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Nonthermal velocity distributions with much greater tails than a Maxwellian have been observed for radical
atoms in plasmas for a long time. Historically, such velocity distributions have been modeled by a two-
temperature Maxwell distribution. In this paper, I propose a model based on collisional energy cascade, which
has been studied in the field of granular materials. In the collisional energy cascade, a particle ensemble
undergoes energy input at the high-energy region, entropy production by elastic collisions among particles,
and energy dissipation. For radical atoms, energy input may be caused by the Franck-Condon energy of
molecular dissociation or charge-exchange collision with hot ions, and the input energy is eventually dissipated
by collisions with the walls. I show that the steady-state velocity distribution in the collisional energy cascade is
approximated by the generalized Mittag-Leffler distribution, which is a one-parameter extension of the Maxwell
distribution. This parameter indicates the degree of the nonthermality and is related to the relative importance of
energy dissipation over entropy production. This model is compared with a direct molecular dynamics simulation
for simplified gaseous systems with energy input, as well as some experimentally observed velocity distributions
of light radicals in plasmas.
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I. INTRODUCTION

Nonthermal velocity distributions have been observed for
neutral atoms in plasmas for a long time [1–5]. Spectral pro-
files with much larger wings than a Maxwellian have been
frequently observed. While this is typically most apparent
in hydrogen atomic emission lines, as their Doppler broad-
ening is easily observed with a conventional high-resolution
spectrometer, similar nonthermal velocity distributions have
been reported for other atoms [6]. The origin of such a
nonthermal velocity distribution has been attributed to gen-
eration processes of energetic atoms, such as Franck-Condon
energy obtained through molecular dissociation, and charge-
exchange collision with hot ions [6–11]. Many groups have
empirically approximated these nonthermal energy distribu-
tions by a sum of two (or more) Maxwell distributions [2,4,6].
However, the two-temperature model does not consider the
relaxation of energetic atoms. Furthermore, this model does
not have a direct connection to a physical quantity, and thus
it is difficult to extract knowledge from the observed non-
thermal velocity distribution. Some Monte Carlo simulations
also have reproduced the observed nonthermal velocity dis-
tribution [11–13], but it is not always applicable as all the
physics quantities should be known beforehand for the system
of interest.

In this paper, I propose to model such nonthermal velocity
distributions of neutral atoms focusing more on the energy
dissipation or relaxation processes than the energy input
processes. In particular, the application of the collisional-
energy-cascade model is proposed, which has been studied in
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the field of granular gaseous. This model has been originally
proposed by Ben-Naim et al. [14–16], where they consider
the three essential properties in the system: (1) a heat source
in the high-energy limit, (2) energy dissipation, and (3) elastic
collision among particles. They point out that, under this con-
dition, the steady-state velocity distribution has a power-law
tail in the high-velocity region.

For radical atoms in plasmas, the heat source may
be caused by the Franck-Condon energy of molecular
dissociation or by charge-exchange collision with hot ions,
while this input energy is eventually dissipated by the wall
collisions. Elastic collision among atoms may randomize
the kinetic energy. This similarity suggests the applicability
of this collisional-energy-cascade model to the velocity
distribution of radical atoms in plasmas, which is the purpose
of this paper. Although the steady-state solution of this
model has not been reported previously, in this paper I show
that this is approximated by the generalized Mittag-Leffler
(GML) distribution, which is a one-parameter extension
of the Maxwell distribution. The GML distribution has no
analytic representation except for a few special cases, but
its Laplace transform can be simply written by L fGML (s) =∫ ∞

0 fGML (E ) e−sE dE = [1 + 2D−1 (〈E〉α s)α ]−D/2α . Here
〈E〉α > 0 is the energy scale and D is the spatial dimension
of the system. 0 < α � 1 is the stability parameter related
to the relative importance of the dissipation process, and
α = 1 corresponds to the thermal system, where the GML
distribution reduces to the Maxwell distribution. Thus, α can
be seen as a dimensionless parameter representing the degree
of nonthermality. In this paper, this steady-state solution will
be compared with a direct molecular dynamics simulation, as
well as some experimental observations.
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This paper is organized as follows. In Sec. II, the kinetic
theory of gaseous particles with energy dissipation and its
connection to the GML distribution is discussed. In Sec. III B,
the direct molecular simulations for a simplified situations
will be presented. In Sec. IV, several previous measurements
for the velocity distribution of atoms in plasmas will be pre-
sented and compared with a GML distribution.

II. THEORY

In this section, a theory leading the GML distribution is
discussed. Also, a numerical computation of the GML distri-
bution, as well as the velocity distribution corresponding to
the GML energy distribution, is described.

A. Derivation of GML energy distribution for Maxwell gases

Consider an isotropic and spatially uniform ensemble of
particles undergoing elastic collisions (i.e., no energy dissipa-
tion at this point) in D-dimensional space. A Maxwell-type
interparticle interaction is assumed for now. Particle ensem-
bles with other interactions will be discussed in Sec. II C.
With a Maxwell interaction, the kinetic energies of two col-
liding particles, E1 and E2, can be thought of as random
samples from the energy distribution f (E ). For many collision
systems, the postcollision energy E ′

1 can be written by the
following form:

E ′
1 ← xE1 + yE2, (1)

where x, y ∈ [0, 1] are random numbers following the prob-
ability distribution p(x, y), which are determined by the
collision geometry, such as the scattering angle and the re-
lation between the relative and center-of-mass velocities. In a
steady state, E ′

1 should also follow f (E ).
Several forms of p(x, y) have been proposed. The sim-

plest example of valid p(x, y) is the so-called diffuse collision
[17,18], where after the elastic collision the two energies will
be completely randomized, i.e., no memory effect of precolli-
sion energies,

p(x, y) = B

(
x

∣∣∣∣D

2
,

D

2

)
δ(x − y), (2)

where B(x|a, b) = xa−1(1 − x)b−1/B(a, b) is beta distribution
with beta function B(a, b) = ∫ 1

0 xa−1(1 − x)b−1dx and δ(t ) is
Dirac’s delta function. The p-q model [17,19], which takes
the memory effect into account, as well as its linear su-
perposition, also give a valid p(x, y) (see Appendix for the
detailed discussion of this probabilistic representation). Note
that the symmetry of the elastic collision leads p(x, y) =
p(1 − y, 1 − x) as a general property, which results in

∫
(x +

y)p(x, y)dx dy = 1 for any valid p(x, y).
In the steady state, Eq. (1) can be written in the following

form with the Laplace transform of the energy distribution
L f (s) ≡ ∫ ∞

0 f (E )e−sE dE :

L f (s) =
∫

L f (xs)L f (ys) p(x, y) dx dy. (3)

With any valid p(x, y), the steady-state distribution converges
to a Maxwell distribution L f (s) = [1 + 2D−1〈E〉s]−D/2

according to Boltzmann’s H-theorem. Here 〈E〉 is the mean
kinetic energy of the system.

