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Role of interfacial rheology on fingering instabilities in lifting Hele-Shaw flows
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The lifting Hele-Shaw cell setup is a popular modification of the classic, fixed-gap, radial viscous fingering
problem. In the lifting cell configuration, the upper cell plate is lifted such that a more viscous inner fluid
is invaded by an inward-moving outer fluid. As the fluid-fluid interface contracts, one observes the rising
of distinctive patterns in which penetrating fingers having rounded tips compete among themselves, reaching
different lengths. Despite the scholarly and practical relevance of this confined lifting flow problem, the impact
of interfacial rheology effects on its pattern-forming dynamics has been overlooked. Authors of recent studies on
the traditional injection-induced radial Hele-Shaw flow and its centrifugally driven variant have shown that, if the
fluid-fluid interface is structured (i.e., laden with surfactants, particles, proteins, or other surface-active entities),
surface rheological stresses start to act, influencing the development of the viscous fingering patterns. In this
paper, we investigate how interfacial rheology affects the stability as well as the shape of the emerging fingered
structures in lifting Hele-Shaw flows, at linear and early nonlinear dynamic stages. We tackle the problem by
utilizing the Boussinesq-Scriven model to describe the interface and by employing a perturbative mode-coupling
scheme. Our linear stability results show that interfacial rheology effects destabilize the interface. Furthermore,
our second-order findings indicate that interfacial rheology significantly alters intrinsically nonlinear morpho-
logical features of the shrinking interface, inducing the formation of narrow sharp-tip penetrating fingers and
favoring enhanced competition among them.
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I. INTRODUCTION

Structured fluid-fluid interfaces, laden with solid particles,
surfactants, polymers, lipid bilayers, proteins, and other types
of surface-active agents are central components of many natu-
ral, scientific, and engineering processes. Interface rheological
effects strongly influence the dynamics in suspensions of
bubbles, drops, and capsules [1], emulsions [2], foams [3], bi-
ological fluids [4], and many other soft matter materials [5]. In
addition, such rheologically complex interfaces can be found
in many industrial applications, for instance, those related to
food technology [6], enhanced oil recovery [7], and cosmetics
[8]. Considering all these scientific and technological impli-
cations, it is of great academic and practical importance to
try to understand how the complicated rheological processes
that arise in such structured interfaces impact their dynamic
behavior.

The confinement of surface-active entities to a fluid-fluid
interface considerably affects the surface properties of the
system, giving rise to interfacial stresses which respond to
flow and deformation [9–12]. These factors influence the
mechanical properties of the interface, causing it to acquire
various rheological features. Specifically, the in-plane friction
that arises when the molecules or particles within the interface
slither against each other causes viscous dissipation, leading
to the emergence of intrinsic surface shear, and dilatational
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viscosities. As a result of the presence of such inherent in-
terfacial rheology properties, structured fluid-fluid interfaces
can provide useful ways to alter the mechanical resistance of
fluid-fluid boundaries, either restraining or favoring the de-
velopment of interfacial instabilities. In fact, with appropriate
interfacial rheology, one can control the occurrence of impor-
tant interfacial deformation phenomena such as coarsening,
coalescence, rupture, and breakup [13–17].

Quite recently, researchers have begun to examine the role
of interfacial rheology effects on a simple but acclaimed in-
terfacial instability, namely, the Saffman-Taylor (or viscous
fingering) problem. This fluid dynamic instability takes place
when a less viscous fluid displaces a more viscous one in the
confined geometry of a Hele-Shaw cell, a device consisting of
two parallel glass plates separated by a small gap. Standard
versions of this problem occur in motionless and fixed gap
width cells, both in rectangular [18] and radial [19–22] se-
tups. In the popular radial flow arrangement, the less viscous
fluid is injected at the center of the cell and pushes the more
viscous fluid radially outward. Under these circumstances, the
fluid-fluid boundary becomes unstable and deforms, leading
to the development of distinctive branching patterns, where
fingerlike structures split at their tips. Since the important
work by Paterson [20], the radial viscous fingering instabil-
ity has been extensively scrutinized both experimentally and
theoretically and has emerged as an archetypal problem in the
area of pattern formation and nonlinear phenomenology (see,
for instance, Ref. [19] and references therein).

Irrespective of the large number of studies involving the
radial viscous fingering problem during the last few decades,
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the role of surface rheological stresses on the interfacial
Saffman-Taylor instability has been largely unexplored. Only
very recently, this issue was taken up theoretically by Li and
Manikantan [23] and subsequently by Conrado et al. [24]. By
using the Boussinesq-Scriven model [5,9,25–27] to describe
the interface as a Newtonian fluid, possessing intrinsic surface
shear and dilatational viscosities, the authors of Ref. [23]
performed a linear stability analysis of the problem. Their
linear stability results indicated that interfacial rheology ef-
fects tend to stabilize the fluid-fluid interface by decreasing
the band of linearly unstable modes as well as the growth rate
of the most unstable mode. This linear finding suggested an
enhanced length-scale selection, causing the authors to expect
that interfacial rheology effects could lead to the formation of
wider fingers.

While linear stability analysis is a useful tool that provides
insight into the stability of the interface to small perturbations,
it only leads to an accurate description of interfacial solutions
for very short times. Consequently, the purely linear stability
analysis executed in Ref. [23] had limited quantitative access
to changes in the morphology of the fingered patterns when
surface rheological effects are present. This restriction in-
creased the need for a more flexible and accurate perturbative
method that could be used to better understand the impact
of interfacial rheology on key, intrinsically nonlinear pattern-
forming phenomena such as tip splitting [22]. This is precisely
what has been done by the authors of Ref. [24]. Conrado et al.
[24] revisited the problem studied in Ref. [23] and employed a
perturbative second-order mode-coupling approach to account
for larger interface perturbations occurring at longer times.
This allowed them to study early nonlinear stages of the radial
Hele-Shaw flow under the presence of interfacial rheology ef-
fects. The results presented in Ref. [24] showed that, while at
the linear level interfacial rheology effects tend to stabilize the
overall growth of the interface, at early nonlinear stages, they
do favor the development of the emblematic fingertip-splitting
events in radial injection-driven Hele-Shaw flows.

