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Dynamic state of low-Reynolds-number turbulent channel flow
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We numerically study the dynamic state of a low-Reynolds-number turbulent channel flow from the viewpoints
of symbolic dynamics and nonlinear forecasting. A low-dimensionally (high-dimensionally) chaotic state of the
streamwise velocity fluctuations emerges at a viscous sublayer (logarithmic layer). The possible presence of the
chaotic states is clearly identified by orbital instability-based nonlinear forecasting and ordinal partition transition
network entropy in combination with the surrogate data method.
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I. INTRODUCTION

Since the outstanding discovery of Lorenz chaos [1] repre-
senting the atmospheric turbulent flow, nonlinear time series
analysis based on dynamical systems theory has steadily
been developed over the last 20 years and has become a
valuable tool for revealing the complex dynamics appear-
ing in several different scientific disciplines, with possible
applications in biology, medicine, electrical, and mechani-
cal engineering [2–4]. It has undoubtedly constituted a firm
platform for extracting the deterministic chaos in randomly
fluctuating physical quantities, focusing mainly on two im-
portant features: (i) fractal as a self-similarity structure and
(ii) short-range forecastability and long-range unforecastabil-
ity associated with strong sensitivity to initial conditions in
dynamical systems. Orbital-instability-based forecasting [5]
ensures a reasonable performance in the short-range predic-
tion of chaotic dynamics [2]. This method can be considered
an inverse approach in the sense that underlying dynamics is
expressed by a forecasting model constructed from the ob-
served temporal behavior. Gotoda and coworkers have shown
that the orbital-instability-based forecasting method (OIFM),
incorporating the updated library data in phase space, which
is an extended version of the Sugihara-May algorithm [5], is
valid for extracting the short-range predictability and long-
range unpredictability features of chaotic dynamics in various
complex nonlinear phenomena [6–9].

Recent substantial breakthroughs in ordinal-pattern-based
analysis, in terms of symbolic dynamics [10], have recently
opened a way to explore the deterministic nature of complex
spatiotemporal dynamics. The most fundamental quantity
obtained by ordinal-pattern-based analysis is permutation en-
tropy [11], considering the probability distribution of ordinal
patterns in a time series. Permutation entropy enables us to
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quantify the randomness of aperiodic fluctuations in a wide
spectrum of fluid systems [7,12–15]. On the basis of the
Bandt-Pompe concept [11], an ordinal-pattern-based complex
network in accordance with the Markov chain, namely, the
ordinal partition transition network (OPTN), has been pro-
posed by Small and coworkers [16,17]. The network consists
of nodes (ordinal patterns) and links between nodes (transition
probability between ordinal patterns). Gotoda and coworkers
[8,9,18,19] have more recently shown the applicability of
OPTN entropy for examining complex dynamic behaviors in
various chemically reacting fluids.

Wall turbulence, which is the most well-recognized class
of shear turbulent flow, possesses strong aperiodic veloc-
ity fluctuations in both space and time, in accordance with
Kolmogorov’s five-third scaling law in power spectra. Di-
rect numerical simulation (DNS) of wall turbulence has led
to the identification of a rich variety of prominent coherent
structures involving high-low-speed streaks and hairpin vor-
tices [20]. The discovery of these coherent structures implies
that it is inadequate to describe aperiodic fluctuations in
a wall-turbulent flow as entirely random events. The iden-
tification of a deterministically chaotic state in seemingly
randomlike fluid motions is a challenging and longstanding
topic in contemporary fluid physics and various disciplines of
nonlinear science. Thus far, many previous studies [21–26]
using DNS have revealed the details of coherent structures in
a wall-turbulent flow in a broad range of Reynolds numbers.
However, notwithstanding the progress in DNS over a long
period of wall-turbulent flow research, the dynamic state and
short-range forecastability of the flow velocity field still re-
main unexplored, even for a low-Reynolds-number turbulent
channel flow, from the viewpoints of symbolic dynamics and
nonlinear forecasting.

Our main aim in this paper is to clarify the dynamic
state and short-range forecastability of streamwise velocity
in a low-Reynolds-number turbulent channel flow, focusing
on two sophisticated analytical methods: OIFM and OPTN.
Recent advances in machine-learning technology have led

2470-0045/2023/108(2)/025105(6) 025105-1 ©2023 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.025105&domain=pdf&date_stamp=2023-08-29
https://doi.org/10.1103/PhysRevE.108.025105


MAMORI, NABAE, FUKUDA, AND GOTODA PHYSICAL REVIEW E 108, 025105 (2023)

to deserve time series prediction methods such as long
short-term memory networks [27] and reservoir computing
(RC) [28,29]. These supervised machine-learning methods
belong to a subclass of recurrent neural networks. The ap-
plicability of RC as the model-free prediction of chaos has
been highlighted in many numerical studies on various fluid
dynamics and related nonlinear dynamical systems [30–41].
In this paper, we compare the forecastability of streamwise
velocity obtained by OIFM and that obtained by RC.