Let us additionally consider a system with energy dis-
sipation. It is assumed that, by this dissipation process, a
particle loses its kinetic energy by the fraction of 1 − e−�

(with � � 0). The energy transfer to the surrounding walls
can be considered as this dissipation process, but another
process can be also considered, such as inelastic collisions
among macroscopic particles. Similarly to Eq. (1), a recursive
relation with this dissipation can be constructed as follows:

E ′
1 ←

{
e−�E1, with probability ξ

xE1 + yE2, with probability 1 − ξ
, (4)

where ξ is the rate of this dissipation process relative to the
elastic collision. The Laplace representation of Eq. (4) at the
steady state is

L f (s) = ξL f (e−�s)

+ (1 − ξ )
∫

L f (xs)L f (ys) p(x, y) dx dy. (5)

Here it is implicitly assumed that constant energy injection
exists in the high-energy limit, so that the system will even-
tually arrive at a nontrivial steady state [14]. As a particle
having infinitely large kinetic energy is assumed to be injected
into the system at an infinitely small rate, this effect does
not appear in Eq. (5). In an actual system, the energy of the
injected particle should be finite. This finite-energy effect will
be discussed later.

Consider the first two orders of L f (s). From the normal-
ization condition L f (0) = 1, it can be written that L f (s) ≈
1 − (〈E〉αs)α in the small-|s| region, with 0 < α � 1. Here
〈E〉α is the energy scale of the distribution. By substituting
this into Eq. (5), we obtain

1 = (1 − ξ )
∫

(xα + yα )p(x, y) dx dy + ξe−α�. (6)

This indicates that α = 1 is the necessary and sufficient condi-
tion for the nondissipative system, i.e., � = 0 or ξ = 0. With
a finite energy dissipation, α < 1.

Note that the lowest-order approximation, L f (s) ≈ 1 −
(〈E〉αs)α , corresponds to an assumption of f (E ) in the large-E
region, i.e., either f (E ) ≈ E−α−1/(〈E〉α )α�(1 − α) if α < 1
or f (E ) ≈ exp(−E/〈E〉α )/〈E〉α if α = 1. This asymptotic
form is consistent with the argument by Ben-Naim et al.
[14–16], where the steady-state velocity distribution of inelas-
tic gases has a power-law tail, and the index of the power-law
tail converges to a finite value (which is 2 for Maxwell gases)
at the no-dissipation limit (α → 1). Furthermore, our theory
explains how this tail converges to the Maxwell distribution at
the thermal limit [observe that �(ε)−1 ≈ ε with 0 < ε � 1].

At the large-s limit, with � � 1, L f (s) asymptotically
behaves ≈2D−1(〈E〉αs)−D/2 at the steady state. By combining
with its lowest-order approximation, we find that the GML
distribution [20–22],

L f (s) ≈
[

1 + 2

D
(〈E〉αs)α

]−D/2α

, (7)
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FIG. 1. The GML distribution with several values of α with
〈E〉α = 1 and D = 3. The power-law tail E−α−1/�(1 − α) is shown
by dotted lines. Appropriate offsets are introduced for clarity.

is the simplest approximation of the steady-state solution
of Eq. (4). The GML distribution naturally reduces to the
Maxwell distribution at α → 1.

B. Numerical evaluation of GML distribution

Although the GML distribution has no analytical
forms except for few special cases, some efficient
numerical computation methods have been proposed
[20–22]. The GML distribution, fGML(E |α, D, 〈E〉α ) =
L−1[(1 + 2(〈E〉αs)α/D)−D/2α] can be written as a mixture
representation of the exponential function;

fGML(E |α, D, 〈E〉α )

= 1

π〈E〉α

(
D

2

) 1
α

×
∫ ∞

0

exp
[ − y

(
D
2

) 1
α E

〈E〉α
]

sin
[
π D

2 Fα (y)
]

[y2α + 2yα cos(πα) + 1]D/4α
dy, (8)

where Fα (y) is defined as follows:

Fα (y) = 1 − 1

πα
cot−1

[
cot(πα) + yα

sin(πα)

]
. (9)

Observe that Eq. (8) is the form of the weighted mixture of
an exponential function, i.e.,

∫ ∞
0 exp(−cE )w(c)dc, where c

is the scale and w(c) is its weight (weight can be negative in
this case).

Figure 1 shows the GML distribution for several values
of α with D = 3 and 〈E〉α = 1. Here the function val-
ues of the GML distribution are computed by integrating
Eq. (8) numerically. As expected from the small-|s| depen-
dence, it has a power-law tail, E−α−1/�(1 − α). The dotted
lines in the figure are these power-law functions. The GML
distribution approaches this power-law tail in the large-E
region.

The GML distribution is the distribution of the total ki-
netic energy E . With a spectroscopic measurement, only the
velocity distribution along a particular axis is observed. In
D = 3-dimensional space, this velocity distribution can be
evaluated by substituting E = m(v2

x + v2
y + v2

z )/2 and inte-

grating it over vx and vy by taking the statistical weight of
free space into account, where vx, vy, and vz are the velocity
components in the three-dimensional space and m is the mass
of the particle. Since only the term depending on E in Eq. (8)
is exp(−cE ) with c = y( D

2 )
1
α /〈E〉α , the integration of this

term is sufficient.
Consider the energy distribution g(E |c) = c exp(−cE ) in

three-dimensional space. As the statistical weight of the
space is

√
2mE in the energy domain, the distribution

of vz is

g(vz|c) = c
∫ ∞

−∞
exp(−cE )

1√
2mE

dvxdvy

= 1

2

√
c

2m
�

(
1

2
, c

v2
z

2m

)
, (10)

where �(s, x) = ∫ ∞
x t s−1e−t dt is the lower incomplete gamma

function. By substituting Eq. (10) into Eq. (8), i.e., by
replacing the term exp(−y(D/2)1/αE/〈E〉α ) in Eq. (8) by
g(vz|y(D/2)1/α/〈E〉α ), we obtain the velocity distribution of
particles with their total kinetic energy following the GML
distribution.

