 + . . .. One can substitute
Eq. (5) into Eq. (4), then separate each order of ε in those
equations

∂τ0 f (1)
s,m(v, τ0, τ1) + ivkmf (1)

s,m(v, τ0, τ1)

− iqskm

ms
ϕ(1)

m (τ0, τ1)∂vF (0)
s0 (v, τ0, τ1) = 0, (6)

∂τ0 f (2)
s,m(v, τ0, τ1) + ∂τ1 f (1)

s,m(v, τ0, τ1) + ikmvf (2)
s,m(v, τ0, τ1)

− iqskm

ms
ϕ(2)

m (τ0, τ1) ∂vF (0)
s0 (v, τ0, τ1)

= qsi

ms

∞∑
m′=−∞

(km − km′ )ϕ(1)
m−m′ (τ0, τ1)∂vf (1)

m′ (v, τ0, τ1)

+ iqskm

ms
ϕ(1)

m (τ0, τ1)∂νF (1)
s0 (v, τ0, τ1), (7)

ϕ(1)
m (τ0, τ1) = k−2

m 4π

∫ ∑
s

qsns0f (1)
s,m(v, τ0, τ1)dv, (8)

ϕ(2)
m (τ0, τ1) = k−2

m 4π

∫ ∑
s

qsns0f (2)
s,m(v, τ0, τ1)dv, (9)

∂τ0 F (0)
s0 (v, τ0, τ1) = 0, (10)

∂τ1 F (0)
s0 (v, τ0, τ1) + ∂τ0 F (1)

s0 (v, τ0, τ1) = 0. (11)

From Eqs. (10) and (11) one can obtain, F (0)
s0 = F 0

s0(v, τ1) and
F (1)

s0 (v, τ0, τ1) = F (1)
s0 (v, τ0 = 0, τ1) − τ0∂τ1 F (0)

0 (v, τ1). It can
be seen that τ0∂τ1 F (0)

0 (v, τ1) is a small quantity compared to
F (1)

s0 (v, τ0, τ1). Therefore, we can consider that F 0
0 also does

not vary on the slow time scale τ1, F (0)
s0 (v, τ0, τ1) = F (0)

s0 (v) is
a constant.

Now we assume that the first-order potential and distribu-
tion oscillate in a fast time scale τ0 with an amplitude varying
slowly with τ1:

ϕ(1)
m (τ0, τ1) = 1

2ϕm(τ1)e−iωmτ0 + c.c. (12)

f (1)
s,m(v, τ0, τ1) = 1

2 fs,m(v, τ1)e−iωmτ0 + c.c., (13)

where ϕ∗
m(τ1) = ϕ−m(τ1). According to the first-order Vlasov-

Poisson [Eqs. (6) and (8)] the kinetic dispersion relation of
IAW can be obtained as

D(ωm, km) = 1 −
∑

s

ω2
ps

k2
m

∫
dv

∂vF (0)
s0 (v)

v − ωm/km
= 0. (14)

From the second-order Vlasov-Poisson equations, the
wave-wave coupling equation (see Appendix A for details)
can be obtained as

d

dt
ϕm = −i

∑
m′

N
(
m, m′)ϕm′ϕm′′e−i�m,m′ t ,

N (m, m′) = km′

2

∑
s

qs

ms
ω2

ps

∫ ∂νF (0)
s0 (v)

(v−ωm/km )3 dv

∑
s

ω2
ps

∫ ∂vF (0)
s0 (v)

(v−ωm/km )2 dv
, (15)

where m′′ = m − m′, N (m, m′) is the coupling coefficient
measuring the strength of the decay from pumped IAW with

wave number km to two daughter IAWs with wave num-
ber km′ and km′′ . Although the wave numbers are precisely
matched (km = km′ + km′′ ), the frequencies are not always
exactly matched in the actual simulation situation, �m,m′ ≡
ωm − ωm′ − ωm′′ describes the amount of detuning among the
three waves. ωps = √

4πnsZ2
s e2/ms is the species plasma fre-

quency.
The coupling coefficient N (m, m′) determines the coupling

strength, which is a key parameter affecting the TID growth
rate and threshold (see Sec. II B). The calculation of the
coupling coefficient requires the specification of the initial
distribution function F (0)

s0 (v).
With the initial Maxwellian distribution, F (0)

s0 (v) =
1

vs,T
√

2π
exp(−v2/2v2

s,T ) (vs,T = √
Ts/ms is the thermal veloc-

ity of species s) the kinetic dispersion relation (Eq. (14)) can
be reduced to

D(ωm, km) = 1 +
∑

s

χs, (16)

where χs = W (bs )
(kλDs )2 is the susceptibilities of species s, bs ≡

ωm/kmvs,T , and W(b) = 1√
2π

∫
xe−x2/2dx

x−b is the dispersion func-
tion [30].

For IAW in singer ion species, be � 1, bi � 1, therefore

Re[χe] ≈ 1
k2λ2

De
, Re[χi] ≈ −ω2

pi

ω2 (1 + 3k2v2
i,T

ω2 ). One can get the
approximate form of the dispersion relation, which is just the
same as the dispersion relation obtained from fluid theory

ωr

k
=

√
ZTe

mi

√
1

1 + k2λ2
De

+ 3Ti

ZTe
. (17)

Also, one can get the linear Landau damping 

 =
√

π

8

ω3
r

k3v3
i,T

exp

(
− ω2

r

2k2v2
i,T

)
. (18)

It can also be obtained by numerically solving D(ωK , km) = 0,
where Re[ωK ], Im[ωK ] is the kinetic frequency and damping
of IAW.

Similarly, with the assumption of initial Maxwellian dis-
tribution, the coupling coefficient N (m, m′) in the wave-wave
coupling equation Eq. (15) can be reduced to

N (m, m′) =
km′′
4

∑
s

qs

ms

ω2
ps

v4
s,T

[(
bs

2 − 3
)
W(bs) + 1

]
∑

s

ω2
ps

v3
s,T

([1 − W(bs)]/bs + bsW(bs))
. (19)

B. Growth rate and threshold

Assuming that only three IAWs (pump IAW m, two daugh-
ters IAW modes m′, m′′) are involved in the coupling process.
The three IAWs satisfy km = km′ + km′′ , and a minute fre-
quency detuning � ≡ ωm′ + ωm′′ − ωm usually exists in real
situations. Then the TID coupling equation [Eq. (19)] can be
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reduced to

d

dt
ϕm = −i N(m, m′)ϕm′ϕm′′ei�t ,

d

dt
ϕm′ = −i N(m′, m)ϕmϕ∗

m′′e−i�t , (20)

d

dt
ϕm′′ = −i N(m′′, m)ϕmϕ∗

m′e−i�t ,

where ϕm, ϕ′
m, ϕ′′

m are the potential amplitudes of the pump
and two daughter IAWs, respectively. In the weak dispersion
region (kmλDe � 1), the three IAWs have the same phase
velocity ω/k = vp = Re[ωK ]/k, approximately.