II. NUMERICAL COMPUTATION
AND ANALYTICAL METHODS

We perform the DNS of a fully developed and incompress-
ible turbulent channel flow under a constant pressure gradient
condition. We solve the same governing equations, that is, the
continuity and Navier-Stokes equations, as those in a previous
study [42]. The no-slip boundary conditions are imposed on
the flow velocities on walls, and the periodic boundary con-
ditions are applied in the streamwise and spanwise directions.
All the simulations start from the fully developed and turbu-
lent velocity field. The DNS code is based on Ref. [42] for the
spatial discretization, energy-conservative second-order finite
difference method; for the time integration, the low-storage
third-order Runge–Kutta/Crank–Nicolson method; and for
the velocity-pressure coupling, a higher-order SMAC-like
method. A fast Fourier transform and a tridiagonal matrix
solver are used for the pressure Poisson equation in the homo-
geneous and wall-normal directions, respectively. The friction
Reynolds number Reτ (= u∗

τ δ
∗/ν∗, where ν∗ is the kinematic

viscosity, δ∗ is the channel half-width, and u∗
τ is the friction

velocity) is set to be 180 as a representative low-Reynolds-
number turbulent flow, and corresponds to the bulk Reynolds
number Reb(= 2u∗

bδ
∗/ν∗, where u∗

b is the bulk mean velocity.)
≈5600. We set the computational domain (= Lx × Ly × Lz ),
number of grid points (= Nx × Ny × Nz ), and the time res-
olution �t+ to 4π × 2 × π , 256 × 96 × 128, and 9 × 10−2,
respectively. We confirm that the profiles of statistics, that is,
the mean velocity profile and the root-mean square of the
velocity fluctuations, are in good agreement with the DNS
database obtained by Moser et al. [22]. Note that the viscous
sublayer corresponds to y+ < 6, the buffer layer corresponds
to 6 � y+ � 30, and the logarithmic layer corresponds to
y+ > 30.

We estimate the OPTN entropy [17,18] of streamwise ve-
locity

St = −
De!2∑
i=1

De!2∑
j=1

wi j ln wi j/ ln De!2

in this paper. The components of the adjacency matrix wi j

correspond to the transition probability from a permutation
pattern of streamwise velocity πi(i = 1, 2, ..., De!) to π j ( j =
1, 2, ..., De!). Nomi et al. [9] have recently proposed a method
to determine a suitable value of De, focusing on the pos-
sible presence of transition patterns in the OPTN. Missing
permutation (ordinal) patterns [43] of a time series appear
for deterministic dynamics, whereas they do not appear for
stochastic dynamics [44]. They have reported that missing
transition patterns appear at De � 4 for Gaussian noise and

Brownian motion [9], which means that De should be set to
3 for the construction of the OPTN. On this basis, we set De

to 3 for the estimation of St . If the temporal evolution of the
streamwise velocity u is monotonically increasing or decreas-
ing, St takes zero, observing only one transition permutation
pattern. If the temporal evolution of u is governed by a com-
pletely random process, St takes unity owing to the formation
of a uniform transition probability distribution for ordinal
patterns. In this paper, we use the surrogate data method [45]
for u, which is a popular statistical test for validating nonlinear
determinism in an irregular time series. The null hypothesis of
surrogate data we considered in this paper is that a Gaussian
linear random process governs the irregular components of a
time series, preserving the probability density function and
power spectra of the original time-series data.