C. GML distributions for non-Maxwell gases

The above discussions can be approximately extended
to particles having other interparticle interactions. For ex-
ample, the collision rate of hard spheres is proportional to
Eλ/2 with λ = 1 while neutral atomic gases show Van der
Waals interaction, where λ = 1/3 [23,24]. For such sys-
tems, we may consider the weighted distribution, f̂ (E ) =
Eλ/2 f (E )/Z , with the normalization constant Z . Based on
an approximation (E1 + E2)λ/2 ≈ (E1E2/〈E〉α )λ/2, which is
valid if |λ| � D, this weighting approximately represents
the energy dependence of the collision rate. Although this
weighting changes the statistical weight of the D-dimensional
space from ∝ED/2−1 to ∝E (D+λ)/2−1, the Laplace trans-
form of its weighted distribution at the steady state is
approximated by the GML distribution, L f̂ (s) = [1 + (D +
λ)(〈E〉αs)α/2]−(D+λ)/2α .

For the λ �= 0 case, the energy distribution can be obtained
by simply multiplying E−λ/2 to Eq. (8),

fGML(E |α, D, 〈E〉α, λ)

∝ 1

π〈E〉α

(
D + λ

2

) 1
α

×
∫ ∞

0

E− λ
2 exp

[ − y
(

D+λ
2

) 1
α E

〈E〉α
]

sin
[
π D+λ

2 Fα (y)
]

[y2α + 2yα cos(πα) + 1](D+λ)/4α
dy.

(11)

The corresponding velocity distribution can be obtained by
replacing gλ(E |c) = cE−λ/2 exp(−cE ) by

gλ(vz|c) = cλ/2

2

√
c

2m
�

(
1 − λ

2
, c

v2
z

2m

)
. (12)
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(a)

(b)

FIG. 2. Velocity distributions corresponding to GML energy dis-
tributions. D = 3 and λ = 1/3 are used. Distributions with several
values of α are shown with vertical offsets for clarity. The distribution
with α = 1 is a Gaussian. The distribution with α � 1 is similar to
a Gaussian in the central part but has much larger wings. With a
smaller value of α, the wing fraction is larger. Panel (a) is a semilog
plot and panel (b) is a log-log plot. The dotted lines in (b) show the
power-law distribution ∝|v|−2α−λ−1.

To summarize, the velocity distribution corresponding to the
energy distribution E−λ/2 fGML(E ) can be written as

f (vz ) ∝
∫ ∞

0
gλ{vz|y[(D + λ)/2]1/α/〈E〉α}

× sin
[
π D+λ

2 Fα (y)
]

[y2α + 2yα cos(πα) + 1](D+λ)/4α
dy. (13)

Figure 2 shows the velocity distribution corresponding to
the GML energy distribution with D = 3 and λ = 1/3. Dis-
tributions with several values of α are plotted. With α = 1,
the distribution is reduced to a Gaussian. With α � 1, the
distribution has a similar profile to a Gaussian around the
central region, although it has bigger wings. With a smaller
value of α (with larger energy dissipation), the wing intensity
becomes bigger.

In Fig. 2(b), the same profiles are shown in a log-log
plot. As expected from the energy distribution Fig. 1, the
velocity distribution also has a power-law tail. The dot-
ted lines in the figure show the power-law dependence
∝ |v|−2α−λ−1.

III. DIRECT MOLECULAR DYNAMICS SIMULATION

The previous discussion focuses on energy dissipation and
relaxation [Eq. (4)] and assumes that the energy source is at
the high-energy limit. However, in realistic situations, there
should be an energy cutoff at the energy scale of the heat
source, and thus the power-law tail in Fig. 2 only lasts up to
this energy scale. In order to see the validity of the previous
discussion, as well as the effect of the energy cutoff, in this
section a comparison is made to some simple numerical sim-
ulations.

In Sec. III A, a comparison is carried out for inelastic
particles systems, which has been considered in the original
work [14–16]. More relevant simulation of the radical atoms
in plasmas is carried out by direct molecular dynamics simu-
lations in Sec. III B.

A. Heated inelastic particles

Similarly to Ref. [14,15], Monte Carlo simulations for a
spatially uniform ensemble of inelastic particles are carried
out. At every step of the simulation, we randomly choose
the colliding pairs of particles and compute their scattering
and energy dissipation based on relative velocity of the two
particles and the collision geometry. The two particles expe-
rience inelastic collisions, where the relative velocity along
the collision normal is reduced by the factor of 1 − r with
elasticity r [25,26]. As an energy injection process, we choose
a particle randomly at a certain rate and replace their velocity
with Maxwellian with temperature 1. The energy injection
rate is kept constant and the simulation is continued until the
system reaches a steady state.

Figure 3(a) shows the simulated steady-state energy dis-
tribution for inelastic particles in a three-dimensional space
(D = 3) with the Maxwell interaction (λ = 0), which is dis-
cussed in Sec. II A. Simulation results with different values
of r are plotted with appropriate offsets. The distribution with
r = 1 (elastic limit, with no heating) falls exponentially in the
high-energy region, while with r < 1 the distribution has a
power-law tail. Bigger tails are seen in the distribution with
larger energy dissipation, i.e., the smaller values of r.

In order to see the validity of the above theory, the GML
distribution [Eqs. (7) and (8)] is fitted to the simulated energy
distribution. The bold curves in Fig. 3(a) show the best fit by
the GML distribution, where two parameters, the energy scale
〈E〉α and the stability parameter α, are adjusted. The GML
distribution well represents the simulated energy distributions,
particularly those under the small dissipation.

Ben-Naim et al. have reported an analytical representation
of the power-law index of the velocity distribution at the
high-velocity region. They consider the high-velocity
limit where the velocity distribution is approximated by
f (v) ∝ v−σ and derive the representation of σ as a function
of the inelasticity r, the spatial dimension D, and the
interparticle interaction λ [14,15],

1 − 2F1
(

D+λ−σ
2 , λ+1

2 , D+λ
2 , 1 − r2

)
(1 − r)σ−D−λ

= �
(

σ−D+1
2

)
�

(
D+λ

2

)
�

(
σ
2

)
�

(
λ+1

2

) ,

(14)
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(a) (b) (c)

FIG. 3. Steady-state distributions of isotropic inelastic gases by the Monte Carlo simulations. Thin curves: The simulation results for (a) the
gases with Maxwell interaction and (b) for the hard spheres. Results with several values of the inelasticity r are shown, with an appropriate
vertical offset for the sake of clarity. Thick curves: The best fit by the GML distribution. (c) Comparison between the optimum values of α

evaluated from the simulated energy distribution and the theoretical values of the power-law index, Eq. (14).

where 2F1 is the hypergeometric function. The power-law
index for the energy distribution is written by (σ − D)/2 + 1.
On the other hand, the power-law index of the high-energy
tail of the GML distribution can be written by α + λ/2 + 1.

Figure 3(c) compares the best-fit values of α and the the-
oretical predictions of σ [Eq. (14)]. As the GML-fit mainly
accounts for the tail intensity (recall that the tail behaves
f (E ) ≈ E−α−1/[(〈E〉α )α�(1 − α)], rather than the power-law
index of the tail, a good agreement in Fig. 3(c) indicates the
consistency of our discussion to the previous works. Note that
the statistical uncertainty in the value of α is small compared
with the marker size.

