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Pattern formation of spherical particles in an oscillating flow
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We study the self-organization of spherical particles in an oscillating flow through experiments inside an
oscillating box. The interactions between the particles and the time-averaged (steady streaming) flow lead to
the formation of either one-particle-thick chains or multiple-particle-wide bands, depending on the oscillatory
conditions. Both the chains and the bands are oriented perpendicular to the direction of oscillation with a regular
spacing between them. For all our experiments, this spacing is only a function of the relative particle-fluid
excursion length normalized by the particle diameter, Ar/D, implying that it is an intrinsic quantity that is
established only by the hydrodynamics. In contrast, the width of the bands depends on both Ar/D and the
confinement, characterized by the particle coverage fraction φ. Using the relation for the chain spacing, we
accurately predict the transition from one-particle-thick chains to wider bands as a function of φ and Ar/D.
Our experimental results are complemented with numerical simulations in which the flow around the particles is
fully resolved. These simulations show that the regular chain spacing arises from the balance between long-range
attractive and short-range repulsive hydrodynamic interactions, caused by the vortices in the steady streaming
flow. We further show that these vortices induce an additional attractive interaction at very short range when
Ar/D � 0.7, which stabilizes the multiple-particle-wide bands. Finally, we give a comprehensive overview of
the parameter space where we illustrate the different regions using our experimental data.
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I. INTRODUCTION

Granular systems are widely present in nature and of-
ten exhibit self-organization into patterns. The understanding
of these patterns is essential for many industrial processes
[1,2]. When the granular material is immersed in a fluid, an
even richer range of pattern-forming behavior is observed [3].
This is due to the hydrodynamic interactions that can induce
(additional) nonlinearities to the particle dynamics [4], poten-
tially leading to macroscopic effects [5,6]. Due to their rich
phenomenology, the fluid-immersed patterns are relevant in
maritime settings [7] and systems that contain either colloids
[8,9] or active matter [10].

One specific phenomenon is the self-organization of spher-
ical particles in an oscillating flow. In laboratory experiments,
Wunenburger, Carrier, and Garrabos [11] found that spherical
particles, submerged in a viscous fluid and subjected to hor-
izontal oscillations, form one-particle-thick chains oriented
perpendicularly to the direction of oscillation. They attributed
the formation of these chains to a nonzero residual flow,
known as “steady streaming”, that remains after averaging
over a full oscillation period [12]. Additionally, they found
that the particle chains form a periodic pattern with a regu-
lar spacing, which was attributed to an equilibrium between
attractive forces between the chains at large distances and
repulsive forces at small distances. They described the spacing
using an empirical function of the particle diameter, its ex-
cursion length relative to the fluid, and the particle Reynolds
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number. However, the sub-millimeter-sized particles could not
be fully resolved in the experiments, such that the underlying
physical mechanisms that govern the pattern at the particle
level were not completely understood. As a result, the origin
of the attractive forces between the particle chains and the
empirical scaling could not be determined.

To gain a better understanding of the physical mechanisms
underlying the formation of one-particle-thick chains, Klotsa
et al. [13] studied a pair of particles (i.e., the shortest possible
chain) in an oscillating box. They found that the alignment of
the two particles perpendicular to the direction of oscillation is
due to steady streaming. They further identified a gap between
the particles, which they described as a function of the fluid
viscosity and the oscillation parameters. Subsequently, van
Overveld et al. [14] extended this study using numerical sim-
ulations, covering a more extensive region of the parameter
space. They found that when the particle-bottom friction is
negligible, the gap width solely depends on two dimensionless
parameters: the relative particle-fluid excursion length and
the typical viscous length scale (the Stokes boundary layer
thickness), both normalized by the particle diameter.