For the OIFM [7], u is first divided into two parts: the
library data and reference data set. After constructing the
De-dimensional phase space consisting of u = (u(t+

i ), u(t+
i +

τ+
e ), ..., u(t+

i + τ+
e (De − 1))) from the library data, we obtain

the predicted point û(t+
f + T +) of a trajectory in the phase

space

û(t+
f + T +) =

∑K
k=1 u(t+

k + T +)exp(−‖u(t+
f ) − u(t+

k )‖)
∑K

k=1 exp(−‖u(t+
f ) − u(t+

k )‖)
,

where u(t+
k ) is a point near the final point u(t+

f ) of the tra-
jectory in the phase space. Here, τ+

e is the delay time in
the phase space, T + is the time step, and K is the number
of nearby points. The temporal evolution of the predicted
û(t+

f + T +) is inversely obtained from û(t+
f + T +). An im-

portant point in this method is the update of the library data to
continue the capturing of determinism in the current temporal
dynamics, maintaining the size ofthe library data constant. We
systematically change the duration t+

p of the actual temporal
evolution of u added to the library data, where t+

p corresponds
to predictable time. We examine the short-range predictability
feature by estimating the correlation coefficient C between
the predicted û(t+

f + T +) and the reference u(t+
f + T +) as a

function of t+
p . In accordance with a numerical study [44] on

missing patterns of a time series and the false nearest neigh-
boring method [46], De is set to 5 for the OIFM. Note that the
suitable value of De is not identical to that for the OPTN on the
basis of a type of ordinal pattern which one has to consider. In
a preliminary test, we systematically varied K from 20 to 100.
The values of K within this range were found to have little
effect on C. We set K to 50 in this study. Both τ+

e and T + are
set to 1.08 so as to sufficiently capture visible determinism in
terms of the statistical complexity [47] and orbital instability
in phase space. Note that u at 0 � t+ � 5000 are used for the
library data, whereas those at 5000 < t+ � 9000 are used as
reference data for the predicated u.

For RC, we first construct an input layer, a reservoir net-
work, and a linear output layer. The update equation of the
state vector r of the reservoir network is defined as

r(t+
i + T +) = (1 − α)r(t+

i ) + α tanh[Wr(t+
i ) + Winu(t+

i )],

where u is the input vector of streamwise velocity and α is the
leakage rate. Here, 0 < α � 1. We use u at 0 � t+ � 5000
for training the reservoir computer. The matrices W and Win
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represent the weight of the internal connection of reservoir
nodes and the weight of the input, respectively. W consists
of the Dr×Dr adjacency matrix and includes a sparse ran-
dom matrix with nonzero components. Similar to a recent
study [36], Dr = 1500 and the number of nonzero compo-
nents is set to 20% of the total number of the adjacency matrix
elements (= 450 000). The elements in the matrix W have
a uniform distribution. The output vector v of the reservoir
system is taken to be a linear function of the reservoir state
and the input vector.

v(t+
i ) = Wout

⎛
⎜⎝

1
u(t+

i )
r(t+

i )

⎞
⎟⎠,

where Wout is the solely adjusted matrix in the training stage.
On the basis of Tikhonov-Arsenin regularization [48], we op-
timize Wout by minimizing the error between the output data
v and the training data vd (see Ref. [36] on the mathematical
formula of Wout and the setting value of the regularization
coefficient). Here, u(t+

i ) = (1; u(t+
i )) and vd (t+

i ) = u(t+
i +

T +). We use u(t+
i ) = (1; uo(t+

i )) every t+
p in the forecasting

process and finally obtain the output vector v(t+
i ) = up(t+

i +
T +), where the subscript o(p) denotes the original (predicted)
data. This forecasting process is adopted for 5000 < t+ �
9000.

III. RESULTS AND DISCUSSION

Figure 1 shows the temporal evolution of the streamwise
velocity u at y+ = 4 and 35, together with the instantaneous
flow velocity field on the x-z plane. u exhibits aperiodic
fluctuations in the viscous sublayer during a wall-turbulent
flow. This is strongly associated with the formation of low-
high-speed streaks. The structural destabilization of these
streaks and the subsequent formation (collapse) of stream-
wise vortices via a three-dimensional nonlinear process give
rise to coherent structures with various scales and strengths
in the buffer layer. The irregularity and amplitude of u no-
tably increase in the logarithmic layer owing to the complex
spatiotemporal dynamics of the coherent structures. The en-
compassing physical mechanism by which these complex
behaviors emerge is mainly explained by the self-sustaining
process of wall turbulence [20].

Figure 2 shows the frequency distributions of the OPTN
entropy St for the original and surrogate data at y+ = 4 and
35. In this paper, the number of surrogate data sets is 10 000.
St for the original data is approximately 0.53 (0.81) at y+ = 4
(y+ = 35). The value of St for the original data at y+ = 4 does
not correspond to those for all the surrogate data sets, which
clearly shows the rejection of the hypothesis. In contrast, the
value of St for the original data at y+ = 35 coincides with
those of 6 from 10 000 surrogate data sets. However, the
hypothesis can be sufficiently rejected with 99.9% reliability
as determined by a t test of estimates of St for the surrogate
data sets. This indicates the possible presence of a nonlin-
ear deterministic process at both the viscous sublayer and
logarithmic layer.