Similar Monte Carlo simulations have been carried out
also for inelastic particles with the hard-sphere interaction,
λ = 1. The steady-state solutions for several values of r are
shown in Fig. 3(b). The bold curves show the best fit by the
modified GML distribution, Eq. (11). This well approximates
the simulated energy distributions, as well. The best-fit α is
plotted in Fig. 3(c), with more simulations with λ = 1/3 and
D = 2. They are again consistent with Eq. (14), suggesting the
validity of GML distribution for this system.

B. Heated atoms surrounded by cold walls

In the previous simulation, the collided particles imme-
diately forget the previous collision and the next particle
to be collided is chosen randomly from the ensemble, i.e.,
the correlation effect is not considered. In this subsection,
a more realistic simulation including the correlation effect
is presented. The system considered here is as follows (also
illustrated in Fig. 4):

(1) (Energy randomization) N atoms with mass m are in a
cubic box with one side of L. These atoms interact according
to the interatomic potential V (R) = (R/R0)−6, where R is the
interatomic distance and R0 is the spatial scale.

(2) (Energy dissipation) The walls have infinitely large
degrees-of-freedom and have much lower temperatures than
the atomic gas. A collision with the walls is approximated
by an inelastic collision [27], where the atomic velocity per-
pendicular to the wall changes v⊥ → −rv⊥ with the inelastic
coefficient of the walls r. r = 1 indicates elastic collisions.

(3) (Heating) The box has an opening with the area of a. If
an atom goes out of the box through this opening, then another
atom having the temperature T0 is injected into the box.

In a steady state, this energy injection will be balanced with
the energy dissipation by the wall collisions.

The steady-state velocity distribution of the atoms in this
system is simulated with a molecular-dynamics simulator
lammps [28]. Used are m = 1, L = 1, a = 10−3, R0 = 10−3,
T0 = 1, and the time step of 2 × 10−5 for all the simulation
results. The values of r and N are scanned for later compari-
son. The simulation is continued until the system reaches the
steady state.

Figure 5 shows the steady-state velocity distribution for
r = 0.99 and N = 3 × 103. The simulated velocity distribu-
tion has slowly decaying wings in high-velocity regions. For
a comparison, the best-fit Gaussian distribution is shown by
a thin gray curve. Figure 5(b) shows the same figure in a
log-log plot. It can be seen that the velocity distribution has a
power-law tail in the high-velocity region up to |v| ≈ 2, which
roughly corresponds to the velocity scale of the heat source.

The bold curve in Fig. 5 shows the best fit by GML veloc-
ity distribution. Here λ = 1/3 is used based on the Van der
Waals interparticle potential used in the simulation. The GML

FIG. 4. A schematic illustration of our direct molecular dynam-
ics simulation. N atoms are confined by a cold box, where atoms
will lose their kinetic energy by wall collisions. The box has a small
opening and once an atom leaves the box through this opening, a
high-energy atom with temperature T0 is injected.
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(a)

(b)

FIG. 5. MD: The steady-state velocity distribution in the sys-
tem shown in Fig. 4 by the direct molecular dynamics simulation.
N = 3 × 103 and r = 0.99 is used. Panels (a) and (b) show the same
distribution but in a semilog plot and log-log plot, respectively. The
thin solid curve shows the best fit by a Gaussian function. The
simulated velocity distribution has a similar shape to a Gaussian
around the low-velocity region, while in the high-velocity region
it has a power-law dependence. The velocity of the heat source is
≈2, forming a cutoff of the power-law dependence. The bold curve
shows the best fit by the GML velocity distribution Eq. (13). The thin
dashed curve shows the best fit by the double-Gauss function.

distribution well captures the simulated velocity distribution,
both the central and wing region, up to the velocity cutoff by
the heat source. Here the number of adjustable parameters is
two, which are the energy scale and α. The optimum value of
α at the best fit is 0.903 ± 0.002 for this case.

As a reference, the best fit by a double-Gauss function is
shown by a dotted curve. Although the number of adjustable
parameters for the double-Gauss fit (three, two energy scales
and the intensity ratio of the two Gaussians) is more than
that in the GML fit, the double-Gaussian fails to represent the
wings with the power-law decay.

Similar simulations are carried out with different values of
N . The simulated velocity distributions are shown in Fig. 6.
Note that the horizontal axis is the velocity normalized by
〈v〉α ≡ √

2〈E〉α/m for clearer presentation of the shape dif-
ference. Here 〈E〉α is obtained by the GML fit, which is
described later. With a larger number of particles in the box
N , the profile becomes closer to a Gaussian distribution and
the wing intensity becomes smaller. This is consistent with the
larger rate for the entropy production by elastic collisions. The

(a)

(b)

FIG. 6. Simulated steady-state velocity distributions with differ-
ent values of N . The horizontal axis is normalized by the velocity
scale 〈v〉α , while in the vertical direction an appropriate offset
is introduced for the sake of clarity. The intensity of the power-
law tail is smaller to the larger-N simulation because of more
significant entropy production by elastic collisions among parti-
cles. The bold curves show the best fit by the GML velocity
distribution. The GML velocity distribution well captures the ve-
locity distribution for all the conditions, particularly with large-N
systems.

best-fit GML velocity distribution is shown by bold curves.
The GML velocity distribution well captures the simulated
velocity distribution. The quality of the fit is better at the
smaller dissipation condition. This is consistent because the
approximation Eq. (7) is derived with � � 1. Figure 7 shows
the N dependence of the best-fit value of α, as functions of N
and r.

The theoretical relation between α and other quantities
may be derived from Eq. (6). With the diffuse collision kernel
Eq. (2), Eq. (6) can be reduced to

1 = (1 − ξ )
B
(

D
2 + α, D

2

)
B
(

D
2 , D

2

) + ξe−�. (15)

By assuming that � � 1 and 1 − α � 1,

1 − α ≈ ξ

1 − ξ
�

{
ψ (D) − ψ

(
D

2

)
− 1

D

}
, (16)

can be obtained, where ψ (z) ≡ �(z)′/�(z) is the digamma
function. For our particular system, � ≈ (1 − r2)/D. Here
ξ/(1 − ξ ) is the frequency ratio between elastic and wall
collisions. The collision frequency of the elastic collisions is√

2〈v〉ασN/L3, where the viscosity cross section at the energy
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FIG. 7. N and r dependence of the best-fit α. The circles and
crosses indicate the simulation results with r = 0.99 and 0.95, re-
spectively. The results are consistent with the theoretical prediction
(dotted diagonal line), particularly with a small dissipation condition.
The inset shows the same relation but with a linear scale.

of 2〈E〉α is used for σ ≈ πR2
0(2〈E〉α )1/3 [29]. The collision

frequency with the surrounding six walls is ≈6〈v〉α/L. From
these numbers and D = 3, we obtain

1 − α ≈ 0.78(1 − r2)
L2

σN
. (17)

The dotted diagonal line in Fig. 7 shows Eq. (17). The simu-
lated results with r = 0.99 and 0.95 for several values of N are
close to this diagonal line. This shows a reasonable agreement
with our theory, despite the significant simplification.