In the limit of exact matching of the three waves with zero
detuning (� = 0), the growth rate of the corresponding TID
can be obtained as

γ0 =
√

N (m′, m)N (m′′, m)|ϕm| = Q(vp)
√

k′k′′|ϕm|, (21)

where coefficient Q(vp) is defined as

Q(vp) =

∣∣∣∣∣∣∣∣
1
4

∑
s

qs

ms

ω2
ps

v4
s,T

[(
b2

s − 3
)
W(bs) + 1

]
∑

s

ω2
ps

v3
s,T

([1 − W(bs)]/bs + bsW(bs))

∣∣∣∣∣∣∣∣
, (22)

has the unit of velocity, is an important physical quantity
reflecting the strength of mode-mode coupling.

Equation (21) clearly illustrates that the linear growth rate
γ0 ∝ √

k′k′′|ϕm|, which is consistent with the fluid theory
[17,18,24,25]. The difference between the final growth rate of
the kinetic theory and the other fluid theories is only reflected
in the coefficient function Q(vp). Figure 1 shows the function
Q(vp) from different models varies with plasma parameters
ZTe/Ti and k0λDe. The coefficient function Q(vp) of fluid
model in Ref. [17] is vp/2, where vp = √

ZTe/mi is the cold
ion acoustic speed. The fluid model could explain why the
most unstable wave modes during the TID process remain
the wave mode with half of the fundamental mode wave
number. But quantitatively, the fluid model significantly un-
derestimates the growth rate of the simulation. Furthermore,
Q(vp) in the fluid model keeps constant for different ZTe/Ti,
which is against the actual simulation.

In addition to the growth rate, the occurrence threshold is
another quantity of interest to researchers on TID. From Eq.
(20), one can get the threshold for the occurrence of TID by
frequency detuning:

|ϕm|detuning
th = |�|

2Q(vp)
√

km′km′′
. (23)

If the nonlinear frequency shifts of IAWs (the shifts of
three IAWs roughly cancel each other when evaluating �) are
disregarded, the detuning is only brought on by weak IAW
dispersion [17]. In the case where TID has maximum growth
(km′ = km′′ = km/2), from the fluid disperation Eq. (17), one
can obtain �/ωm = −3/8k2

mλ2
De, and TID threshold caused by

frequency detuning |ϕm|detuning
th = 3vpk2

mλ2
De

8Q(vp) . It is scaled linearly

with k2
mλ2

De, and inverse ratio with Q(vp). From Eq. (23), it is
showed that the threshold is mainly influenced by k0λDe and
has little dependence on ZTe/Ti. At parameter k2

0λ
2
De = 0.1,

Q(vp) ≈ 0.02, Eq. (23) gives |ϕm|detuning
th ≈ 0.05 is greater

FIG. 1. Coefficient function Q(vp) as a function of ZTe/Ti (a) and
k0λDe (b). The black dashed lines are the fluid model (Q(vp) = vp/2)
in Ref. [17], and the red solid lines are the kinetic model [Eq. (22)].

than our simulation |ϕm|sim
th ≈ 0.005 for the reason that the

actual detuning is smaller than the detuning from weak dis-
persion.

The wave is damped by collision damping and collisionless
Landau damping as it propagates. With the damping effect, the
three-wave coupling equation becomes

d

dt
ϕm + mϕm = −i N(m, m′)ϕm′ϕm′′ei�t ,

d

dt
ϕm′ + m′ϕm′ = −i N(m′, m)ϕmϕ∗

m′′e−i�t , (24)

d

dt
ϕm′′ + m′′ϕm′ = −i N(m′′, m)ϕmϕ∗

m′e−i�t ,

where m, m′ , m′′ are the damping of pump IAW and two
daughter IAWs, respectively. It can be approximated by the
linear Landau damping [see Eq. (18)]. The threshold due to
damping can be achieved as

|ϕm|damp
th =

√
m′m′′

Q(vp)
√

km′km′′
. (25)

In an actual simulation, the velocity distribution function is
flattened by particle trapping after the pump IAW is excited,
and the Landau damping is significantly lower than the initial
value, |ϕm|damp

th � |ϕm|detuning
th .
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For the most unstable case, km′ = km′′ = km/2, and two
daughter IAW have the same damping rate m′ = m′′ = ,
then one can obtain the growth rate after considering both
damping and detuning:

γ =
√

k2
mQ2(vp)|ϕm|2/4 − �2/4 − , (26)

and the total threshold for the occurrence of TID

|ϕm|tol
th = 2

Q(vp)km

√
2 + �2

4
. (27)

C. TID in the initial non-Maxwellian distribution

It is well known that when a particle system is at ther-
mal equilibrium, the particles follow the Maxwellian velocity
distribution. However, in actual physical processes, plasmas
are rarely in equilibrium. For example, in the laser fusion
experiment, excited waves trap particles, forming a plateau or
even a bump near the phase velocity [31]. In space plasma,
there are more high-velocity particles than there should be
if the space plasma are in equilibrium. The kappa distri-
bution is widely used to describe the distribution [32]. For
the laser-irradiated plasma in ICF, inverse bremsstrahlung is
the dominant heating mechanism. In 1980, Landon [33] pre-
dicted that super-Gaussian distributions would be produced
in plasmas heated by inverse bremsstrahlung absorption of
sufficiently strong electromagnetic radiation, which is called
the Landon effect [34–37].

Therefore, it is necessary to discuss the evolution of TID
coefficients when plasmas are in non-Maxwellian distribution.
To simplify the coefficient functions Q(vp), we introduce the
generalized Z function

Zs(ζs, F̄s0(z)) =
∫ +∞

−∞

F̄s0(z)

z − ζs
dz, (28)

where z, ζs, F̄s0(z) are normalized speed, phase velocity ωm/km

and the initial velocity distribution function with
√

2vs,T as the
normalized unit. According to the definition of the generalized
Z function, one can get the following equation:

∫ +∞

−∞

∂vFs0(v)

(v − vp)n dv

= 1

(
√

2vs,T )
n+1

∫ +∞

−∞

∂zF̄s0(z)

(z − ζs)n dz

= 1

(n − 1)!

1

(
√

2vs,T )
n+1

∂nZs(ζs, F̄s0(z))

∂nζs
; n � 1. (29)

With the above equation, the theoretical formulation of TID
under any initial distribution can be written in an elegant form
by the generalized Z function. Then the dispersion relation-
ship of IAW can be reduced to

D(ωm, km) = 1 −
∑

s

1

k2λ2
Ds

1

2

∂Zs(ζs, F̄s0)

∂ζs
, (30)

and the coefficient function Q(vp) can be represented as

Q(vp) = 1

2

∣∣∣∣∣∣∣
∑

s

qs

ms
ω2

ps
1

8v4
s,T

Z ′′′
s(ζs, F̄s0(z))∑

s
ω2

ps
1

(
√

2vs,T )
3 Z ′′

s(ζs, F̄s0(z))

∣∣∣∣∣∣∣. (31)

Once the initial distribution function is given, the fre-
quency of IAW, coefficient function Q(vp), TID growth
rate and threshold can be obtained by Eqs. (30), (31),
and (26), (27), respectively.