Figure 3 shows the temporal evolutions of the original and
predicted u at y+ = 4, together with the power spectrum and

FIG. 1. (A) Temporal evolution of streamwise velocity u. (B) In-
stantaneous streamwise velocity field u on x-z plane. (a) y+ = 4 and
(b) y+ = 35.

probability density distribution. Here, τ+ = 1.08. Note that
the original (predicted) u denotes uo (up). up at y+ = 4 nearly
coincides with that of uo. The power density of uo in terms
of f + exhibits a scaling-law decay with the exponent −5/3;
this is an important feature of a well-developed turbulent flow.
The power density distribution of up coincides with that of
uo in a wide range of frequencies. The probability density
distribution of up is also in good agreement with that of uo.
Note that we observe a similar coincidence of the power spec-
trum and probability density distribution for up at y+ = 35.

FIG. 2. Frequency distributions of the OPTN entropy St for the
original and surrogate data. (a) y+ = 4 and (b) y+ = 35. Here, the
sampling interval τ+ = 1.08.

025105-3



MAMORI, NABAE, FUKUDA, AND GOTODA PHYSICAL REVIEW E 108, 025105 (2023)

FIG. 3. (a) Temporal evolutions of the original streamwise veloc-
ity uo and predicted streamwise velocity up at y+ = 4, together with
(b) power spectrum and (c) probability density distribution. Here, the
sampling interval τ+ = 1.08.

These findings show that the OIFM can reproduce the power
spectrum and probability density distribution of streamwise
velocity in both the viscous sublayer and logarithmic layer.

Figure 4(a) shows the variation in the correlation coeffi-
cient C between uo and up at y+ = 4 and 35 as a function of
the predicable time t+

p . Here, τ+ is set to 1.08. For y+ = 4,
C at t+

p = 1.08 is approximately 0.99 with high predic-
tive accuracy. It decreases exponentially with increasing t+

p ,
indicating the regime of short-range forecastability and long-
range unforecastability. This is a typical feature of chaos
based on orbital instability in phase space. A similar trend

FIG. 4. (a) Variation in the correlation coefficient C between uo

and up at y+ = 4 and 35 as a function of the predicable time t+
p for

the OIFM. (b) Variation in the predicable time t+
p,c in terms of y+ for

the OIFM and RC. Here, the sampling interval τ+ = 1.08.

is obtained for y+ = 35, showing a slight decrease in pre-
dictive accuracy in the entire range of t+

p . The results
shown in Figs. 2–4(a) demonstrate that the dynamic state of
streamwise velocity represents the low- and high-dimensional
chaotic states at the viscous sublayer and logarithmic layer,
respectively. Low-dimensional chaos can be produced by nu-
merically solving high-dimensional dynamical systems with
infinity freedom such as the Navier–Stokes equation. How-
ever, no numerical or theoretical studies have extracted
low-dimensional chaos in a well-developed wall-turbulent
flow. The advanced methodologies based on nonlinear fore-
casting and complex networks we employed in this paper
enables us to find hidden low-dimensional chaos in a well-
developed wall-turbulent flow. The variation in the predictable
time t+

p,c in terms of y+ for the OIFM and RC is shown
in Fig. 4(b). Here, t+

p,c is defined as t+
p at which C is 0.9.

t+
p,c for the OIFM is approximately 8.6 at 1 < y+ � 5 and

monotonically decreases to 2.2 at y+ higher than 35 near
the boundary between the buffer and logarithmic layers. It
remains nearly unchanged at y+ � 31 at the logarithmic layer.
The most interesting and important point to emphasize here is
that the predicable time at y+ = 4(y+ = 35) is approximately
100 (20) times the time resolution of DNS. This means that
the OIFM has potential for use in predicting the stream-
wise velocity in a wide variety of layers such as the viscous
sublayer, buffer, and logarithmic layers in a low-Reynolds-
number channel flow. In contrast, t+

p,c for RC is shorter than
that for the OIFM at y+ � 10 and corresponds to that for
the OIFM in the logarithmic layers. An important point to
note here is the decrease in the predictability of u in the
viscous sublayer and buffer layer. Many numerical studies
have reported that RC is well-suited for the prediction of low-
dimensional and high-dimensional chaos. In particular, Chen
et al. [35] have shown that for the Lorenz chaos, the geometric
metrics including the correlation dimension and the multiscale
entropy are nearly identical between the original reference
data and the predicted data. In this sense, RC ensures sufficient
prediction performance of low-dimensional chaos. We do not
adopt any potential recurrent neural networks in this paper, but
at least RC does not necessarily yield a superior prediction of
low-dimensional chaotic streamwise velocity fluctuations in
a wall-turbulent flow. This enables us to reaffirm the signifi-
cance of the temporal evolution of orbits in the phase space on
the basis of the embedding theorem [49].