IV. EXPERIMENTAL OBSERVATIONS

In this section, the GML distribution is compared with
experimentally observed velocity distributions of atoms in
plasmas. The theory shown above is applicable when

(i) a system has a particle source at the high-energy region,
(ii) particles in the system experience elastic collisions

and wall collisions,
(iii) the wall temperature is much smaller than the energy

of the particle source,
(iv) the rate of wall collision is similar to or less than the

elastic-collision rate.
This applies particularly to radical atoms in plasmas, be-

cause of the natural heating mechanism through molecular
dissociation. For example, the scale of the Franck-Condon en-
ergy gained by a hydrogen atom dissociated from a hydrogen
molecule is 2 eV [7–9], which is much larger than the wall
temperature (typically 0.05 eV). Also, a large elastic-collision
cross section among radical atoms through Van der Waals
interaction contributes to the applicability of the theory, al-
though caution should be always exercised whether the system
is collisional enough.

In order to observe the universality of the GML velocity
distribution, it is compared with several experimental obser-
vations. In Secs. IV A and IV B, the velocity distributions
of hydrogen atoms and oxygen atoms are analyzed, which
have been observed with laser-based methods (Refs. [30]
and [6], respectively) and reported in the literature. In their
original publications, these distributions have been analyzed

by a two-temperature Maxwellian. It is shown here that the
GML distribution also well represents the observations. This
suggests the universality of the collisional-energy-cascade in
plasmas. In Sec. IV C, unreported high-resolution emission
spectra of neutral carbon and oxygen atoms found in a public
data archive [31] are studied.

A. Hydrogen atom velocity distribution measured by
laser-induced-fluorescence spectroscopy

Amorim et al. have directly measured the velocity dis-
tribution of ground-state hydrogen atoms in a microwave
discharge tube with a hydrogen–nitrogen mixture [2,30].
They inject frequency-tripled 615-nm laser (205-nm pho-
ton) into the plasma and the ground-state hydrogen atoms in
the plasma are excited by two-photon absorption (1s 2S →
3d 2D). They observe the subsequent fluorescence (3d 2D →
2p 2P, 656-nm transition). From the fluorescence intensity as
a function of the laser wavelength, the velocity distribution of
the ground-state hydrogen atoms is obtained. Their 615-nm
laser has 0.08 cm−1 (0.03 nm) linewidth. The linewidth of
the frequency tripled 205-nm laser is not given in the original
paper and is not straightforward to estimate as this involves the
nonlinear conversion, but this might correspond to ≈100 km/s
in speed. The data points are extracted from their electronic
manuscript, where the data are embedded in an xml format,
which is shown by markers in Fig. 8. The horizontal axis is
the velocity along the sight line, converted from v = c�λ/λ0,
where c is the light speed, �λ is the wavelength displacement,
and λ0 is the line center. The thin solid curve in Fig. 8 is the
best fit by a Gaussian function. The central part of the velocity
distribution is close to a Gaussian distribution, while it has
much larger wings. The wings profile is similar to a power-law
dependence.

In their system, the energetic hydrogen atoms have been
attributed to the photo-dissociation of ammonia [30]. These
energetic atoms may distribute their energy to other particles
by elastic collision. The injected energy should be eventually
dissipated probably to the chamber walls; otherwise, the atom
temperature will increase up to the injection temperature in a
steady state. Therefore, their experimental condition is similar
to that considered in this work: The existence of the energy
injection at the high-speed region, energy dissipation, and
elastic collisions among particles.

The bold curve in the figure shows the best fit by the GML
velocity distribution. The GML velocity distribution well cap-
tures the observation, the Gaussian-like central part as well as
the power-law decay in the tail, up to the energy cutoff around
|v| ≈ 104 m/s. The optimum value of α obtained by the fit is
0.58. Note that a small discrepancy in the low-speed region
may be caused not only by the approximation introduced in
Eq. (7) but also by the finite resolution of the measurement
(≈100 km/s).

From the optimum value of α and Fig. 7, we obtain (1 −
r2)L2/σN ≈ 1. From the chamber diameter L ≈ 0.016 m,
the elastic collision cross section among hydrogen atoms
σ ≈ 3 × 10−19 m2 [32], and the expected atom density in the
plasma NL−3 ≈ 1019 m−3 [30]; the value of r is estimated as
≈0.98. This is in a reasonable order for the inelasticity of a
solid surface [27]. As the reflection coefficient is one of the
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(a)

(b)

FIG. 8. The velocity distribution of hydrogen atoms in
hydrogen–nitrogen mixture plasma observed by Amorim et al.
[2,30]. The thin curve indicates the best-fit Gaussian, while the bold
curve is the best-fit GML velocity distribution. The optimum value
of α is 0.58. The high-velocity tail is well captured by the GML
velocity distribution. The small discrepancy in the low-speed region
may be due to the measurement resolution, which is ≈100 km/s.
Panel (b) is the same data for (a) but in a log-log plot.

difficult quantities to measure in situ, the use of the GML
distribution may provide a possibility to estimate only from
the spectrum, although in this rough estimate we ignored the
collision with other species, such as collisions with hydrogen
molecules.

B. Oxygen atom velocity distribution measured by laser
absorption spectroscopy

Sasaki et al. have measured the velocity distribu-
tion of metastable-state oxygen atoms in a helicon-wave
heated plasma of oxygen [6]. The back-filled gas pres-
sure and the helicon-wave power in their experiment shown
here are 30 mTorr and 1.5 kW, respectively. They in-
ject a semiconductor-diode laser at 777.5 nm into the
plasma and observe the absorption by the metastable oxy-
gen transition 2s22p3(4So)3s 5So

2 → 2s22p3(4So)3p 5P1. By
scanning the laser frequency, the absorption spectral pro-
file (in this case the Doppler broadening is dominant) is
obtained.