In the case of the initial Maxwellian distribution, F̄s0 =
F̄M = e−z2

/
√

π , one can obtain

Z ′
s(ζs, F̄M (z)) = −2W (bs =

√
2ζs),

Z ′′
s(ζs, F̄M (z)) = −2

√
2∂bsW (bs)

= 2
√

2([(1 − W (bs)]/bs + bsW (bs)),

Z ′′′
s(ζs, F̄M (z)) = −4∂2

bs
W (bs)

= −4[(bs
2 − 3)W (bs) + 1]. (32)

It is easy to verify that the generalized coefficient function
Eq. (31) is consistent with the previous result Eq. (22).

One may find that the generalized Z function is a Hilbert
transform of the velocity distribution function. Therefore, we
can calculate the nth-order derivative of the Z function by
calculating the Hilbert transform of the nth-order derivative
of the distribution function

∂nZs(ζs, F̄s0(z))

∂nζs
=

∫ +∞

−∞

∂n
z F̄s0(z)

z − ζs
dz. (33)

With the generalized Z function solver in Ref. [38], one can
numerically obtain the IAW frequency and the TID coefficient
function Q(vp) on a given arbitrary initial distribution.

To investigate the effect of the change in the initial distri-
bution function on the TID, we set both electrons and ions
in hydrogen plasma to be one-dimensional kappa distribu-
tion [39]:

Fκ (v) = 1√
πκθ2

s,T

(κ )

(κ − 1/2)

[
1 + 1

κ

v2

θ2
s,T

]−κ

, (34)

where θs,T =
√

2(κ−3/2)
κ

vs,T is the most probable speed,
(z) = ∫ +∞

0 t z−1e−t dt is the Gamma function. The kappa dis-
tribution converges to the Maxwellian distribution when the
kappa index κ goes to infinity. And the kappa index κ , has to
be larger than 3/2 to make sure the convergence of the second
moment of the kappa distribution. The normalized distribution
function (normalized with

√
2vs,T ) used to calculate the gener-

alized Z function is F̄κ (z) = 1√
π (κ−3/2)

(κ )
(κ−1/2) [1 + z2

κ−3/2 ]−κ .
Figure 2 shows the IAW frequency and the TID coefficient

function G(vp) under different κ . It is shown that the initial
distribution function has a significant influence on the TID,
which cannot be described by fluid model. The more low-
energy particles (with larger κ), the higher the frequency of
IAW. And, the increase in the number of low-energy electrons
suppresses TID when ZTe/Ti < 6, and promotes TID when
ZTe/Ti > 6.
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FIG. 2. (a) The kappa distribution with different κ . (b) Frequency of IAW and (c) Q(vp) as a function of ZTe/Ti, when k0λDe = 0.3162.

III. VLASOV SIMULATION

A. Simulation setup

The Vlasov method is well known for being free of statis-
tical noise and enabling clear simulation for ion phase space.
Therefore, we used the 1D Vlasov code VLAMA to study TID
in hydrogen plasma. The code has two versions of the solver,
hybrid Vlasov solver [18] and full Vlasov solver [30,40–45].
When there is no laser field, the only difference between the
two solvers is how the electron density ne is calculated. For the
full-Vlasov solver, ne = ∫

fe(x, v)dv, where fe is the velocity
distribution of electrons. For the hybrid-Vlasov solver, elec-
trons are described by Boltzmann distribution: [46,47] ne =
ne0 exp[e(ϕ + ϕd )/Te], where ne0 is the initial equilibrium
density, ϕ is the electrostatic potential related to the plasma
and ϕd (t, x) = ϕd (t ) cos[k0(x − vd

pt )] is external electrostatic
potential acting as a driver. The phase velocity of driving
potential vd

p is chosen from the fluid dispersion Eq. (17) to
excite pump IAWs with wave number k0 = 0.3162λ−1

De .
The same part of the two solvers is shown as follows.

The motion of ion species i is described by Vlasov-Poisson
equations

∂ fi

∂t
+ v

∂ fi

∂x
− qi∇(ϕ + ϕd )

mi

∂ fi

∂v
= 0, (35a)

∂2ϕ

∂x2
= −4πe(ni − ne ), (35b)

where fi is ion velocity distribution function for species i
initialized with the Maxwellian distribution, qi, mi, are ion
charge and ion mass. The density of kinetic ions is ob-
tained by ni = ∫

fi(x, v)dv. The external potential is given by
φd (t )
φd0

= 1
2 [tanh(R( 2t

tramp
− 1)) − tanh(R( 2(t−tstop )

tramp
− 1))], where

R = 4, tstopωpe = 4 × 104, trampωpe = 500. To solve the
Vlasov equation, Eq. (35a), the Vlasov equation can be split
into two advection equations

∂ fi

∂t
− qi∇(ϕ + ϕd )

mi

∂ fi

∂v
= 0, (36a)

∂ fi

∂t
+ vi

∂ fi

∂x
= 0. (36b)

Then, a third-order Van Leer scheme [48] is used to solve
the advection equations. In space, we have imposed periodic

boundary conditions, and a Fourier transform-based routine
has been used to solve the Poisson equation.

The phase space domain is [0, L] × [−vmax, vmax], where
the system length L = 8 × 2π/k0 for hybrid simulation, and
L = 2 × 2π/k0 for full-Vlasov simulation. It has been veri-
fied that the spatial scale has little influence on the rate of
TID growth when L � 2 × π/k0. The cut-off velocity vmax is
selected to be large enough to ensure that the integral of the
distribution function is ni, which was usually taken as 8vi,T ,
and a bigger value when Ti is small. The size of spatial grids
Nx = 64 × 8 for hybrid Vlasov simulation, Nx = 64 × 2 for
full Vlasov simulation, and the grids of velocity Nv = 2 ×
512 + 1, the time step dt = 0.05ω−1

pe for both the hybrid and
full Vlasov simulation. The driving amplitude eφd0/Te varies
from 10−4 to 10−1 to excite IAW of different amplitudes.

B. Simulation results

Figure 3 shows the TID process during the nonlinear evo-
lution of IAW with plasma parameters ZTe/Ti = 8, k0λDe =
0.3162, Zme/mi = 1/1836, L = 8 × 2π/k0. For more de-
tails, see our previous work Ref. [18] and the refer-
ences [17,19,49,50] therein. The evolution of IAWs can be
divided into three stages: stage I (0 < tωpe < 4 × 104), Res-
onantly excitation of ion acoustic wave; stage II (4 × 104 <

tωpe < 1.5 × 105), the slow subharmonics growth; stage III
(1.5 × 105 < tωpe), system evolution into turbulence.