Investigators have also considered the impact of surface
rheological stresses on fingering patterns that emerge in an
interesting variant of the traditional injection-driven, radial
Hele-Shaw flow setup in which the gap between the plates
is kept constant but the entire Hele-Shaw cell is rotated
[28]. This is known as the rotating Hele-Shaw cell problem
[29–32], where centrifugal forces cause a denser inner fluid
to be propelled outward, which in turn gives rise to interfacial
patterns that are distinct from those generated in conventional
injection-induced radial Hele-Shaw flows. The rotating fin-
gering patterns assume a range of morphologies, including
teardroplike shapes, thin arms having bulbous ends, and in-
tricate backbone structures. However, the most salient feature
of these centrifugally driven patterns is the fact that, instead of
the occurrence of fingertip-splitting events, one observes the
rising of nonsplitting fingered structures markedly character-
ized by finger length variability. Indeed, the most conspicuous
pattern-forming growth phenomenon in rotating Hele-Shaw
flows is finger competition (i.e., competition among fingers of
different lengths).

Motivated by the rich dynamical and morphological sce-
narios encountered in the rotating Hele-Shaw cell problem,
Coutinho et al. [28] used both linear and second-order weakly

nonlinear (WNL) analyses to try to understand how these be-
haviors would be affected by the action of interfacial rheology
effects. At the linear level, it has been found that the presence
of surface rheological stresses induces interface stabilization
and reduces the number of emerging fingers. Moreover, their
WNL findings showed that interfacial rheology effects signifi-
cantly influence the shape of the fingers and their competition
dynamics. They have observed that finger competition behav-
iors result from a complicated joint action of the viscosity
contrast of the bulk fluids and the rheological properties of
the structured interface. Specifically, it has been found that the
competing fingers tend to get increasingly wider as interfacial
rheology effects become more intense.

In this paper, we study the impact of interfacial rheology
effects on yet another variation of the traditional injection-
mediated radial viscous fingering problem. Here, we focus
on the lifting version of the radial fingering problem in a
variable-gap cell [33–43]. The lifting configuration offers an
alternative way of generating fingering patterns, for example,
by stretching a very thin layer of a more viscous fluid sur-
rounded by a less viscous fluid, both sandwiched between the
plates of the Hele-Shaw cell [33,36,37,39,42]. In this setting,
the cell gap varies with time, i.e., the upper cell plate is lifted
uniformly, while the lower plate remains at rest. As the plates
separate, the outer less viscous fluid enters the system, and the
more viscous inner fluid moves inward to conserve volume.
Consequently, due to the Saffman-Taylor instability, the fluid-
fluid interface rapidly deforms, forming eye-catching patterns
which are quite different from those obtained in both the
injection-induced and rotating Hele-Shaw cell configurations.
Experiments and numerical simulations show the formation
of interfacial patterns in which nonsplitting invading fingers
move inward and compete among themselves. While moving
toward the center of the cell, these invading fingers get wider
at their tips. Following a period of intense instability, the
number of fingers starts to decrease, and for even longer times,
the shrinking fluid-fluid interface eventually recircularizes due
to capillary effects. It is worth noting that fluid flow in lifting
cells is not only of academic relevance but also of signif-
icant importance to practical problems in adhesion science
[36–38,44,45] and microfluidics [46,47].

Considering the scholarly and pragmatic relevance of
confined lifting flows, and stimulated by the recent results
obtained in Refs. [23,24,28] regarding the significant impact
of interfacial rheology effects on the viscous fingering insta-
bility in radial (injection-driven) and rotating (centrifugally
induced) Hele-Shaw cell problems, in this paper, we study
how surface rheological stresses affect the emergence and
time evolution of interfacial patterns in lifting Hele-Shaw
cells.

The rest of this paper is organized as follows. Sec-
tion II presents our second-order perturbative mode-coupling
approach. We derive a nonlinear differential equation that
describes the time evolution of the interface perturbation
amplitudes under lifting Hele-Shaw flow circumstances, con-
sidering the action of surface rheological effects. Such a
differential equation has a first-order piece involving a rel-
atively simple linear dispersion relation and a second-order
part containing a more complicated nonlinear contribution.
In Sec. III, we concentrate our attention on the role played
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FIG. 1. Schematic diagram of a lifting Hele-Shaw cell with time-
dependent gap width b(t ), where the inner (outer) fluid has viscosity
η1 (η2). The fluids are separated by a structured interface. The unper-
turbed time-dependent interface (dashed curve) is a circle of radius
R = R(t ), and the interface perturbation is denoted by ζ = ζ (θ, t ),
where θ is the polar angle. The direction of lifting is along the z axis.

by the Boussinesq number (a controlling parameter that mea-
sures the relative strength of surface viscous stresses to bulk
viscous stresses) in determining the linear stability behavior
of the structured interface as well as the most prevalent mor-
phological features of the interfacial patterns at the onset of
nonlinearities.

The purely linear stability aspects of the system are ex-
amined in Sec. III A. Our linear stability results show that
interfacial rheology effects increase the band of unstable
modes, the maximum growth rate, and the corresponding
wave number of maximum growth. These observations sug-
gest that, at the linear level, surface rheological stresses act
to destabilize the interface. These linear findings for the
lifting Hele-Shaw flow system are in contrast to the cor-
responding linear results obtained in Refs. [23,24,28] for
injection-induced radial fingering and rotating Hele-Shaw
flows for which interfacial rheology has a stabilizing role.

The influence of interfacial rheology on the development of
nonlinear pattern-forming structures is discussed in Sec. III B.
We focused on trying to understand how the morphology of
the emerging fingers and their finger competition behavior
are impacted by the presence of surface rheological stresses.
We found that, in lifting Hele-Shaw flows, stronger interfa-
cial rheology effects make the invading fingers sharper at
their tips. Once again, this is completely different from the
results obtained by previous early nonlinear studies, where
interface rheology effects favored the occurrence of fingertip-
broadening and splitting events in radial flows driven by
injection [24] and the rising of patterns having wide fin-
gers with rounded tips in rotating Hele-Shaw cells [28].
Furthermore, we have detected that the competition of inward-
moving fingers becomes more intense when the Boussinesq
number is augmented. Finally, in Sec. IV, we briefly summa-
rize our main findings and provide some concluding remarks.