Figure 9 shows the velocity distribution of oxygen atoms,
which is extracted from their electronic manuscript. The hor-
izontal axis is the velocity along the sight line, converted
from v = c�λ/λ0 where λ0 = 777.5 nm is the line cen-
ter. As the linewidth of the diode laser is much smaller
than the Doppler width of oxygen at room temperature,

(a)

(b)

FIG. 9. The velocity distribution of oxygen atoms in helicon-
wave-heated plasma of oxygen, observed with absorption spec-
troscopy based on a semiconductor-diode laser, reported by Sasaki
et al. [6]. The thin curve indicates the best-fit Gaussian, while the
bold curve is the best-fit GML velocity distribution. The optimum
value of α is 0.73. The central part and the high-velocity tails are well
captured by the GML velocity distribution. The discrepancy in the
far wings is attributed to the error in the zero level in the absorption
spectrum.

the effect of the instrumental profile is virtually negligi-
ble. On the other hand, an accurate intensity measurement
at the far wings is more difficult to obtain in absorption
spectroscopy.

The thin solid curve in Fig. 8 is the best fit by a Gaussian
function. The central part of the velocity distribution is close
to a Gaussian distribution, while it has much larger wings. In
their system, it has been suggested that the energetic oxygen
atoms have been attributed to electron-impact dissociation of
oxygen molecules [6], similarly to the hydrogen atoms dis-
cussed in the previous subsection. Originally, this nonthermal
velocity distribution has been analyzed by a two-temperature
Maxwellian.

The bold curve in the figure shows the best fit by the GML
velocity distribution. The GML velocity distribution well cap-
tures the observation. The optimum value of α obtained by the
fit is 0.73 ± 0.01. From the optimum value of α and Fig. 7, we
obtain (1 − r2)L2/σN ≈ 0.3. Their chamber diameter is L ≈
0.016 m, and the oxygen density in the plasma is estimated
from the back-fill pressure 30 mTorr and the dissociation
ratio and energy scale ≈1000 K to be NL−3 ≈ 3 × 1020 m−3.
From the elastic collision cross section among oxygen atoms
σ ≈ 2 × 10−19 m2 [33], the value of r is estimated as ≈0.84.
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(a)

(b)

(c)

FIG. 10. (a) Spectrum observed in NSO [31]. Gray and blue markers show the wavelengths of the argon and carbon lines, respectively,
shown in Fig. 11. (b) Expanded spectra of three argon lines. The light gray markers show the negative points (multiplied by −1), representing
the oscillation of the instrumental side robes. (c) Expanded spectra of three carbon lines.

This is again in a reasonable order for the inelasticity of a solid
surface [27].

C. Carbon and oxygen atom velocity distributions measured
by emission spectroscopy

As a third example, consider a high-resolution spectrum
measured at the National Solar Observatory, the electronic
data of which are obtained from its historical data archive
(file name 770612R0.010 [31]). This spectrum was
originally measured to study the cyanide spectra in 1977
from a microwave discharge with a mixture of carbon,
nitrogen, and argon, with a high-resolution Fourier transform
spectrometer with a 1-m optical path difference in the
wavelength range λ = 830–2710 nm. The wavelength
resolution is 3.5 pm (as the full width half maximum)
for this measurement. Figure 10(a) shows the original
data and Figs. 10(b) and 10(c) show expanded views for
argon lines at λ = 1067.36 nm (3s23p5(2Po

3/2)4p 2[1/2]1 ←
3s23p5(2Po

3/2)5s 2[3/2]o
2), 1243.93 nm (3s23p5(2Po

3/2)4p
2[1/2]1 ← 3s23p5(2Po

3/2)3d 2[3/2]o
2), and 1409.36 nm

(3s23p5(2Po
3/2)4p 2[1/2]0 ← 3s23p5(2Po

3/2)3d 2[3/2]o
1), and

carbon lines at λ = 909.48 nm (2s22p3s 3Po
2 ← 2s22p3p

3P2), 1069.125 nm (2s22p3s 3Po
2 ← 2s22p3p 3D3), and

1454.25 nm (2s22p3s 1Po
1 ← 2s22p3p 1P1), respectively.

The observed linewidth of the argon lines is 5.2 pm.
This is consistent with the convolution of the argon Doppler
width at room temperature (3.7 pm) and the instrumental
width. The oscillation seen in the argon line wings, i.e., the

side robe, originates from the instrumental function of this
spectrometer. Since this spectrometer is based on Fourier
transform principles, the spectrum is affected by the window
function, such as the sinc function sin(π�λ/δλ )

π�λ/δλ
for a rectan-

gular window, where δλ is the spectral resolution. Although
other line broadenings, such as Doppler broadening, aver-
age out this oscillation in the instrumental side robes, this
is still apparent in the argon lines because of their simi-
lar Doppler widths to the instrumental width. This effect is
negligible for the carbon lines owing to their larger Doppler
widths.

Figure 11 shows all the emission lines of neutral
carbon atoms in the wavelength range 900–1600 nm
that are intense enough and isolated from other
lines, i.e., 909.48 nm (2s22p3s 3Po

2 ← 2s22p3p 3P2),
1068.31 nm (2s22p3s 3Po

1 ← 2s22p3p 3D2), 1068.54 nm
(2s22p3s 3Po

0 ← 2s22p3p 3D1), 1069.12 nm (2s22p3s 3Po
2 ←

2s22p3p 3D3), 1070.73 nm (2s22p3s 3Po
1 ← 2s22p3p 3D1),

1072.95 nm (2s22p3s 3Po
2 ← 2s22p3p 3D2), and 1454.25 nm

(2s22p3s 1Po
1 ← 2s22p3p 1P1). They are plotted as functions

of the velocity along the sight line, converted by v = c�λ/λ0,
and with their areas normalized. All the emission lines have
the same profile. Since the Stark broadening and the pressure
broadening have different sensitivities depending on the
transition, these effects may be negligible. From the neutral
argon emission lines observed at the same time (gray points
in Fig. 11), it is found that the instrumental broadening is
also negligible on the carbon line profiles. It is reasonable to
assume that the Doppler broadening is dominant that reflects
the velocity distribution of ground-state neutral carbon atoms.
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(a)

(b)

FIG. 11. Emission spectra of neutral carbon atoms measured
for carbon-nitrogen-argon plasma at the National Solar Observa-
tory [31]. λ0 = 909.48-, 1068.31-, 1068.54-, 1069.12-, 1070.73-,
1072.95-, and 1454.25-nm lines are plotted with the area normalized
to unity. The thin and bold curves show the best fit by the Gaus-
sian and the GML velocity distribution, respectively. The Lorentzian
decay |v|−2 is shown by a dotted line, which is much slower than
the experimental decay. Eight neutral argon emission spectra (λ0 =
1243.93, 1295.67, 1327.26, 1331.32, 1336.71, 1350.42, 1362.27,
and 1371.86 nm) are also shown by gray points, which indicate the
negligible effect of the instrumental profile on the carbon profiles.