The role of the steady streaming flow in the chain forma-
tion process was further investigated by Klotsa et al. [15], who
described the average flow as a set of vortex rings, with two
“inner” vortices located close to each particle and two “outer”
vortices surrounding the entire configuration. The interaction
between the inner and outer vortices leads to the formation
of stagnation points next to the particles. Other particles
tend to roughly follow the streamlines of the steady stream-
ing flow, which lead them toward one of these stagnation
points. Additionally, Klotsa et al. [15] demonstrated that the
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FIG. 1. Schematic (a) side and (b) camera views of the experimental setup. The numbers indicate the mounting frame (1), perspex tank
filled with water (2), stainless steel particles (3), guide rails (4), PID-controlled linear motor (5), camera (6), and position reference points (7).
The double-headed arrows indicate the direction of oscillation, along the x axis.

structure of the steady streaming flow and the associated or-
dering mechanism is similar for isolated particles, pairs of
particles, and short chains of particles. However, their work
did not address the characteristics of the patterns once they
are formed, such as the spacing between the chains as a func-
tion of the governing parameters. Furthermore, the long-range
attractive force hypothesized by Wunenburger, Carrier, and
Garrabos [11] was not observed in the numerical simulations
of Klotsa et al. [15], leaving the underlying physical mecha-
nism that governs the separation unclear.

In this study, we provide a detailed characterization of the
particle chains in an oscillating flow and describe the un-
derlying physical mechanism. We designed an experimental
set-up that is significantly larger than those used in previous
studies, allowing for a detailed examination of the patterns
at the scales of the particles. Through experiments covering
a broad region of the parameter space, we reveal in detail
how the spacing between the chains varies as a function of
the governing parameters. Furthermore, our experiments show
that, in addition to chains, the particles can self-organize into
bands that are multiple particles wide. We quantify the width
of these bands and show the effect of confinement on their
formation and characteristics. In fact, the role of confinement
in steering self-organization is currently a relevant topic in
many scientific disciplines [16].

Next, we use direct numerical simulations to fully resolve
the flow around the particles and get a detailed understanding
of the time-averaged flow. We use a numerical code [17] that
is previously validated and used to study the self-organization
and dynamics of particle pairs [14,18]. Through our simu-
lations, we identify the physical mechanisms that cause the
long-range attractive and short-range repulsive forces between
chains. We show how the flow conditions affect these inter-
actions and explain that the same physical mechanisms are
responsible for the formation of the wide bands of particles as
observed in our experiments.

The study is organized as follows. In Sec. II, we describe
the experimental setup and measurement approach. Section III
presents our experimental results on the patterns and Sec. IV
illustrates the physical mechanism that drives the attractive

and repulsive interactions between chains, using numerical
simulations. In Sec. V, we give a comprehensive overview
of the parameter space. Finally, we give our conclusions in
Sec. VI.

II. EXPERIMENTAL METHOD

A. Experimental setup

A schematic representation of the experimental setup is
shown in Fig. 1. For all experiments, we use a transparent per-
spex box with inner dimensions Lx × Ly × H = 500 × 250 ×
55 mm. The box is placed on a platform mounted on linear
bearings and guide rails, which are in turn fixed to an optical
table. A 5.0-mm-thick glass plate is placed inside the box, to
ensure a smooth and flat bottom surface. The effective height
of the box is thus 50 mm. The plate is leveled with a precision
of 0.02◦ by adjusting the height of the support structure with
0.1 mm accuracy.

The box is filled with tap water with kinematic viscosity
ν = (1.05 ± 0.05) × 10−6 m2/s and density ρ f = (0.999 ±
0.001) × 103 kg/m3, then closed with a lid to eliminate any
water-air interface. The particles are nonmagnetic, spheri-
cal, stainless steel ball bearings with density ρs = (7.69 ±
0.01) × 103 kg/m3. This results in a particle-fluid density
ratio s = ρs/ρ f = 7.7. Two different sizes of particles, with
diameters D = 5 and 10 mm, were used. The particles are of
grade 40, which means that their diameter, roundness, and
smoothness are accurate to about 1 µm.

A PID-controlled linear motor (LinMot P01-
37x120F/100x180-HP) moves the box and platform along
the rails, following a user-defined sinusoidal curve that is
discretized into 1-ms increments. During oscillatory motion,
the difference between the user-defined curve and the position
of the box is typically less than 1.0 mm. As the motor causes
the box to oscillate, it creates a reaction force that leads
to shaking of the optical table on which the entire setup is
mounted. The amplitude of this secondary motion is typically
a few millimeters but can increase up to one centimeter near
the resonance frequency of the table, around 4.3 Hz. The net
motion of the box in the laboratory frame is again a sinusoidal
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TABLE I. Overview of the parameters that are varied between experiment series. Each series includes multiple experiments in which the
frequency and the amplitude of the oscillations are varied.