II. BASIC EQUATIONS AND THE SECOND-ORDER
MODE-COUPLING DYNAMICS

The physical system we examine is constituted by a lifting
Hele-Shaw cell of a variable gap width b(t ) containing a more
viscous fluid of viscosity η1 surrounded by a less viscous
fluid of viscosity η2 (see Fig. 1). The fluids are Newtonian,

incompressible, and immiscible. We focus on the viscosity-
difference-driven unstable motion of the two-fluid interface,
where η2 < η1. The structured interface separating these bulk
fluids is described by the Boussinesq-Scriven model [5,9,23–
27] and viewed as a continuous isotropic Newtonian fluid with
surface tension γ , intrinsic surface shear viscosity ηs, and
intrinsic surface dilatational viscosity κs. In this framing, the
upper Hele-Shaw cell plate is allowed to move up along the z
axis, which is perpendicular to the cell plates, while the lower
plate is held fixed at z = 0. The initial fluid-fluid interface is
circular, having radius R0 = R(t = 0) and initial gap thickness
b0 = b(t = 0). As the upper plate is moved upward, the outer
fluid 2 is sucked in, and the initially circular fluid-fluid bound-
ary retracts. Due to volume conservation, the time-dependent
radius of the contracting unperturbed interface is given by

R(t ) = R0

√
b0

b(t )
. (1)

From this expression, one can readily see that the velocity of
the contracting unperturbed interface Ṙ(t ) = dR/dt is related
to the upper plate-lifting velocity along the z axis, ḃ(t ) =
db/dt , by the relation Ṙ(t ) = −(ḃR)/(2b).

During the plate-lifting process, the less viscous outer
fluid pushes the more viscous inner fluid, and due to the
Saffman-Taylor instability, the fluid-fluid boundary deforms.
In the context of our mode-coupling perturbative scheme, we
describe the distorted fluid-fluid interface as R(θ, t ) = R(t ) +
ζ (θ, t ), where ζ (θ, t ) = ∑+∞

n=−∞ ζn(t )exp(inθ ) represents the
net interface perturbation in polar coordinates (r, θ ) with com-
plex Fourier mode amplitudes ζn(t ) and integer wave numbers
n. In the Fourier expansion of ζ , we include the n = 0 mode
to maintain the area of the perturbed shape independent of
the perturbation ζ . Contrary to usual purely linear stability
analyses (which are first-order in ζ ), here, our main goal is to
find a differential equation which describes the time evolution
of the perturbation amplitudes ζn(t ) accurate to second-order
in ζ . Therefore, in addition to investigating the linear stability
of the structured interface, we can examine how inherently
nonlinear morphological aspects of the fingering patterns are
affected by interfacial rheology effects.

Before proceeding, we point out that the WNL mode-
coupling scheme we use in this paper has been validated
over the years by fully nonlinear numerical simulations for
various other types of Hele-Shaw flow systems [48–57]. These
fully nonlinear investigations used several numerical meth-
ods, including spectral, boundary-integral, phase-field, and
diffuse-interface approaches, and found that the WNL theory
can correctly capture the onset of pattern formation, providing
a reliable way to predict various fundamentally important
fully nonlinear pattern-forming effects. Likewise, the WNL
theory employed in this paper can be utilized to get insight
into the fully nonlinear fingering patterns that arise in lifting
Hele-Shaw cells when interfacial rheology effects are present.

Fluid flow in the effectively two-dimensional geometry
of a lifting Hele-Shaw cell is governed by the gap-averaged
Darcy’s law [18,19]:

v j = −b2(t )

12η j
∇p j, (2)
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and by the gap-averaged modified incompressibility condition
[33,36]:

∇ · v j = − ḃ(t )

b(t )
, (3)

where v j = v j (r, θ ) and p j = p j (r, θ ) represent the velocity
and pressure in fluids j = 1, 2, respectively. Since Hele-Shaw
flows involve fluid displacements in the very low Reynolds
number limit [18,19], the use of Darcy’s law [Eq. (2)] requires
that the upper Hele-Shaw cell plate is not lifted fast enough to
promote any inertial effects. Additionally, as also required in
Hele-Shaw flow systems, one must consider that, during the
lifting process, the cell gap width is always far smaller than a
characteristic length scale in the plane of the cell, which one
can take as the unperturbed droplet radius. Thus, the system
should remain of large aspect ratio, where R(t )/b(t ) � 1.
As in previous experimental and theoretical studies in lifting
Hele-Shaw flows [33,36,37,39], we consider that the upper
plate is moved with a constant lifting speed ḃ = V along
the z axis, so that the gap width grows linearly with time as
b = b(t ) = b0 + V t .

From Eq. (3), we see that the velocity potentials φ j (v j =
−∇φ j) obey a Poisson equation ∇2φ j = ḃ(t )/b(t ), with solu-
tion given by [20,22,33,58]

φ j = ḃr2

4b
+

∑
n �=0

φ jn(t )
( r

R

)(−1)( j+1)|n|
exp (inθ ). (4)

To obtain the equation of motion for the two-fluid interface at
r = R conveniently expressed in terms of the velocity poten-
tials φ j , we rewrite Darcy’s law [Eq. (2)] for each of the fluids
in terms of φ j and then subtract the resulting equations from
each other to get

A

(
φ1 + φ2

2

)∣∣∣∣
r=R

−
(

φ1 − φ2

2

)∣∣∣∣
r=R

=−b2(p1 − p2)|r=R
12(η1 + η2)

,

(5)

where A = (η2 − η1)/(η2 + η1) is the viscosity contrast.
To calculate the nonlinear differential equation for the

perturbation amplitudes ζn(t ), we need to substitute Eq. (4)
into the equation of motion for the interface [Eq. (5)],
keep second-order terms in the perturbation amplitudes, and
Fourier transform them. However, we must still cope with
the pressure difference term (p1 − p2) at the interface which
appears on the right-hand side of Eq. (5) and express it in
terms of the perturbation amplitudes. Additionally, note that
it is still necessary to write the velocity potential amplitudes
φ jn(t ) of Eq. (4) in terms of ζn(t ). To accomplish these tasks,
we have to specify two fundamental boundary conditions of
our problem at the interfacial boundary r = R.

First, we consider a generalized Young-Laplace pressure
boundary condition. It is precisely this boundary condition
that introduces the contributions coming from the rheological
structured interface. It reads

(p1 − p2)R = γK + n · {η1[∇v1 + (∇v1)T ]

− η2[∇v2 + (∇v2)T ]}R · n

+ (κs + ηs)

[
∇s ·

(
v1 + v2

2

)
R

]
K, (6)

where K is the interface curvature in the plane of the Hele-
Shaw cell, T denotes a matrix transpose, and ∇s = (I − nn) ·
∇ is the surface gradient operator. The first term on the right-
hand side of Eq. (6) is related to surface tension effects and
is the simplest version of the Young-Laplace equation used in
Hele-Shaw cell problems [18,19]. The second term originates
from the balance of viscous normal stresses at the interface
[59,60], while the last term arises from the action of interfacial
rheology effects [23,24].