In stage I, a driver of strength eϕd/Te = 0.01 is applied to
resonantly exciting IAW for a duration of 4 × 104ω−1

pe , the fre-
quency of excited pump IAW ωsim = 8.22 × 10−3ωpe, which
is near the kinetic frequency Re[ωK ] = 8.35 × 10−3ωpe, and
slightly above the fluid theory predicted the frequency ωF =
7.87 × 10−3ωpe. The wave number in the system is mainly
the fundamental mode (k = k0) and its second harmonic until
stage III [see Figs. 3(a) and 3(b)].

In stage II, after the driver is switched off, the electric field
amplitude remains approximately constant, and the average
amplitude 〈eλDeE/Te〉τ over the time interval τ , is 2.6 ×
10−2. The subharmonic modes (wave number k �= nk0, n =
1, 2, 3...) grow slowly exponentially due to the TID pro-
cess [see Fig. 3(d)] from the round-off errors [51] (about
2.2 × 10−16), and the growth rate was obtained by fit in the
time interval τ . The fitting time interval τ throughout this

025206-6



KINETIC MODEL AND VLASOV SIMULATION … PHYSICAL REVIEW E 108, 025206 (2023)

FIG. 3. IAW undergoing two-ion decay with parameters ZTe/Ti = 8, k0λDe = 0.3162, Zme/mi = 1/1836, L = 8 × 2π/k0, 〈eλDeE/Te〉τ ≈
2.6 × 10−2 by hybrid Vlasov simulation. (a) Evolution of the electric field, and Ed (t ) is the amplitude of external driving electric field.
(b) Evolution of the wave modes with wave number k = k0/2, k0. (c), (d) Evolution of the wave modes ln(|E (k, t )|). (e) Growth rate of all
wave number in the range 0 < k < 2k0. The blue crosses (labeled as Hybrid Vlasov) are the growth rates obtained by fitting in Fig. 3(d) over
the time interval τ ∈ [6 × 104, 1.2 × 105]ω−1

pe , the black triangle, red square are the maximum TID growth rates of Fluid and Kinetic model,
respectively. The red dotted line and purple solid line are fitting curves of two different theoretical models with c1 = 4.73 × 10−4, c2 =
2.75 × 10−4, k′ = k/k0.

article was selected in the initial linear growth stage, and
τ ∈ [6 × 104, 1.2 × 105]ω−1

pe for the parameters of Fig. 3.
When the power of the daughter and the pumping IAWs are

comparable, phase vortex merging occurs, [18] and then the
evolution of IAW enters stage III. As shown in Fig. 3(c), the
wave number spectral gradually transitions from discrete to
continuous, and the system eventually evolves into turbulence.

The comparison of simulation results and theoretical pre-
diction of maximum growth rate is shown in Fig. 3(d). The
kinetic model in this paper can get better prediction results
compared with the fluid model in Ref. [17]. The fluid model
can only describe the wave-wave interaction, while the kinetic
model can consider the effect of the change of distribution
function on TID, as a result, can describe the weak wave-
particle interaction and wave-wave interaction. In addition,
the effect of ion thermal pressure on TID is not taken into
account in the fluid model. Therefore, the kinetic model can
give a more accurate prediction.

Another interesting phenomenon shown in Fig. 3(d) is
that the growth rate as a function of k looks like a periodic
arch-bridge, is maximal at and symmetric about k = (n −
1/2)k0, n = 1, 2, 3 . . . , and is periodic in k0. This is a charac-
teristic feature of TID [15,17–19]. The periodic behavior has
not been adequately explained yet. From the previous section,
it is shown that γ ∝ √

k′(1 − k′), k′ = k/k0 in both the kinetic
theory of this paper and the previous fluid theory. It does not

fit the simulation results well and does not explain the growth
of subharmonic with wave number greater than k0 either.

In Ref. [8], a new parametric instability mechanism caused
by weakly trapped particles in the potential wells of a wave
train was first put forward to describe the decay of Trivelpiece-
Gould waves. Later, the same group further validated and
enriched this theory in experimental simulations [9–11]. Their
work was focused on Trivelpiece-Gould waves, but the idea
of their theory can also be used qualitatively to explain the
properties of waves with similar linear dispersion relations,
such as IAWs discussed in this article.

In this parametric instability, peaks in the wave poten-
tial move with respect to one another, some peaks move
closer, and others move away from each other. The motion
is replicated along the wave train, creating a periodic struc-
ture which is the growing daughter, the schematic diagram
is shown in Fig. 4. The model takes potential peaks ini-
tially at equally spaced positions sn = nλ0, where λ0 is the
wavelength of pump IAW. Between each peaks, there are
trapped particles with a uniform phase space density. Then
the peaks suffered some slight disturbance, slowly varying
from their initial position by a small amount δsn. The trapped
particles reflect from peaks, and apply a force to the nth
peaks δFn = β(δsn+1 − 2δsn + δsn−1), β can be thought of a
coefficient of negative compressibility for trapped particles.
Besides, the peak n also suffers a repulsion force δFRn =
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FIG. 4. Schematic of the wave train. The blue balls represent
wave peaks, the spring in the middle describes the restoring force
between the wave packets, K is the “spring constant”. sn is the
position of nth wave peak, and the initial distance between wave
packets is λ0 = 2π/k0.

−K[(δsn − δsn−1) − (δsn+1 − δsn)] from the adjacent peaks,
K is the “spring constant”. Then the Newton’s law

Mδs̈n = δFn + δFRn (37)

can be employed to calculate the movement of the nth peak,
where M is the inertial mass of the nth peak. The values
of β,K,M of Trivelpiece-Gould waves can be obtained fol-
lowing the way of Refs. [8,11]. Assuming the perturbation
satisfaction form δsn ∝ exp(iksn − iωt ), which is consis-
tent with Floquet’s theorem [52], then one can obtain the
dispersion relations

ω2 = 4
K − β

M sin2(kπ/k0). (38)

The instability occurs when the destabilizing negative com-
pressibility β of weak trapped particle overcome the repulsive
spring constant K. Then the growth rate of this instability can
be obtained as

γ =
√

2(β − K)

M | sin
(
k′π

)|, (39)

where k′ = k/k0 is the normalized wave vector.
As shown in Fig. 3(e), the typical characteristic of TID,

the curve of γ -k during the TID process can be perfectly
described by this instability. First, the periodic arch-bridge
growth rate curve is fitted by the above equation very well.
Besides, the instability growth rate peaks at k = n × k0/2 and
is independent of the parameters ZTe/Ti, k0λDe, as well as
IAW amplitude is also predicted by the above equation.