Experiment Particle diameter Number of Particle coverage User-defined Measured amplitude in
series Symbol D (mm) particles N fraction φ frequency f (Hz) laboratory frame A (mm)

A1 � 10 275 0.173 2.0–5.6 6.15–47.9
A2 � 10 413 0.259 2.0–5.5 6.51–48.2
A3 � 10 550 0.346 2.0–5.6 6.15–48.0
A4 � 10 688 0.432 2.0–5.2 7.14–48.3
A5 © 10 825 0.518 2.0–5.1 7.41–48.4
B1 � 5 1100 0.173 2.0–5.7 6.08–48.0
B2 � 5 2200 0.346 2.0–5.7 5.96–47.9

oscillation, which we measure by tracking reference points
(with a diameter of 10 mm and spaced 30 mm apart) on the
platform next to the box, see (7) in Fig. 1(b). These measured
positions are the basis for the position of the box in the
laboratory frame.

We define a coordinate system with the x axis parallel to
the direction of oscillation, the y axis in the other horizontal
direction, and the z axis vertically up, as shown in Fig. 1. In
the stationary laboratory frame, the x position of the box is
given by

xbox = A sin (2π f t + φ0) + x0, (1)

where A is the excursion length in the laboratory frame, f is
the frequency, t is the time, φ0 is an arbitrary phase of the box,
and x0 is an offset from a reference position.

The experiments are recorded using a RedLake MegaPlus
II camera with a SONY 16 mm f/1.8 lens, which is positioned
approximately 1 m above the box. It is worth noting that
the camera is not connected to the optical table and remains
stationary with respect to the laboratory frame. The typical
resolution of the recordings is 2.2 pixels per millimeter. The
camera is triggered at an adjustable frame rate fcam, which
enables two types of recordings. The first is a stroboscopic
recording, with fcam = f , which is used to visualize the evolu-
tion of the patterns over many periods. The other type is taken
at a higher frame rate, with fcam not an integer multiple of
f . Such a recording captures the particles at different phases
of the oscillatory motion, which allows for the reconstruction
of the streamwise particle motion [11,19]. In our experiments
with the second type of recording, we set fcam = 20.55 Hz
because it is not an integer multiple of any of the f values
used in our experiments.

B. Measurement approach

In our experiments, the parameter space is explored by
varying A, f , D, and the number of particles inside the box
N . The experiments have been divided into seven series as
presented in Table I. For each series, D and N are kept con-
stant, while the oscillatory conditions in terms of A and f
are varied. The value of N is chosen such that the particle
coverage fraction (i.e., the fraction of the horizontal surface
covered by particles)

φ = πND2

4LxLy
(2)

is either 1, 1.5, or 2 times the lowest value considered (φ =
0.173).

Our primary focus in these experiments is the self-
organization of the particles due to the steady streaming flows.
We are not interested in the effects of variations in friction of
the particles with the bottom. Therefore, we keep constant the
relative strength of the particle-bottom friction compared to
the driving force. Under the assumption that lift forces are
negligible [14,18], the ratio between these forces is propor-
tional to (s − 1)μc/�, where s = ρs/ρ f , μc is the Coulomb
friction coefficient (μc ≈ 0.3 for the interface between glass
and stainless-steel [20]), and

� = A(2π f )2

g
(3)

is the ratio between the maximum oscillatory acceleration
and the gravitational acceleration g = 9.81 m2/s. In our ex-
periments, � ≈ 0.75 to keep the relative importance of
particle-bottom friction similar for cases with different flow
conditions. As a result of fixing �, we must simultaneously
vary the amplitude and frequency. We use frequencies in the
range 2.0 − 5.7 Hz, which correspond to amplitudes between
5.74–46.6 mm. However, due to the shaking of the optical
table, the values of A in the laboratory frame are usually
slightly larger than the user-defined motor amplitudes, such
that the values of � range from 0.75 to 0.93. We show that
this increase in � does not have a significant impact on the
particle motion in Sec. III B and the Appendix.