The last term in Eq. (6) is of key importance to our current
study. A version of it was proposed by Li and Manikantan
[23], who assumed a simplified situation in which, at the
interface, the unit normal vector was directed only along the
radial direction. Then Conrado et al. [24] derived an improved
version of the Young-Laplace condition [the one shown in
Eq. (6)], incorporating the role of interfacial rheology effects
under more general circumstances, where the unit normal
vector at the interface pointed in an arbitrary direction. More-
over, unlike Li and Manikantan [23], they assumed that the
velocity at the structured interface was given by the average
of the inner and outer fluid velocities. In both in Refs. [23,24],
the authors employed the Boussinesq-Scriven model [5,9,23–
27] and described the structured interface separating the bulk
fluids 1 and 2 as being a compressible Newtonian fluid with
intrinsic surface shear (ηs) and dilatational (κs) viscosities.

Within this theoretical framework, the authors of
Refs. [23,24] considered Cauchy’s momentum conservation
equation at the interface, in a low Reynolds limit, and with
spatially uniform surface tension γ between the fluids. In this
way, inertial and Marangoni’s stress contributions were safely
neglected. Substituting the surface stress tensor given by
Scriven’s generalization of the Newtonian approximation for
the interface proposed by Boussinesq in Cauchy’s equation,
after fairly lengthy calculations and numerous mathemati-
cal manipulations, Eq. (6) is obtained. For more information
about the multiple steps leading to Eq. (6), we refer the reader
to the detailed derivations presented in Refs. [23,24].

Note that, throughout this paper, to better relate our
results to existing articles in Hele-Shaw lifting flows
[33,36,37,39,58], we choose to aim attention at the largely ex-
plored situation in which the inner fluid is much more viscous
than the outer one (i.e., η1 � η2 or A = −1). Furthermore,
our theoretical study is also in line with experimental studies
that explore different techniques to measure the interfacial
shear and dilatational viscosities. The surface shear viscosity
ηs is typically measured by tracing particles placed at the
interface utilizing interfacial magnetic rods [61], microbutton
rheometers [62], and Couette rheometers [63]. Representative
values of ηs can vary from <10−9 to 10−3 N s/m. On the
other hand, the dilational shear viscosity κs is usually ob-
tained through oscillatory bubble- and drop-based techniques
[63,64]. Experimental measurements [65–67] indicate that κs

is typically two orders of magnitude greater than ηs, being of
O(10−1) N s/m. Consistent with these experimental facts, and
as in Refs. [23,24,28], in this paper, we consider that κs � ηs.

For the sake of conciseness, in Eq. (6), the contributions of
viscous normal stresses and interfacial rheology are both writ-
ten in terms of the velocities of the fluids v j . However, these
contributions can also be conveniently written in terms of the
velocity potentials φ j . For detailed (and long) expressions of
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the second and last terms on the right-hand side of Eq. (6)
properly expressed in terms of φ j and their derivatives with
respect to r and θ , see eqs. (21) and (22) in Ref. [24].

After presenting the generalized Young-Laplace pressure
jump condition [Eq. (6)], we now introduce the second rele-
vant boundary condition for our boundary value problem, the
so-called kinematic boundary condition [18,19]:

n · ∇φ1 = n · ∇φ2, (7)

which expresses the fact that the normal components of the
fluid velocities are continuous across the interface.

At this point, we have all the necessary elements to
find a second-order mode-coupling differential equation that
describes the time evolution of the interfacial amplitudes
ζn(t ). We can benefit from the kinematic boundary condition
[Eq. (7)] and use it to express the velocity potentials φ j

in terms of ζn. Substituting the resulting relations from this
procedure as well as the generalized pressure jump condition
[Eq. (6)] into the equation of motion for the interface [Eq. (5)],
always keeping terms up to second order in ζ , and Fourier

transforming, we finally obtain the dimensionless, nonlinear
differential equation for the perturbation amplitudes ζn(t ) (for
n �= 0):

ζ̇n = λ(n) ζn +
∑
p�=0

{[F (n, p) + FRheo(n, p)] ζpζn−p

+ λ(p)[G(n, p) + GRheo(n, p)]ζpζn−p}, (8)

where

λ(n) = 1

s(n)

ḃ

2b

[
(−A|n| − 1) − b3

6q2
|n|(A + |n|)

+ b7/2Bq

12q3
|n|(n2 − 2)

]
− b7/2

s(n)q3Ca
|n|(n2 − 1) (9)

is the linear growth rate, with

s(n) = 1 + b3

6q2
|n|(|n| + A) + b7/2Bq

12q3
|n|. (10)

The second-order mode-coupling terms are

F (n, p) = b1/2

s(n)

(
ḃ

2b

{
−A|n|

[
sgn(np) − 1

2

]
− 1

}
− b7/2

q3Ca
|n|

[
1 − p

2
(3p + n)

]

+ ḃ b2

12q2
|n|{A + 3Anp − 2Ap2 + 3|p| + (n − 2p)sgn(p) − |n|[1 + A n sgn(p)]

})
, (11)

FRheo(n, p) = − Bq

s(n)

ḃ b3

48q3
|n|[2n2sgn(np) − 2n2 + np + 7p2 − 6], (12)

G(n, p) = b1/2

s(n)

(
A|n|[1 − sgn(np)] − 1 + b3

6q2
|n|{A[−n|n|sgn(p) + 2np − p2 + 1] − |n| + 3|p| + (n − 2p)sgn(p)

})
, (13)

and

GRheo(n, p) = − 1

s(n)

b4Bq

12q3
|n|{n2[sgn(np) + 1] − 4np + 2p2 − 2}. (14)

The Rheo subscript indicates the terms that arise purely from
interfacial rheology effects. The in-plane lengths, b(t ) and
time t are rescaled by R0, b0, and b0/|ḃ(0)|, respectively. By
inspecting Eqs. (8)–(14), one verifies that the system is de-
scribed by the following dimensionless governing parameters:

Bq = κs

(η1 + η2)b0
, q = R0

b0
,

Ca = 12(η1 + η2)|ḃ(0)|
γ

,

plus the viscosity contrast A (dimensionless viscosity differ-
ence between the bulk fluids) which has been defined right
after Eq. (5). The parameters listed above are the Boussi-
nesq number Bq, which measures the relative strength of
surface to bulk viscous stresses; the global capillary number
Ca, which expresses a relative measure of viscous to surface
tension forces; and q, representing the initial aspect ratio that
quantifies the degree of spatial confinement of the system.
Equations (8)–(14) constitute one of the central results of
this paper, offering the time evolution of the perturbation

amplitudes ζn accurate to second order and considering the ac-
tion of interfacial rheology effects into the lifting Hele-Shaw
cell problem.