To further verify the correctness of our theory and test
the parameter space to which the theory applies, we simulate
the TID process in different ZTe/Ti by both full kinetic and
hybrid kinetic Vlasov solver. Figure 5 shows the results with
parameters k0λDe = 0.3162, ZTe/Ti = 10, 11, 15, 20. In such
medium ZTe/Ti parameter region, the results of the hybrid
Vlasov solver are close to those of the full kinetic Vlasov
solver, suggesting that the effect of electron kinetics on the
TID coupling coefficient is not significant, and hybrid sim-
ulation is sufficient to describe the TID process. When the
amplitude of the driven ion acoustic wave is not large (linear
parameter region), there is a linear dependence between the

FIG. 5. The scaling of γmax with average electric field amplitude 〈eλDeE/Te〉τ with parameters k0λDe = 0.3162, (a) ZTe/Ti = 10,
(b) ZTe/Ti = 11, (c) ZTe/Ti = 15, (d) ZTe/Ti = 20. The red stars and blue diamonds are the growth rate of full Vlasov and hybrid Vlasov
simulations; the red and blue lines are the fitting line, and TID coefficient function Q(vp) is obtained from the slope of the fitting lines and
Eq. [21].

025206-8



KINETIC MODEL AND VLASOV SIMULATION … PHYSICAL REVIEW E 108, 025206 (2023)

FIG. 6. The scaling of γmax with average electric field amplitude
〈eλDeE/Te〉τ with parameters k0λDe = 0.3162, with small ZTe/Ti:
(a) ZTe/Ti = 2.5, (b) ZTe/Ti = 5.

growth rate and IAWs amplitude, which is consistent with our
theory. When the amplitude of IAW is larger than a threshold
(nonlinear parameter region), the growth rate gradually satu-
rates and no longer increases with E, as shown in Fig. 5(c).
The threshold Eth can be estimated by setting the trapping

width 2
√

qiEth

k0mi
equal to the phase velocity vp. This yields Eth

approximately equals to k0/4 ≈ 0.08, which is close to the
simulation.

In the case of large ZTe/Ti, such as ZTe/Ti = 30, 50, the
phase velocity vp is much greater than vi,T , a wide plateau
near the phase velocity is easily formed due to particle trap-
ping, thereby the distribution function deviates substantially
from the Maxwell distribution near the phase velocity. The
analytic expressions of the coefficient functions Q(vp) with
initial platform distribution is shown to be dependent on
trapped width which is related to the amplitude of IAWs.
Therefore, the growth rate is no longer scaled linearly with
the IAW amplitude. It is verified by our Vlasov simulation,
the result is not shown here, for similar results are available in
Ref. [17].

In the case of small ZTe/Ti (such as ZTe/Ti = 2.5, 5), the
result is shown in Fig. 6. It can be observed that the γ scaled
linearly with E holds only in very small IAW amplitude,
which suggests that TID is weak and not such important at
these parameters. The reason is explained as follows.

FIG. 7. Kinetic nonlinear frequency shift assuming adiabatic
wave excitation for all species for kλDe = 0.3162.

According to Pesme’s fluid seven-wave theory, [22] the
driven IAW has three distinct branches instabilities (H2,
modulation instability and TID), each with its corresponding
frequency mismatch range. For TID, it has a cutoff mis-
match δωco/ωiaw ∼ 3k2

mλ2
De/8 + eϕm/Te. When the frequency

mismatch δωmis/ωm is greater than the cut-off mismatch
δωco/ωiaw, TID cannot occur. In our simulation, the driver
frequency ωdri is chosen from the plasma linear fluid disper-
sion relation ωflu, which is close to the numerical solution
of kinetic dispersion relation ωkin, the plasma response fre-
quency ωres can be modeled by nonlinear frequency shift
δωkin. Then we have ωres = ωkin + δωkin, ωdri = ωflu ≈ ωkin,
therefore the frequency mismatch can be obtained by kinetic
nonlinear frequency shift ωmis = ωdri − ωres ≈ −δωkin. The
kinetic nonlinear frequency shift δωkin can be modeled by the
expression δωkin = ηωiaw(eφm/Te)1/2. The parameter η, can
be decomposed as η = ηi + ηe, where ηi and ηe corresponding
the contributions of ions and electrons, which can be obtained
by Eq. (4) in Ref. [53]. Figure 7 shows the kinetic nonlinear
frequency shift parameter η of all species. The contribution of
electrons to the kinetic frequency shift is always positive, and
the parameter ηe slowly increases from 0.12 to 0.17 as ZTe/Ti

increases. The contribution of ions to the kinetic frequency
shift is always negative, and the parameter ηi gradually in-
creases from −0.14 to near zero as ZTe/Ti increases. The total
frequency shift parameter η change from a negative value to
close to ηe.

At small ZTe/Ti region (ZTe/Ti � 5), both ηi and ηe are
negative, δωmis = −δωkin = −η(eϕm/Te)1/2 is positive, and
the IAW amplitude that can undergo TID is greatly limited
by the condition δωmis < δωco, therefore TID growth rate
is greatly weaker than the result of the medium ZTe/Ti pa-
rameter (5 < ZTe/Ti � 20); Besides, because |ηi| > |η| when
ZTe/Ti � 5, the IAW amplitude allowed by TID in Hybrid-
Vlasov simulation is lower than that in the full-Vlasov
simulation. All of this aforementioned phenmena are in high
qualitative agreement with our simulation results (see Figs. 5
and 6).

Figure 8 and Table I show the comparison of theoretical
and simulation results of the coefficient function of TID.
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FIG. 8. Comparison of theoretical and simulation results of the
coefficient function TID.

As we can see, Q(vp) of the simple fluid model does not
change with ZTe/Ti, and underestimated the simulation results
at medium ZTe/Ti region. In Ref. [17], a similar result, scaling
of maximum growth rate of subharmonic (The correspond-
ing wave number k = k0/2) with ZTe/Ti, in the parameter
〈|eϕ/Te|〉τ ∼ 0.1 is shown. It should be noted that when
ZTe/Ti > 20, the maximum growth rate γmax is no longer pro-
portional to 〈|eϕ/Te|〉τ (explained in Sec. II B), and in the case
of ZTe/Ti < 8, 〈|eϕ/Te|〉τ ∼ 0.1 is beyond the linear growth
region of γmax versus |eϕ/Te|. Therefore, the Q(vp) obtained
from the fitting could describe the characteristics of TID bet-
ter. In medium ZTe/Ti region (8 � ZTe/Ti � 20), the kinetic
model have a high level of agreement with the simulation
results. In large ZTe/Ti region (ZTe/Ti > 20), Q(vp) is related
with IAW amplitude. Hence, it is not shown here. In small
ZTe/Ti region, TID is very weak. due to large frequency mis-
match δωmis limits the IAW amplitude that can undergo TID.