Figure 5 shows the variation in C between uo and up as a
function of the sampling interval τ+ for different y+ locations.
C decreases with τ+ at all y+ locations, which indicates that
the coarse graining of u reduces the predictability of u. C
takes high values at 4 � y+ � 8, with high short-term fore-
castability of streamwise velocity in the viscous sublayer. The
high short-term forecastable region can be arranged by uτ and
corresponds to the scaling region in the root-mean square of
u. The profile of the root-mean square does not nearly change
at y+ � 8 regardless of the friction Reynolds number [22,26].
This provides us an important physical interpretation that the
high short-term forecastability of the streamwise velocity ex-
plains the emergence of the universal streak structure without
the dependency on the Reynolds numbers. The variations in
St for uo and up are shown in Fig. 6 as a function of τ+ at
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FIG. 5. Variation in the correlation coefficient C between
uo and up as a function of the sampling interval τ+ at
different y+.

different y+ locations. St for the original data increases with
τ+ at all y+ locations. On the basis of the results shown in
Fig. 5, the decrease in the predictability of u in terms of τ+
is strongly associated with the high randomness due to the
coarse graining of u. St significantly decreases at 4 � y+ � 8,
indicating that the dynamic behavior of streamwise velocity
possesses a high determinism in the viscous sublayer. An
important finding in Fig. 6 is that the distribution of St for
up shows a fair correspondence to that for uo. This clearly
shows that up preserves the randomness of uo. Thus far, the
root-mean square, power spectrum, and probability density
function have been used to evaluate the predictive perfor-
mance of wall-turbulent flows. The results shown in Fig. 6
also indicate that OPTN entropy is helpful in assessing pre-
dictability in terms of randomness.

The forecasting of various physical quantities is a classi-
cal problem in time-series analysis in the field of nonlinear
physics, but the conceptual importance of short-term predic-
tion in itself is not limited to cases in which the control of
complex flow fields is desired. On the other hand, the applica-
bility of the prediction method in the framework of dynamical
systems theory still remains controversial, particularly when
the system is governed by high dimensionality. Wall turbu-
lence is a typical class of high-dimensional systems emerging
with a rich variety of spatiotemporal dynamics with coexisting
low- and high-dimensional chaotic states. Although this paper
is restricted to a low-Reynolds-number condition, the OIFM
has potential applications to predict the complex dynamic
behavior of streamwise velocity in wall turbulence. Finally,
we should consider the following point related to dynamical
systems producing deterministic chaos. Various dynamical
systems [50–54] that can be described by nonlinear ordinary
differential equations, which were derived for wall turbulence,
can produce a wide spectrum of dynamics from limit-cycle
oscillations to intermittency and deterministic chaos. Such
dynamical systems are simplified and one should keep in

FIG. 6. Variation in the OPTN entropy St for (a) uo and (b) up as a
function of the sampling interval τ+ at different vertical y+ locations.

mind that the formation of a chaotic state is rather limited
in actual turbulent systems. However, despite their simplicity,
we need to clarify the forecastability of deterministic chaos
produced by dynamical systems to obtain deeper insight into
the inherent forecastability of streamwise velocity obtained by
the OIFM. Comparison of the forecastability of streamwise
velocity obtained by DNS with that of deterministic chaos is
required in our future work.

IV. SUMMARY

We have studied the dynamic state and predictability
of streamwise velocity in a low-Reynolds-number turbulent
channel flow obtained by DNS from the viewpoints of sym-
bolic dynamics and nonlinear forecasting. A low-dimensional
chaotic state of streamwise velocity fluctuations emerges at
a viscous sublayer, whereas it changes to a high-dimensional
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chaotic state at the logarithmic layer. The possible presence of
these chaotic states is clearly identified by the OPTN entropy
in combination with the surrogate data method and OIFM.
The predicable time of the low-dimensional chaotic state in
streamwise velocity at the viscous sublayer is approximately
100 times the time resolution of DNS. The OIFM has potential
for use in predicting the chaotic streamwise velocity at all the

layers from the viscous sublayer to the logarithmic layer under
a low-Reynolds-number channel flow.
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