III. DISCUSSION

A. First order—Linear regime

Although the main focus of this paper is to examine the
influence of surface rheology on the morphology of the lifting
flow fingering patterns at early nonlinear dynamical stages,
a brief discussion about the linear regime can be instructive.
Considering Eq. (8) only up to first order, we reduce the
problem to the usual linear stability situation, and each mode
grows or decays independently of all others. In this way, posi-
tive values of λ(n) lead to the growth of an unstable interface,
and larger λ(n) values result in faster growth.

Inspecting the linear growth rate [Eq. (9)], one observes
that the first term between the square brackets, which involves
the viscosity contrast A, makes the interface unstable if A <

0. It is evident that the term related to interfacial rheology
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FIG. 2. Linear growth rate λ(n) [Eq. (9)] as a function of the
wave number n for Bq = 0, 500, and 800. Solid curves indicate the
behavior of λ(n) at the initial time t = 0, and the dashed ones at
the final time t = t f . Here, q = 70, and Ca = 1/100. The maxima of
the solid curves are indicated by small open circles to guide the eye.
Note that, as Bq is increased, the band of unstable modes [for which
λ(n) > 0] also increases.

effects, proportional to the Boussinesq number Bq, also has a
destabilizing role. On the other hand, the contributions from
normal viscous stresses (term proportional to b3) and surface
tension (term proportional to 1/Ca) act to stabilize the inter-
face.

To better illustrate our main linear findings, in Fig. 2, the
linear growth rate λ(n) is plotted against the wave number n
for three values of the Boussinesq number Bq: 0, 500, and
800. The solid curves depict λ(n) at the beginning of the evo-
lution t = 0, while the dashed curves display the equivalent
behavior at the final time t = t f = 0.56. All this is obtained
by considering Ca = 1

100 and q = 70.
From Fig. 2, one can see that, for a given time, larger

values of Bq increase the maximum growth rate [λ(n = nmax)]
as well as the corresponding wave number nmax. In addition,
it is clear that the band of unstable modes also increases as
Bq is augmented. As the typical wavelength of the system
is given by 	 = 2πR(t )/nmax, and since nmax increases with
Bq, stronger surface rheological effects lead to smaller wave-
lengths. This indicates the enhanced development of narrower
fingered structures.

Our findings are in stark contrast to the linear results
obtained in Refs. [24,28], where injection- and centrifugally
driven flows were considered under the presence of interfacial
rheology effects. In these studies, it has been found that, at the
linear regime, increasingly larger surface rheology effects lead
to a decreased maximum growth rate and to smaller maximum
wave numbers. Therefore, in Refs. [24,28], at the linear level,
larger Bq tends to suppress interfacial instabilities. Never-
theless, in our lifting Hele-Shaw flow system, the effect of
surface rheological stresses is just the opposite. This can be
justified as follows. Note that, in Refs. [24,28], the inner
fluid pushes the outer fluid outward, causing the fluid-fluid
boundary to expand. However, in our current lifting flow case,
the direction of fluid flow is reversed, in such a way that
the outer fluid displaces the inner one, causing the fluid-fluid
interface to move inward and contract. By scrutinizing the
generalized Young-Laplace condition [Eq. (6)], one verifies

that the surface rheological contribution is proportional to the
surface divergent of the velocity field. Consequently, if the
fluid flow direction is inverted, the role played by interfacial
rheology effects is reversed. This also justifies another note-
worthy difference between our linear predictions and the ones
made in Refs. [24,28]: While in injection- and centrifugally
induced flows interfacial rheology effects favor the production
of wider fingers, in lifting flows, surface rheology acts to
promote the emergence of narrower fingers.

By examining Fig. 2, one can see that, as time progresses
from t = 0 to t f , the curves representing the linear growth rate
tend to shrink in height and width, favoring an overall inter-
face stabilization and progressively diminishing the number of
fingers generated at the interface. Eventually, this would lead
to a recircularization of the contracting interface, in which
λ(n) is so small that all the fingers at the interface vanish.
In fact, this linearly predicted recircularization effect has been
detected both numerically [33] and experimentally [39] for
systems with small enough capillary numbers and when no
interfacial rheology effect is present. Considering the destabi-
lizing role of interfacial rheology effects illustrated in Fig. 2,
it is reasonable to speculate that larger values of Bq would
tend to delay the occurrence of such droplet recircularization
phenomena.

B. Second order—Early nonlinear regime

To analyze the impact of interfacial rheology on the pattern
formation process at the onset of nonlinearities, we must go
beyond linear stability analysis. By considering the full scope
of the mode-coupling equation [Eq. (8)], we can probe into
early nonlinear effects [22], allowing us to investigate how
the shape of the fingers and the competition among them react
to the action of surface rheological stresses.

We start by rewriting the net perturbation on the interface
in terms of cosine and sine modes:

ζ (θ, t ) = ζ0 +
∞∑

n=1

[an(t )cos(nθ ) + bn(t )sin(nθ )], (15)

where an(t ) = ζn(t ) + ζ−n(t ) and bn(t ) = i[ζn(t ) − ζ−n(t )]
are real-valued functions. Mass conservation imposes

ζ0 = − 1

4R

∞∑
n=1

[
a2

n(t ) + b2
n(t )

]
. (16)

To investigate the fingering patterns in general and realistic
conditions, we follow the model proposed by Cardoso and
Woods [21] that considers aspects of real experiments in Hele-
Shaw flows. This model explores the effects of background
level noise that can arise from thermal and pressure fluctua-
tions and inhomogeneities on the plates of the cell [68]. To
model the noise, each Fourier mode n is assigned a random
complex amplitude ζn(0), independent of n.