Although TID is weak and of less significance when ZTe/Ti

is small, it cannot be denied that there are still some unclear
physics within this parameter interval: the Q(vp) obtained
by the full Vlasov simulation and hybrid simulation differ
somewhat, and there is also a deviation from theories. Here,
we give some possible speculative guesses qualitatively. I. As
it can be seen in Fig. 6, the hybrid-Vlasov simulation result
does not maintain good linearity, and the Q value obtained
by linear fitting is highly dependent on the selection of fitting
interval; II. Under this parameter, the TID growth rate is small,
some other instabilities, such as H2 instability and modulation
instability may play an important role, resulting in the Q
obtained from simulation fitting being larger than our theory.

III. The IAW dispersion relation is near-linear and the initial
amplitude of TID’s daughter wave is small, the corresponding
nonlinear frequency shift can be ignored. Therefore, the fre-
quency shift of the pump wave δωkin approximately equal to
the frequency detuning � of Eq. (20). According to Eq. (26)
and Ref. [28], when the frequency detuning � is comparable
to the TID growth rate, it can significantly suppress or even
prevent TID. Under low ZTe/Ti parameters, and |δωkin| in
hybrid simulations is larger than full Vlasov simulation, it
will cause the growth rate of hybrid simulations to be lower
than that of full kinetic simulations; At medium ZTe/Ti region
(8 <= ZTe/Ti <= 20), a large frequency shift requires a large
fundamental amplitude, but at this time the TID growth rate
itself is very large. Therefore, although the kinetic effect of
electrons causes differences between ηi and η, it has little
effect on TID growth rate.

IV. DISCUSSION

Although the kinetic model is successful with moderate
ZTe/Ti parameters and finite amplitude pumping waves. It
should be noted that all theories have their applicable param-
eter range. The fluid models can only describe wave-wave
interaction. Our kinetic model can describe wave-wave in-
teraction and weak wave-particle interaction, but can hardly
deal with strong wave-particle interactions. The derivation
of the kinetic model assumes (I) that the detuning is much
smaller than the pump wave frequency �m,m′ � ωm, (II) that
all trapping effects can be described perturbatively, thereby,
the theory can only describe TID of finite amplitude IAW, (III)
harmonics of the pump IAW are weak, and do not participate
in the decay process.

In both the fluid and kinetic models, the growth rate
is scaled linearly with pump IAW amplitude. Theoretically,
changes in the plasma parameters (such as ZTe/Ti, k0λDe) will
only affect the coupling coefficients Q(vp) and will not affect
the linear dependence of γ and ϕ.

However, in some extreme parameter space, γ ∝ ϕn, n �=
1 can be observed. For instance, when the pump IAW is
very strong, the detuning �m,m′ � ωm is invalid, thereby, the
kinetic model is no longer applicable and the growth rate
will no longer satisfy γ ∝ ϕm. Also, when ZTe/Ti > 20, the
growth rate is shown to scale with a higher power of ϕm. In
that case, a wide plateau near the phase velocity is easy to
form, and the wave-particle interaction is such strong that all
the weak turbulence theories cannot describe the simulation
results. Besides, if the harmonics of pump IAW are strong

TABLE I. Summary of theoretical and simulation results of the coefficient function Q(vp). Here, vp = √
ZTe/mi, Re[ωK ]/k is used to

calculate theoretical Q(vp) for fluid model and Kinetic model, respectively.

ZTe/Ti 2.5 5 8 10 11 15 20

Q(vp) of Vlasov simulation Full Vlasov 0.0552 0.0409 0.0276 0.0177 0.0246 0.0223 0.0170
Hybrid Vlasov 0.0200 0.0200 0.0222 0.0230 0.0227 0.0165 0.0153

Q(vp) of two models Fluid Model 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117
Kinetic Model 0.0170 0.0194 0.0209 0.0213 0.0214 0.0208 0.0190

vp used in two models Fluid Model 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233
Kinetic Model 0.0364 0.0307 0.0278 0.0267 0.0263 0.0251 0.0243
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enough to participate in the decay, it may suppress the insta-
bility according to the multiwave version of fluid three-wave
parametric resonance theory of Trivelpiece-Gould waves [54].
In addition, if the daughter IAW intensity is close to the pump
IAW, the power of the daughter IAWs cannot be ignored when
calculating the TID growth rate (Eq. [21]). There is an extreme
case that the daughter IAW mode is not growing anymore
when its intensity is the same as pump IAW mode, which leads
to n < 1.

V. SUMMARY

In this paper, a kinetic model has been developed to predict
the decay of IAW. Both full kinetic Vlasov and hybrid Vlasov
simulations were taken to verify this theory. For 8 � ZTe/Ti �
15, the predictions of this model can be well matched to both
full kinetic Vlasov and hybrid Vlasov simulation. In addition,
this model is extended to describe TID in the case of arbitrary

initial distribution with the help of the generalized Z function.
The comparison of the results by the initial distribution at
different κ shows that the initial distribution function has a
significant impact on the TID, which cannot be adequately
described by any fluid model. Besides, we find the TID growth
rate curve γ -k formed as | sin(kπ/k0)| for the first time. We
have established the results in a collisionless 1D plasma, and
multidimensional and collisional effects remain to be investi-
gated.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX A: DERIVATION OF THE COUPLING EQUATION

To derivation of the coupling equation, one can substitute the first-order equation Eqs. (12) and (13) into Eq. (7), then obtain

∂τ0 f (2)
s,m(v, τ0, τ1) + 1

2

qs

ms
∂τ1

[
ϕm(τ1)∂vF (0)

s,0 (v)

v − ωm/km
e−iωmτ0 + ϕ−m(τ1)∂vF (0)

s,0 (v)

v + ω∗
m/km

eiω∗
mτ0

]

+ ikmvf (2)
s,m(v, τ0, τ1) − ikmqs

ms
ϕ(2)

m (τ0, τ1)∂vF (0)
s,0 (v)

= iq2
s

2m2
s

∞∑
m′=−∞

(km − km′ )ϕ(1)
m−m′ (τ0, τ1)∂ν

[
ϕm′ (τ1)∂vF (0)

s,0 (v)

v − ωm′/km′
e−iωm′ τ0 + ϕ−m′ (τ1)∂vF (0)

s,0 (v)

v + ω∗
m′/km′

eiω∗
m′ τ0

]
. (A1)

The expression ∂vF (1)
0 (v, τ0, τ1) = 0 is used to obtain the above equation. For the parameter region we are interested in, the

detuning is smaller compared to the frequency of IAWs, (ωm′ + ωm′′ − ωm) � ωm. Thus, we can define the detuning � as

ωm′ + ωm′′ − ωm = ε�, τ0(ωm′ + ωm′′ − ωm) = ετ0� = τ1�. (A2)