Based on the control parameters, we define two dimension-
less quantities that are important for the particle dynamics in
oscillatory flows are the normalized excursion length A/D and
the normalized viscous length scale

δ

D
=

√
ν/(π f )

D
, (4)

where δ is commonly known as the Stokes boundary layer
thickness. For a pair of particles in an oscillating flow, δ/D
determines the gap width between the particles in the case of
small particle-fluid excursion lengths [14]. A consequence of
fixing � while varying both A and f is that also A/D and δ/D
are covaried (A f 2 = Constant ⇒ (δ/D) ∝ (A/D)1/4).

The positions of the particles are identified using TrackPy
[21], an open-source software package based on the core
feature-finding and linking algorithms by Crocker and Grier
[22]. Before each series of experiments, a calibration rou-
tine is performed using a 2.5 mm thick plate with 2.5 mm
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diameter dots, spaced 5 mm apart in a 9 × 19 grid. The plate
is positioned at the bottom of the tank, such that the cali-
bration is performed at the midheight of the 5 mm particles.
The midheight of the 10-mm particles lies 2.5 mm above
the calibration height, which leads to errors no larger than
0.5 mm. The recordings for the calibration are taken at dif-
ferent known positions of the box, corresponding to typical
positions during oscillatory motion. The pixel coordinates of
the dots (xpixel, ypixel ) are obtained using TrackPy. The posi-
tions of the dots in the laboratory frame (xreal, yreal) are also
known. Then, the coefficients Pαβ and Qαβ of the third-order
polynomials

xreal =
3∑

α=0

3∑
β=0

Pαβxα
pixely

β

pixel, (5)

yreal =
3∑

α=0

3∑
β=0

Qαβxα
pixely

β

pixel (6)

are determined using a least-squares fitting routine. Note that
the indices α and β are here also used as exponents. This
conversion also corrects for image distortion and for light
refraction at the water-perspex and perspex-air interfaces. In
the experiments with particles, we combine the pixel coordi-
nates from TrackPy with the coefficients of Eqs. (5) and (6) to
determine the particle positions in the laboratory frame. The
error in these positions is smaller than 1 mm, typically around
0.2 mm. This error is significantly smaller than the variations
in the quantities used to describe the patterns, such as the
relative particle-fluid excursion length (see Sec. III B) and
the spacing between chains (see Sec. III C 2). The variations
in these quantities of interest are typically on the centimeter
scale.

III. PATTERN FORMATION AND CHARACTERISTICS

A. Formation of the patterns

We present a typical example of the chain formation in
Fig. 2, which corresponds to an experiment in series A1 (see
Table I), with f = 5.0 Hz and A ≈ 7.48 mm. Additionally,
a video is available as Supplemental Material [23]. At the
start of the experiment, the particles are clustered near the
walls of the box [Fig. 2(a)]. Within a few periods of the
oscillation, short chains form at the edges of the clusters and
quickly self-organize into long chains oriented perpendicular
to the oscillation direction [Figs. 2(a)–2(c)]. Once formed,
the chains repel each other, causing the spacing between the
chains to increase and the pattern to fill a large part of the
domain [Figs. 2(c)–2(e)]. After the expansion, the streamwise
motion of the chains reverses, and the spacing between the
chains decreases [Figs 2(e) and 2(f)]. After approximately
80 periods, the system reaches an equilibrium state in which
the spacing between the chains remains constant over time.
In this case, the pattern of chains covers only a portion of the
domain. Dynamic behavior is mainly present at the particle
level, such as the propagation of defects.

The evolution of the chains in Fig. 2 suggests that, between
the chains, there are repulsive interactions at small distances
and attractive interactions at large distances. In the absence
of attractive interactions, repulsion would cause the chains

(a) (b)

(c) (d)

(e) (f)

FIG. 2. These images show the formation of a pattern in a part
of the oscillating box for an experiment in series A1 ( f = 5.0 Hz,
A ≈ 7.48 mm). Each frame shows the pattern after T periods. Differ-
ent stages of the formation can be distinguished, namely (a)–(c) the
initial formation of chains, (c)–(e) the expansion of the pattern, and
(e), (f) the contraction toward an equilibrium spacing. A stroboscopic
video is provided as Supplemental Material [23].

to spread evenly across the full domain, in contradiction to
what is observed in Fig. 2(f). These observations support the
hypothesis proposed in previous studies [11,15] that attractive
forces between the chains exist at large distances. In Sec. IV,
we investigate the underlying physical mechanism that drives
the repulsive and attractive interactions, but in the remainder
of this section, we first focus on describing the pattern charac-
teristics after reaching an equilibrium.