Under these conditions, in Fig. 3, we solve Eq. (8) up
to first [Figs. 3(a)–3(c)] and second [Figs. 3(d)–3(f)] order,
considering the participation of modes 2 � n � 60 and tak-
ing |ζn(0)| = 1

1700 . As the role of the capillary number Ca
in lifting Hele-Shaw flows is already well known (see, for
instance, Refs. [33,39,58]), throughout this paper, we focus
on understanding how the Boussinesq number Bq affects the
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FIG. 3. Time evolution of characteristic interfacial patterns in the presence of background noise, for a range of participating Fourier
modes 2 � n � 60 and 0 � t � t f . The patterns are obtained by solving Eq. (8) up to (a)–(c) first and (d)–(f) second order. We take q = 70,
Ca = 1/100, t f = 0.56, and three values of Bq: (a) and (d) Bq = 0, (b) and (e) Bq = 500, and (c) and (f) Bq = 800.

system for different values of the initial aspect ratio q. In this
framing, Fig. 3 depicts the time evolution of typical linear
[Figs. 3(a)–3(c)] and WNL [Figs. 3(d)–3(f)] pattern-forming
structures for three values of the Boussinesq number: Bq = 0
[(a) and (d)], Bq = 500 [(b) and (e)], and Bq = 800 [(c)
and (f)]. The patterns are presented for 0 � t � t f , where
the various interfaces of each pattern are plotted in equal
time intervals of t f /10. Furthermore, Ca = 1

100 , q = 70, and
t f = 0.56.

During the course of our work, we paid close attention
to the limit of validity of our perturbative theory in such
a way that, for each time t considered, we always make
sure that interface perturbations |ζ (θ, t )| are considerably
smaller than the associated unperturbed interface radius R(t ).
In other words, our perturbative WNL approach requires that
|ζ (θ, t )|/R(t ) � 1. Therefore, in all calculations and plots
presented in this paper, we adopted a validity criterion for
which |ζ (θ, t f )| ≈ 12% of R(t f ), where t f = 0.56 is the final
time considered for the evolution of the interfacial patterns
(i.e., the largest time for which our perturbative approach
remains valid).

As already discussed in Secs. I and II, the choice for the
viscosity contrast we use is made to eventually facilitate a
connection with previous lifting Hele-Shaw cell studies, as
most of them consider the case in which A = −1. For the sake

of clarity, we briefly comment on the chosen representative
value for the capillary number Ca we utilize to present our
results. From previous works, it is known that, if Ca is too
small, only very small perturbations form at the interface,
leading to the rise of patterns that are morphologically un-
interesting. On the other hand, if Ca is too large, the interface
becomes highly perturbed in very short times, making the
situation unsuitable to be described perturbatively. For lift-
ing Hele-Shaw cell flows, the capillary number varies in the
range O(10−3) � Ca � O(10) [33,39]. Considering the fact
that interfacial rheology effects tend to enhance the growth of
the fingers, we must use a relatively small capillary number
Ca = 1

100 to compare the cases without (Bq = 0) and with
(Bq > 0) interfacial rheology still within the validity limits of
our perturbative scheme. The impact of varying initial aspect
ratios q on the lifting system will be explored later in this
paper.

We begin by analyzing the first-order patterns [Figs. 3(a)–
3(c)]. When surface rheological stresses are absent [Fig. 3(a)],
one detects the formation of a slightly perturbed interface,
having short and wide fingers that move inward as time
advances. Conversely, as surface rheological stresses are con-
sidered [Figs. 3(b) and 3(c)], as predicted by the analysis
of the linear growth rate, larger Boussinesq numbers result
in more deformed interfaces. While one can notice that the
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FIG. 4. Time evolution of the rescaled interfacial perimeter L(t )
[Eq. (17)] for the patterns presented in Fig. 3, and three increas-
ing values of the Boussinesq number Bq. Open dots represent data
from the linear interfaces [Figs. 3(a)–3(c)] and closed dots from the
weakly nonlinear ones [Figs. 3(d)–3(f)].

interfaces become progressively more perturbed as the Bq
is increased, the morphological changes among these linear
patterns are not really significant.

To investigate how nonlinear effects influence the mor-
phology of the generated patterns under the presence of
increasingly stronger interfacial rheology effects, we turn our
attention to the WNL patterns portrayed in Figs. 3(d)–3(f).
When Bq = 0 [Fig. 3(d)], the resulting pattern is just mildly
deformed, having short and wide fingers. Therefore, when
Bq = 0, the nonlinear effects are barely manifested, leading to
a WNL structure that is quite similar to its linear counterpart
[Fig. 3(a)]. Nonetheless, by considering the Boussinesq num-
ber Bq = 500 [Fig. 3(e)], we see that the produced nonlinear
pattern is clearly distinct from the one generated for Bq = 0
in Fig. 3(d). In Fig. 3(e), the fingers are more developed and
of more variable sizes, indicating an enhanced finger compe-
tition.

Further increasing Bq to 800 [Fig. 3(f)], one verifies that
the fingers are even more developed, exhibiting greater finger
length variability. The difference in the morphologies of the
fingers in the WNL structures shown in Figs. 3(d)–3(f) is also
noticeable, as the inward-moving fingers become increasingly
sharper whenever surface rheological effects become more
intense. Moreover, by contrasting linear [Figs. 3(a)–3(c)] and
WNL [Figs. 3(d)–3(f)] patterns, the importance of including
nonlinear effects to better capture the role played by interfa-
cial rheology on the dynamics and shape of lifting Hele-Shaw
cell patterns is apparent. From these lifting flow results, we
conclude that surface rheological stresses act to destabilize
the structured interface, leading to the development of faster
finger growth, enhanced finger competition, and sharper fin-
gertips.

To complement our analysis, Fig. 4 plots the time evolution
of the rescaled interfacial perimeter:

L(t ) = 1

2πR(t )

∫ 2π

0

√
R2(θ, t ) +

[
dR(θ, t )

dθ

]2

dθ (17)

for the linear and WNL interfaces presented in Fig. 3. Here,
L(t ) is the ratio of the length of the perturbed interface to
the circumference of the corresponding unperturbed circle

of radius R(t ). The rescaled perimeter is a convenient way
to capture the departure from a circular interface and the
increase in complexity of the patterns as Bq is enlarged.
In general, the perimeter starts to increase once the fin-
gering instability is triggered. Therefore, an earlier growth
and a higher rate of growth of L(t ) reflect a more unstable
interface.