With the above definitions and Eq. (12), one can further simplify Eq. (A1) as

∂τ0 f (2)
s,m(v,τ0,τ1)+ikmvf (2)

s,m(v,τ0,τ1)− ikmqs

ms
ϕ(2)

m (τ0,τ1)∂vF (0)
s,0 (v)

= −1

2

qs

ms
∂τ1

[
ϕm(τ1)∂vF (0)

s,0 (v)

v − ωm/km
e−iωmτ0 + ϕ−m(τ1)∂vF (0)

s,0 (v)

v + ω∗
m/km

eiω∗
mτ0

]

+ iq2
s

4m2
s

∞∑
m′=−∞

km′′ϕm′′ϕm′∂ν

[
∂vF (0)

s,0 (v)

v − ωm′/km′

]
e−iωmτ0−i�τ1 + iq2

s

4m2
s

∞∑
m′=−∞

km′′ϕ∗
m′′ϕm′∂ν

[
∂vF (0)

s,0 (v)

v − ωm′/km′

]
e−i(ωm′ −ω∗

m′′ )τ0

+ iq2
s

4m2
s

∞∑
m′=−∞

km′′ϕ∗
m′′ϕm′∂ν

[
∂vF (0)

s,0 (v)

v − ωm′/km′

]
e−i(ωm′ −ω∗

m′′ )τ0 + iq2
s

4m2
s

∞∑
m′=−∞

km′′ϕm′′ϕ∗
m′∂ν

[
∂vF (0)

s,0 (v)

v + ω∗
m′/km′

]
ei(ω∗

m′−ωm′′ )τ0

+ iq2
s

4m2
s

∞∑
m′=−∞

km′′ϕ∗
m′′ϕ

∗
m′∂ν

[
∂vF (0)

s,0 (v)

v + ω∗
m′/km′

]
eiω∗

mτ0+i�∗τ1 , (A3)

where km′′ = km − km′ . Then one can perform a Laplace transform on Eqs. (A3) and (9) for fast time variable τ0 by

f̂ (2)
k (p, τ1) =

∫ ∞

0
dτ0 f (2)

k (τ0, τ1)e−pτ0 , f (2)
k (τ0, τ1) = 1

2π i

∫
C

dτ0 f̂ (2)
k (p, τ1)epτ0 . (A4)
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Choosing a suitable time τ0 as the starting moments to make sure f (2)
m (ν, τ0 = 0, τ1) = 0, then from Eq. (A3), one can get

(p + ikmv)f̂ (2)
s,m(p) − iqskm

ms
ϕ̂(2)

m (p)∂vF (0)
s0

= − qs

2ms

1

p + iωm

∂τ1ϕm(τ1)∂vF (0)
s0

v − ωm/km
− qs

2ms

1

p − iω∗
m

∂τ1ϕ
∗
m(τ1)∂vF (0)

s0

v + ω∗
m/km

+ i

4

q2
s

m2
s

∑
m′=−∞

ϕm′ϕm′′∂v

[
km′′∂vF (0)

s0

v − ωm′/km′

]
e−�τ1

p + iωm
+ i

4

q2
s

m2
s

∑
m′=−∞

ϕm′ϕ∗
m′′∂v

[
km′′∂vF (0)

s0

v + ω∗
m′/k∗

m′

]
1

p + iωm′ − iω∗
m′′

+ i

4

q2
s

m2
s

∑
m′=−∞

ϕ∗
m′ϕm′′∂v

[
km′′∂vF (0)

s0

v + ω∗
m′/k∗

m′

]
1

p − iω∗
m′ + iωm′′

+ i

4

q2
s

m2
s

∑
m′=−∞

ϕ∗
m′ϕ

∗
m′′∂v

[
km′′∂vF (0)

s0

v + ω∗
m′/k∗

m′

]
e�∗τ1

p − iω∗
m

. (A5)

Performing the Laplace transform on the second-order Poisson equation, Eq. (9), one can obtain

ϕ̂(2)
m (p, τ1) = k−2

m 4π

∫ ∑
s

qsns0f̂ (2)
s,m(v, p, τ1)dv. (A6)

Substitute Eq. (A5) into Eq. (A6), using Eq. (14) to simplify the result, then obtain

ϕ̂(2)
m (p, τ1) = k−2

m

D(p, km )

∫ ∑
s

[
ω2

psdv

p + ikmv
− 1

2

1

p + iωm

∂τ1ϕm(τ1)∂vF (0)
s0

v − ωm/km
− 1

2

1

p − iω∗
m

∂τ1ϕ
∗
m(τ1)∂vF (0)

s0

v + ω∗
m/km

+ i

4

qs

ms

∑
m′=−∞

ϕm′ϕm′′∂v

[
km′′∂vF (0)

s0

v − ωm′/km′

]
e−�τ1

p + iωm
+ i

4

qs

ms

∑
m′=−∞

ϕm′ϕ∗
m′′∂v

[
km′′∂vF (0)

s0

v + ω∗
m′/k∗

m′

]
1

p + iωm′ − iω∗
m′′

+ i

4

qs

ms

∑
m′=−∞

ϕ∗
m′ϕm′′∂v

[
km′′∂vF (0)

s0

v + ω∗
m′/k∗

m′

]
1

p − iω∗
m′ + iωm′′

+ i

4

qs

ms

∑
m′=−∞

ϕ∗
m′ϕ

∗
m′′∂v

[
km′′∂vF (0)

s0

v + ω∗
m′/k∗

m′

]
e�∗τ1

p − iω∗
m

]
.

(A7)

The inverse Laplace transform back to time space is then required. The results include secular and nonsecular terms (grow in
an unbounded way). On the right-hand side (RHS) of the above equation, the first, second, third, and sixth terms of the inverse
Laplace transform are secular, while the fourth and fifth terms of the transform are nonsecular. The complex conjugate of the
inverse Laplace transform results of the first and third terms, is the second and sixth terms of the RHS of Eq. (A7), respectively.
The inverse Laplace transform on the first terms on the RHS of the Eq. (A7) is given by

L

{
−k−2

m

D(ωm, km)

∫ ∑
s

[
ω2

psdv

p + ikmv

1

2

1

p + iωm

∂τ1ϕm(τ1)∂vF (0)
s0

v − ωm/km

}

= −k−2
m

∑
s

∫
dv

ω2
ps∂τ1ϕm(τ1)∂νF (0)

s0

v − ωm/km

1

2

∫
C

d p/(2π i)

p + ikmν

epτ0

D(p, km)(p + iωm)


 −k−2
m

∑
s

∫
dν

ω2
ps∂τ1ϕm(τ1)∂νF (0)

s0

v − ωm/km

1

2

∫
C

d p/(2π i)

p + ikmν

epτ0

∂pD(p, km )
∣∣

p=−iωm
(p + iωm)2

= −k−2
m

∑
s

∫
dν

ω2
ps∂τ1ϕm(τ1)∂νF (0)

s0

v − ωm/km

1

2

iτ0e−iωmτ0

km(v − ωm/km)∂pD(p, km)
∣∣

p=−iωm

= 1

2
τ0e−iωmτ0∂τ1ϕm(τ1)