The best fit by a single Gaussian to the carbon lines is
shown by a thin curve in Fig. 11. The carbon profile shows
significant tails compared with a Gaussian function, indicat-
ing a strong nonthermality of their velocity distribution. In a
log-log plot [Fig. 11(c)], the velocity distribution is close to a
power-law in a large-|v| region.

Carbon atoms in plasmas may also experience heating due
to molecular dissociation, entropy production through elastic
collision, and energy dissipation by the wall collision. The
GML velocity distribution may be a good candidate to de-
scribe this nonthermal velocity distribution. The bold curve
shows the best fit by the GML velocity distribution. The entire
profile is well represented by this function and from the fit
α = 0.78 ± 0.01 is obtained.

As this spectrum has a good signal-to-noise ratio, the dif-
ference from a Lorentz profile can be also clearly seen. The
Lorentz profile arises when the upper or lower quantum states
are perturbed, for example, by the simultaneous emission
(natural broadening), electron impact (Stark broadening), or
neutral atom impact (pressure broadening). The convolution
of the Lorentz profile and Gaussian profile (thermal motion

(a)

(b)

FIG. 12. Emission spectra of neutral oxygen atoms measured
for iron–helium–carbon monoxide mixture plasma at the National
Solar Observatory [31]. λ0 = 777.19-, 777.42-, 777.54-, 844.68-,
1129.77-, and 1130.24-nm lines are plotted with the area normalized
to unity. The thin and bold curves show the best fit by the Gaus-
sian and the GML velocity distribution, respectively. The Lorentzian
decay |v|−2 is shown by a dotted line, which is much slower than
the experimental decay. Seven neutral iron emission spectra (λ0 =
744.58, 758.60, 793.71, 794.58, 851.41, 886.69, and 973.86 nm) are
also shown by gray points, which indicate the negligible effect of the
instrumental profile on the oxygen profiles.

or instrumental broadening) gives the Voigt profile. One of
the important properties of both Lorentz and Voigt profiles
is the wing decay, i.e., ∝|�λ|−2, where �λ is the wave-
length shift from the line center. This contrasts with the GML
distribution with the Van der Waals interaction, which decays
∝|�λ|−2α−4/3. The dotted line in Fig. 11 shows the Lorentzian
decay ∝|�λ|−2, which is inconsistent with the experimental
profile.

A similar spectrum for oxygen atoms can be also found
in the same data archive (file 801015R0.100 in Ref. [31]).
Figure 12 shows the same plot but for an iron–helium–carbon
monoxide mixture plasma. Blue points represent the emission
line profiles from neutral oxygen, 777.19 nm (2s22p3(4So)3s
5So

2 ← 2s22p3(4So)3p 5P3), 777.42 nm (2s22p3(4So)3s
5So

2 ← 2s22p3(4So)3p 5P2), 777.54 nm (2s22p3(4So)3s 5So
2← 2s22p3(4So)3p 5P1), 844.68 nm (2s22p3(4So)3s 3So

1 ←
2s22p3(4So)3p 3P1), 1129.77 nm (2s22p3(4So)3p 5P2 ←
2s22p3(4So)4s 5So

2), and 1130.24 nm (2s22p3(4So)3p 5P3

← 2s22p3(4So)4s 5So
2). They are plotted as functions of the

velocity along the sight line and with their area normalized
unity. All the profiles show a similar distribution. Also, the
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comparison with neutral iron lines (744.58, 758.60, 793.71,
794.58, 851.41, 886.69, and 973.86 nm) shown by gray points
in Fig. 12 indicates the negligible effect by the instrumental
broadening. Similarly to the previous discussion, this suggests
that the Doppler effect is the dominant broadening mechanism
for these lines.

The thin solid curve shows the best-fit Gaussian to these
profiles. The observed neutral oxygen spectra show significant
wing intensity than the Gaussian. In a log-log plot, it is close
to a power-law distribution. The bold curves in Fig. 12 show
the best fit by the GML velocity distribution. The entire profile
is well represented by this function, with α = 0.77 ± 0.01
from the fit.

V. SUMMARY AND DISCUSSIONS

In this work, an application of the collisional-energy-
cascade model to the nonthermal velocity distribution of
radical atoms in plasmas has been proposed, which consists of
a heat source at the high-energy limit, entropy production by
elastic collisions, and energy dissipation. The GML distribu-
tion is shown to represent a steady-state velocity distribution
for this model.

This model is compared with a direct molecular dynamics
simulation. The simulated velocity distribution is well rep-
resented by the GML distribution. Furthermore, the stability
parameter in the GML distribution, which indicates the frac-
tional importance of the entropy production against the energy
dissipation, is consistent with the theoretical prediction.

The Doppler profiles spectroscopically observed for neu-
tral radical atoms in plasmas are also compared with this
model. They have much stronger wing intensities than a Gaus-
sian function, similar to the molecular dynamics simulation.
The GML velocity distribution well represents the observed
velocity distributions, indicating that the collisional energy
cascade is universally seen in plasmas.

Historically, nonthermal velocity distributions have been
analyzed by two-temperature Maxwellians. One of the advan-
tages of the GML distribution is that this distribution is based
on kinetic theory. The physical knowledge of the system,
particularly the stability parameter representing the degree of
nonthermality, can be obtained by fitting the GML distribution
to the observed spectrum. Furthermore, as the GML distribu-
tion has fewer adjustable parameters (the velocity scale and
the stability parameter) than the two-temperature Maxwellian
(two velocity scales and the fractions of the two Maxwellians),
the GML distribution is more robust. The GML distribution
may provide a new spectroscopy tool to analyze spectra show-
ing nonthermal Doppler profiles.

Despite strong support by kinetic theory, the GML dis-
tribution has some limitations. The two-temperature model
uses Gaussians, which are favorable when taking instrumental
broadening into account, as the convolution of two Gaussians
becomes another Gaussian. The convolution of the Gaussian-
like instrumental function to the GML distribution is not
analytically tractable. The use of a look-up table may be a
possible extension to consider the instrumental function.

The physics model presented here is not always applicable.
A nonthermal velocity distribution caused by different mech-
anisms may not be analyzed by the GML distribution, e.g.,

when the wall temperature and the heat source temperature
are similar or when emission from the two separate locations
with different temperatures are superimposed. Furthermore,
the GML distribution is only applicable α � 0.5, because of
the approximation to derive Eq. (7). If the energy dissipation is
dominant compared with elastic collisions, another treatment
would be necessary. Establishment of the analytical distribu-
tion for a strongly dissipative system is left for future work.
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APPENDIX: PROBABILISTIC REPRESENTATION
OF ELASTIC COLLISIONS

In the main text, the energy change by an elastic collision
is modeled by a probabilistic form Eq. (1). In this Appendix,
the details of the assumptions, necessary conditions, as well
as the actual form for some particular cases are presented.