From Fig. 4, one can see that, for the linear patterns (whose
behavior is indicated by open dots in Fig. 4), the behaviors
of the interfacial perimeter for the three values of Bq follow
similar trends: Essentially, at first, L(t ) increases, reaches a
maximum, and then decreases. This characteristic behavior is
related to the recircularization events mentioned at the end of
Sec. III A. Therefore, after an initial period of intense inter-
face deformation, the contracting interface stabilizes due to
surface tension effects, and for long times, it eventually tends
to an almost perfect circle. Despite these similarities, one can
also notice from Fig. 4 that the curves formed by the open
dots for larger Bq are located above the ones having lower
Bq, showing that stronger interfacial rheology effects induce
increased destabilization.

Additionally, by examining the behavior of L(t ) for the
WNL interfaces (associated with the closed dots in Fig. 4),
a general tendency like the one shown by the linear curves is
observed: Higher Bq results in a larger perimeter. Neverthe-
less, it is visible that, as Bq is increased, the nonlinear curves
differ more strongly from the linear ones as time progresses.
In fact, for a given Bq, one can see that, at a certain time, the
slope of the nonlinear curves become higher than the ones for
the linear curves. This last feature is especially perceptible for
higher values of the Boussinesq number Bq. For example, in
Fig. 4, while the WNL curves for Bq = 0 and 500 share the
typical rise and fall behavior of the linear curves, the solid dot
curve for Bq = 800 does not. The steep curve behavior for
Bq = 800 lasts for the whole evolution time, indicating a sig-
nificant delay in the occurrence of interface recircularization
for high enough values of Bq.

To evaluate the robustness of our predictions regarding
the change in the initial conditions, in Fig. 5, we present
the time evolution of the WNL interfacial patterns for the
same physical parameters used in Fig. 3 but now considering
two additional sets of random phases. The WNL structures
for the first (second) set of additional phases are displayed
in Figs. 5(a)–5(c) [Figs. 5(d)–5(f)]. The same values of the
Boussinesq number utilized in Fig. 3 are considered: Bq = 0
[(a) and (d)], Bq = 500 [(b) and (e)], and Bq = 800 [(c) and
(f)]. By scrutinizing Fig. 5, irrespective of the use of differ-
ent random phases, one verifies that the main morphological
features previously detected in the WNL patterns in Fig. 3
are still present. When no surface rheological stresses are
acting (Bq = 0), the patterns illustrated in Figs. 5(a) and 5(d)
are just mildly deformed, showing the emergence of small
and blunt inward-moving fingers. This is in contrast with the
significantly more perturbed structures seen in Figs. 5(c) and
5(f), when interfacial rheology effects take action and are of
large magnitude (Bq = 800). The resulting inward-pointing
fingered structures for Bq = 800 are notably sharper at their
tips and present a greater length variability among them,
characterizing an increased finger competition behavior. We
point out that we have tested a number of other sets of phases
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FIG. 5. Representative examples for the time evolution of weakly nonlinear patterns plotted by using initial conditions that are distinct
from those in Figs. 3(d)–3(f). Two additional sets of random phases are shown, one for (a)–(c) and another for (d)–(f). However, all physical
parameters are the same as the ones employed in Figs. 3(d)–3(f).

and observed dynamical and morphological responses like the
ones already unveiled in Figs. 3 and 5.

Up to this point, we have illustrated our results for one
representative value of the initial aspect ratio, namely, q = 70.
However, from existing studies of lifting Hele-Shaw flows in
the absence of interfacial rheology effects [33,36,37,39], it is
known that the cell confinement parameter q may influence
the stability and the shape of the contracting interface. Mo-
tivated by these facts, in Fig. 6, we seek to understand how
different values of q and Bq affect the system at the early
nonlinear regime. In Fig. 6, we present the time evolution
of the WNL patterns for three values of the initial aspect
ratio q = 60 [(a)–(c)], q = 65 [(d)–(f)], and q = 70 [(g)–(i)]
and three values of the Boussinesq number Bq = 0 [(a), (d),
and (g)], Bq = 500 [(b), (e), and (h)], and Bq = 800 [(c),
(f), and (i)]. The rest of the physical parameters and the
initial random phases are identical to those used in Fig. 3.
Small black arrows guide the eye to one specific finger where
it is easier to perceive the most significant morphological
changes.

Before beginning the analysis of Fig. 6, recall that the
parameter q = R0/b0 measures the confinement of the system.
For instance, higher values of q, which in lifting Hele-Shaw
cell experiments without interfacial rheology effects typically
vary within the range 25 � q � 120 [36,37,39], imply small

values of the initial cell gap thickness b0 or relatively large
initial unperturbed radius R0. We start our examination of
Fig. 6 by focusing on the patterns generated when interfacial
rheology effects are not present Bq = 0 and for three increas-
ing values of the initial aspect ratio: (a) q = 60, (d) q = 65,
and (g) q = 70. It is evident that, when surface rheological
stresses are not considered (i.e., for Bq = 0), larger values of
q lead to more perturbed interfaces. However, it is also clear
that, when Bq = 0, small increments in q do not affect the
interfacial instability significantly. After all, the pattern shown
in Fig. 6(g) for q = 70 is just slightly more deformed than the
one depicted in Fig. 6(a) for q = 60 (see, for instance, the
reentrant finger indicated by the small black arrows in the first
column of Fig. 6).

Different scenarios are revealed by the lifting patterns pro-
duced when interfacial rheology effects are considered and
become more intense. For example, from the fingered struc-
tures displayed in the second column of Fig. 6, for Bq = 500
[(b), (e), and (h)], one can see that, by increasing the initial
aspect ratio from q = 60 to 70, it becomes more apparent
that larger values of q lead to more intense interfacial per-
turbations. This behavior is even more noticeable in the third
column of Fig. 6 for a larger value of the Boussinesq number
Bq = 800 [(c), (f), and (i)]. Observe, for instance, that the fin-
ger indicated by the small black arrow in Fig. 6(i) for q = 70
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FIG. 6. Time evolution of the weakly nonlinear patterns for (a), (d), and (g) Bq = 0, (b), (e), and (h) Bq = 500, and (c), (f), and (i)
Bq = 800. Here, three values of the initial aspect ratio are considered: (a)–(c) q = 60, (d)–(f) q = 65, and (g)–(i) q = 70. All the other
physical parameters and initial conditions are equal to those utilized in Fig. 3. Small black arrows are used to help guide the eye to the finger
where the most salient shape changes occur.

is longer and sharper than the corresponding finger shown in
Fig. 6(c) for q = 60. Therefore, from the analysis of Fig. 6,
we conclude that higher values of q consistently induce more
interfacial instabilities and that this effect strengthens the
action of surface rheological stresses. Indeed, higher values
of q and Bq lead to more unstable interfaces, whose fingers
are sharper and compete more intensively among themselves
(increased finger length variability).