∑
s

[
ik−2

m ω2
ps

∂pD(p, km)
∣∣

p=−iωm

∫
dv

∂vF (0)
s0

km(v − ωm/km)2

]

= −1

2
τ0e−iωmτ0∂τ1ϕm. (A8)
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The above equation is obtained by only keeping the secular term with the approximate relationship given below∫
C

epτ0/(2π i)

(p + ikmv)(p + iωm)D(p, km)
d p =

∫
C

epτ0/(2π i)

(p + ikmv)(p + iωm)2∂pD(p, km)|p=−iωm

ds

= − e−ikmvτ0

(ωm − kmv)2∂pD(p, km )|p=−iωm

+ e−iωmτ0

(ωm − kmv)2∂pD(p, km)|p=−iωm

− iτ0e−iωmτ0

(kmv − ωm)∂pD(p, km)|p=−iωm

≈ − iτ0e−iωmτ0

(kmv − ωm)∂pD(p, km)|p=−iωm

. (A9)

Using a similar approach, the inverse Laplace transform on the third terms of RHS of Eq. (A7) can be obtained as

L

{
k−2

m

D(p, km)

∫ ∑
s

[
ω2

psdv

p + ikmv

i

4

qs

ms

∑
m′=−∞

ϕm′ϕm′′∂v

[
km′′∂vF (0)

s0

v − ωm′/km′

]
e−�τ1

p + iωm

]}

= k−2
m

i

4

∑
m′=−∞

ϕm′ϕm′′e−�τ1

∫
dv

∑
s

[
qs

ms
ω2

pskm′′∂v

[
∂vF (0)

s0

v − ωm′/km′

] ∫
epτ0/(2π i)d p

D(p, km )(p + ikmv)(p + iωm)

= k−2
m

i

4

∑
m′=−∞

ϕm′ϕm′′e−�τ1

∫
dv

∑
s

[
qs

ms
ω2

pskm′′∂v

[
∂vF (0)

s0

v − ωm′/km′

]
−iτ0e−iωmτ0

∂pD(p, km )|p=−iωm (kmv − ωm)

= 1

4
τ0e−iωmτ0

∑
m′=−∞

ϕm′ϕm′′e−�τ1

∫
dv

∑
s

[
qs

ms
ω2

pskm′′∂v

[
∂vF (0)

s0

v − ωm′/km′

]
dv

(kmv − ωm)

1

k2
m∂pD(p, km)|p=−iωm

. (A10)

For the sake of removing the secular terms from RHS of Eq. (A7), the following equations must be satisfied:

d

dt
ϕm = −i

∑
m′

N (m, m′)ϕm′ϕm′′e−i�t , N (m, m′) = M(m, m′, m′′ = m − m′)
2k2

m∂ωD(ω, km)|
ω=iωm

,

M(m; m′, m′′) =
∑

s

qs

ms
ω2

ps

∫
∂v

[
km′′∂νF (0)

s0

v − ωm′/km′

]
dv

kmv − ωm
, km = km′ + km′′ ; � = ωm′ + ωm′′ − ωm. (A11)

This is the wave-wave coupling equation of TID. When kλDe � 1, IAWs have weak dispersion, ωm/km ≈ ωm′/km′ , then
M(m; , m′, m′′) can be simplified as

M(m; m′, m′′) = k′′

km

∑
s

qs

ms
ω2

ps

∫
∂νF (0)

s0 dv

(v − ωm/km)3 . (A12)

With the definition of D(ωm, km) in Eq. (14), the denominator in N (m, m′) can be reduced to 2k2
m∂ωD(ω = ωm, km) =

−∑
s

2ω2
ps

km

∫
dv

∂vF (0)
s0 (v)

(v−ωm/km )2 . Then the coupling coefficient can be reduced to

N
(
m, m′) = km′

2

∑
s

qs

ms
ω2

ps

∫ ∂νF (0)
s0 (v)

(v−ωm/km )3 dv

∑
s

ω2
ps

∫ ∂vF (0)
s0 (v)

(v−ωm/km )2 dv
. (A13)

APPENDIX B: THE COUPLING EQUATION FOR INITIAL MAXWELLIAN DISTRIBUTION

By assuming the initial Maxwellian distribution, F (0)
s0 (v) = 1

vs,T
√

2π
exp(−v2/2v2

s,T ), the coupling coefficient can be further

reduced to

M(m; m′, m′′) = k′′

km

∑
s

qs

ms
ω2

ps

∫
∂νF (0)

s0 dv

(v − ωm/km)3 = − k′′

km

∑
s

qs

ms

ω2
ps√

2πv3
s,T

∫
v exp

[−v2/2v2
s,T

]
dv

(v − ωm/km)3

= − k′′

km

∑
s

qs

ms

ω2
ps

2v4
s,T

∂2
bs

W(bs) = − k′′

km

∑
s

qs

ms

ω2
ps

2v4
s,T

[
(
bs

2 − 3
)
W(bs) + 1] (B1)
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where bs ≡ ωm/km/vs,T is the ratio of phase velocity to thermal velocity of species s. The following relation: ∂2
b W(b) = (b2 −

3)W(b) + 1 is used in the above equation, where W(b) = 1√
2π

∫ +∞
−∞

xe−x2/2dx
x−b = 1 + (b/

√
2)Z (b/

√
2). With the definition of

D(ωm, km) in Eq. (14), the denominator in N (m, m′) can be reduced to

2k2
m∂ωD(ω, km)

∣∣
ω=ωm

= −2

km

√
2π

∑
s

ω2
ps

v3
s,T

∫
v exp

(−v2/2v2
s,T

)
(v − ωm/km)2 dv

= −2

km

∑
s

ω2
ps

v3
s,T

∂bs W(bs) = 2

km

∑
s

ω2
ps

v3
s,T

([1 − W(bs)]/bs + bsW(bs)), (B2)

where −([(1 − W (b)]/b + bW (b)) is used to get the above equation. Finally, we can obtain the coupling equations for the case
of detuning �m,m′/ωm � 1 and kmλDe � 1 for the initial Maxwellian distribution:

d

dt
ϕm = −i

∑
m′

N (m, m′)ϕm′ϕm′′e−i�t ,

N (m, m′) =
km′′
4

∑
s

qs

ms

ω2
ps

v4
s,T

[(
bs

2 − 3
)
W(bs) + 1

]|bs=ωm/vT km∑
s

ω2
ps

v3
s,T

([1 − W(bs)]/bs + bsW(bs))
,

km = km′ + km′′ ; � = ωm′ + ωm′′ − ωm. (B3)
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