1. Necessary condition for a valid p(x, y)

The form of p(x, y) in Eq. (1) should depend on the
interparticle interaction. Although in the next subsection a
particular case (hard-sphere collision) will be discussed, here
let us consider the necessary condition for a valid p(x, y).

First, as we consider the elastic collision, the sum of the ki-
netic energies should be conserved, i.e., E1 + E2 = E ′

1 + E ′
2,

where E ′
2 is the postcollision energy of particle 2. A similar

relation for particle 2 is

E ′
2 ← (1 − y)E2 + (1 − x)E1. (A1)

The exchange of particles 1 and 2 gives the following symme-
try condition:

p(x, y) = p(1 − y, 1 − x), (A2)

which directly leads to∫ 1

0
(x + y)p(x, y)dx dy =

∫ 1

0
p(x, y)dx dy = 1. (A3)

Find that Eq. (6) reduces to the above equation when substi-
tuting α = 1 and ξ = 0.

Second, the reverse reaction should have the same prob-
ability, i.e., p(x, y) should satisfy the detailed balance. Let
us consider the two variables z ≡ E1/(E1 + E2) and z′ ≡
E ′

1/(E ′
1 + E ′

2). The conditional probability distribution of z′
with given z is

p(z′|z) = 1

z

∫ min(1, z′
1−z )

max(0, z′−z
1−z )

p

(
z′

z
− 1 − z

z
y, y

)
dy. (A4)

The detailed balance can be written as

p(z′|z)B

(
z

∣∣∣∣D

2
,

D

2

)
= p(z|z′)B

(
z′
∣∣∣∣D

2
,

D

2

)
. (A5)
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FIG. 13. Schematic illustration of the two-body collision in the
center-of-mass frame. (a) Elastic collision and (b) inelastic collision.

p(x, y) should satisfy Eq. (A5) for any pair of z and z′. Note
that the beta distribution B(z|D/2, D/2) represents the sta-
tistical weight of z in the D-dimensional space. The diffuse
collision Eq. (2) and the p-q model, which we will discuss
below, satisfy this detailed balance relation.

2. Exact description of elastic collision of hard spheres

Let us consider an elastic collision among two hard spheres
having mass 1 [Fig. 13(a)]. Before the collision, two hard
spheres have velocities v1 and v2. The center-of-mass (c.m.)
velocity and their relative velocity is

Vc.m. = v1 + v2

2
, (A6)

v = v1 − v2

2
, (A7)

respectively. Let � be the scattering angle in the center-of-
mass frame. The postcollision velocity of the particle 1, v′

1,
has the following relation with the precollision velocities,

v ≡ |v′
1 − Vc.m.| = |v1 − Vc.m.|, (A8)

(v′
1 − Vc.m.) · (v1 − Vc.m.) = v cos �. (A9)

After a simple equating, we obtain the following relation
between the precollision energies E1, E2 and postcollision
energy E ′

1,

E ′
1 = 1

2 [(E1 + E2) − (E2 − E1) cos �

− 2
√

E1E2r sin 
 sin �], (A10)

where 
 is the angle between v1 and v2, r is the cosine angle
between Vc.m. and the plane spanned by vrel and v′

rel; � = π −
2θ , 
, and r are independent of each other and they follow

cos2 θ ∼ B

(
1

2
,

D − 1

2

)
, (A11)

cos2 
 ∼ B

(
1

2
,

D − 1

2

)
, (A12)

r2 ∼ B

(
1

2
,

D − 2

2

)
. (A13)

Figure 14 (a) shows the probability distribution of p(E ′
1)

for D = 3 case. For comparison, the distribution by Eq. (2)
is shown in Fig. 14(b), which has been employed to study
gas kinetics for a long time. Despite a small correlation in
Fig. 14(a), the overall distribution is similar to the diffuse
model.

3. The p-q model for elastic collision

To capture the correlation found in the exact p(E ′
1),

so-called p-q model has been proposed [17,19]. This model
is equivalent to the following probabilistic process:

E ′
1 = (1 − a)E1 + (aE1 + bE2)c, (A14)

where a, b, and c are the independent random variables,
following

a ∼ B

(
a

∣∣∣∣γ2 ,
D − γ

2

)
, (A15)

(a) (b) (c) (d) (e)

FIG. 14. Probability distribution of the precollision energy E1 and the postcollision energy E ′
1. The lower panel shows the cross sections at

the two E ′
1 values (at the position of the horizon lines in the upper panel). (a) The exact distribution for the hard-sphere collision, (b) the diffuse

collision model Eq. (2), and [(c)–(e)] the distribution by p-q model with some values of γ . The dotted curves in the lower panel of (a) show
the best fit of the exact distribution by Eq. (A19).
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b ∼ B

(
b

∣∣∣∣γ2 ,
D − γ

2

)
, (A16)

c ∼ B
(

c
∣∣∣γ

2
,
γ

2

)
, (A17)

where 0 � γ � D is a constant that controls the strength of
the correlation. Figures 14(c)–14(e) show the distribution of
p(E ′

1) for several values of γ . Depending on the value of γ ,
p(E ′

1) changes from a strong memory collision (with small γ )
to a nearly diffuse collision (with large γ ).

Equation (A14) has the form of Eq. (1), where

p(x, y|γ ) = (1 − x)γ /2−1yγ /2−1

B
(

γ

2 ,
γ

2

)[
B
(

γ

2 ,
D−γ

2

)]2

∫ x

y
c(γ−D)/2−2

× (1 − c)(γ−D)/2−2(x − c)(D−γ )/2−1

× (c − y)(D−γ )/2−1dc. (A18)

It can be easily shown that this p(x, y|γ ) with any value of
γ is a valid probability distribution that leads the Maxwell

distribution in the steady state when used in Eq. (3). Simi-
larly, p(y, x|γ ) is also a valid distribution. Furthermore, the
mixture of p(x, y|γ ) and p(y, x|γ ) for different values of γ is
also valid, which is the linear superposition of p(x, y|γ ) and
p(y, x|γ ) with arbitrary weight distributions p1(γ ) and p2(γ ),

p(x, y) = η

∫ D

0
p(x, y|γ )p1(γ )dγ

+ (1 − η)
∫ D

0
p(y, x|γ )p2(γ )dγ . (A19)

Here 0 � η � 1 is the relative weight of the two terms. Dotted
curves in the lower panel of Fig. 14(a) shows the best fit of the
exact kernel p(x, y) [Eq. (A13)] by Eq. (A19). This perfectly
represents the exact solution. Because of the flexibility in
Eq. (A19), most of the realistic collision can be represented
by Eq. (1).
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