It is of interest to investigate in a more quantitative fashion
how the shape of the fingertips of the inward-moving fingers
of the contracting interface would react to changes in the
Boussinesq number Bq. This is done in Fig. 7, which plots
the curvature of the fingertip KT of the finger identified by the
small black arrows in Fig. 6 for the final time t f , as a function
of Bq, and for three values of q. The curvature of the interface,
expanded up to second order in ζ [22] and evaluated at the
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FIG. 7. Curvature of the tip of the finger indicated by small black
arrows in Fig. 6, KT , plotted as a function of the Boussinesq number
Bq. Three values of the initial aspect ratio q are considered: 60, 65,
and 70, corresponding to the cases presented in Fig. 6. The curvature
is evaluated at the final time t f = 0.56.

angular location of the fingertip (θ = θ∗), is given by

KT =
{

1

R
− 1

R2

(
ζ + ∂2ζ

∂θ2

)

+ 1

R3

[
ζ 2 + 1

2

(
∂ζ

∂θ

)2

+ 2ζ
∂2ζ

∂θ2

]}∣∣∣∣∣
θ=θ∗

. (18)

The data plotted in Fig. 7 are calculated considering the tip of
the finger indicated by the black arrows in Fig. 6, located at the
angle θ = θ∗ ≈ 2π/5 at the final time t f = 0.56. In addition,
as in Fig. 6, q = 60, 65, and 70. From Fig. 7, one immediately
sees that, regardless of the value of q, the curvature of the
fingertip increases monotonically with the Boussinesq number
Bq. One can also observe that the growth of KT with Bq is
much more pronounced for larger values of the initial aspect
ratio q. It is worth noting that we have verified that similar
conclusions are reached if one evaluates the tip curvature
for other inward-moving fingers of the shrinking interface.

The quantitative findings extracted from Fig. 7 regarding the
fingertip-sharpening behavior reinforce our previous visually
based results obtained from Figs. 3, 5, and 6.

We close this section by examining yet another important
morphological aspect of the lifting fingering patterns: finger
competition. As commented throughout this paper, during the
lifting process, the invading fingers of the outer, less viscous
fluid penetrate into the inner, more viscous fluid. As time
advances, the various inward-moving fingers reach different
sizes and compete among themselves in their race toward the
center of the cell. To investigate how finger competition events
respond to interfacial rheology effects in lifting Hele-Shaw
cells, we revisit Fig. 6. In Fig. 8, for each pattern shown in
Figs. 6(a)–6(c) and Figs. 6(g)–6(i), we plot the radial coordi-
nate r of each fingertip divided by the length of the largest
finger rmax as a function of the polar coordinate θ at the final
time t f . Hence, we can compare the differences in size among
the inward-moving fingers for a given pattern and contemplate
how finger competition phenomena are impacted by Bq and q
in a more quantitative manner than we did so far.

Figure 8 shows r/rmax against θ for the three values of
Bq considered in Fig. 6 and two values of the initial aspect
ratio: q = 60 in Fig. 8(a) and q = 70 in Fig. 8(b). In this way,
Fig. 8(a) gives information about the final time interfaces in
Figs. 6(a)–6(c), while Fig. 8(b) provides similar information
about the corresponding last time interfaces in Figs. 6(g)–6(i).
Going through Fig. 8(a), we can see that, for the smaller q,
the curves for different values of Bq are quite similar and
almost overlap, indicating that finger competition is not very
affected by interfacial rheology effects for this lower value
of q. However, when the initial aspect ratio is increased to
q = 70 [Fig. 8(b)], so are the effects of Bq, in such a way
that the relative sizes of the fingers vary more strongly as
the Boussinesq number is enlarged. The curve for Bq = 0
oscillates less than the one for Bq = 500, while the curve for
Bq = 800 oscillates the most. Notice that stronger oscillations
in the data means more intense finger competition. Moreover,
note that, even when there is no interfacial rheology, a higher
q results in more finger length variability (i.e., more finger

FIG. 8. Rescaled radial coordinate r/rmax of the fingertips for inward-moving fingers as a function of the polar angle θ , for some of the
patterns illustrated in Fig. 6. Here, data are presented for (a) q = 60 [related to the patterns shown in Figs. 6(a)–6(c)], and (b) q = 70 [connected
to the fingering structures displayed in Figs. 6(g)–6(i)].
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competition). On the basis of such findings, we conclude that
finger competition events are favored for larger values of both
Bq and q.

IV. CONCLUSIONS

In this paper, we applied a perturbative second-order mode-
coupling scheme to study the influence of interfacial rheology
effects on the development of viscous fingering patterns in
lifting Hele-Shaw cell flows. We focused on analyzing how
the stability and morphology of the fingered patterns respond
to different values of the Boussinesq number Bq and the initial
aspect ratio q. This was done at the linear and early nonlinear
regimes of the interface dynamics. Our linear results indi-
cated an enhanced destabilization of the structured fluid-fluid
interface when surface rheological effects are more intense.
This is in contrast to the findings of linear stability analyses
previously performed for injection-driven and centrifugally
induced Hele-Shaw flows [24,28], in which interfacial rheol-
ogy acts to stabilize the fluid-fluid boundary.

At the onset of nonlinearities, our second-order results have
shown that interfacial rheology leads to significantly more
perturbed and developed interfaces. Thus, nonlinear effects
tend to enhance the destabilization behavior detected at the
purely linear regime. Most importantly, our mode-coupling
theory gives access to intrinsically nonlinear aspects about

the morphology of the rising patterns. We have found that
increasingly larger interfacial rheology effects (higher Bq)
result in the formation of narrower fingered structures having
sharp tip fingers. Additionally, we have detected a greater
finger length variability as Bq is augmented, indicating that
finger competition events are favored due to the action of
surface rheological effects. Moreover, we have verified that
higher values of the initial aspect ratio q (i.e., larger con-
finement) provoke interface destabilization, strengthening the
destabilizing tendency already induced by surface rheological
stresses. Finally, we have identified that the occurrence of
interface recircularization at larger stages of the flow can be
delayed for larger values of Bq.

We hope our linear and early nonlinear theoretical re-
sults encourage researchers to further analyze this problem,
mainly at more advanced time stages of the pattern-forming
dynamics, via fully nonlinear numerical simulations and ex-
periments. Of course, these possible future studies could also
be used to check the specific predictions we make in this
paper.
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