B. Streamwise particle motion relative to the fluid

The streamwise motion of the particles can be described in
terms of their relative excursion length with respect to the box
[11,13,14]. If the forces acting on the particles oscillate har-
monically, then the streamwise particle motion is sinusoidal
[18], with the relative particle-fluid excursion length

Ar =
√

A2 + A2
s − 2AAs cos (φs − φ0), (7)

where A and φ0 describe the motion of the box [see Eq. (1)],
As is the particle excursion length in the laboratory frame, and
φs the relative phase of the particle oscillation. If the particle-
bottom friction can be neglected, then Ar is proportional to A
[18]. This proportionality also holds when the particle-bottom
friction follows a harmonic oscillation., which is actually the
case for all our experiments, as shown in the remainder of this
subsection and in the Appendix.
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(a) (b)

FIG. 3. (a) The nondimensional relative particle-fluid excursion length Ar/D as a function of the nondimensional excursion length of the
box A/D. Different symbols correspond to different experiment series, as defined in Table I. The red and blue regions (in both plots) represent
Ar/A = 0.78–0.81 and Ar/A = 0.57–0.59, respectively. These values correspond to Eqs. (9) and (12), which are analytical predictions without
and with particle-bottom friction, respectively. (b) The ratio Ar/A is approximately constant (Ar/A ≈ 0.55) for all experiment series and values
of A/D. The gray shaded areas indicate the gaps in the data (for D = 10 mm and 5 mm) caused by the resonant shaking of the optical table.

The value of Ar is obtained by simultaneously measuring
the motion of the box, to obtain A and φ0, and the motion of
the particles, to obtain As and phase φs. To avoid including
particle-wall interactions (e.g., collisions) in the calculation,
the latter two quantities are averaged only over the particles
that are at least two diameters away from the side walls of the
box. The uncertainty in the averages of these two quantities is
typically smaller than 1%.

We calculated Ar/D for all experiments and show the
values as a function of A/D in Fig. 3(a). The data in this
figure collapse onto a line, indicating a unique linear relation
between Ar/D and A/D. A linear least squares fit is applied to
the data, resulting in

Ar

D
≈ (0.552 ± 0.001) × A

D
+ (0.009 ± 0.003), (8)

which has a high correlation coefficient of R2 = 0.999. The
last term of this equation is small, such that to good approxi-
mation Ar/D ∝ A/D. As further confirmation, Fig. 3(b) shows
that Ar/A is approximately constant.

To validate our results, we compare them to the solutions
of the Basset-Boussinesq-Oseen (BBO) equation [24] for the
streamwise motion of a single, isolated particle. According to
the BBO equation, the ratio Ar/A depends on the particle-fluid
density ratio s and the normalized viscous length scale δ/D.
The solution for the case without particle-bottom friction is
previously determined by van Overveld [18] and is given by

Ar

A
= 2(s − 1)√

81χ2(2χ + 1)2 + (9χ + 2s + 1)2
, (9)

where χ = fwδ/D, with fw a factor that accounts for the
enhanced drag on a sphere in vicinity of a wall [25]. For
our present study, where δ/D is relatively small, and thus the
viscous contributions are also relatively small, we fix fw = 1.
For our experimental conditions with 0.024 < δ/D < 0.082
and s = 7.7, this solution predicts values for Ar/A in the range
0.78–0.81. This prediction is indicated by the red bands in
Fig 3, which do not match our experimental data well.

Next, we consider the case where particle-bottom friction
is sufficiently large to cause the particle to roll without slip-
ping, by adding a friction force Fc to the BBO equation. In
the Appendix, we further explore the role of particle-bottom
friction on the streamwise particle motion. Under the assump-
tion that the particle rotation is only due to particle-bottom
friction, the angular momentum of the particle is described by

ρsπD5

60

dωs

dt
= r × Fc, (10)

where the angular velocity is given by

ωs = 2

D
(us − u), (11)

with us and u being the particle and bottom velocities, respec-
tively. Equation (11) is defined such that the particle velocity
at the point of contact with the bottom is always equal to
the bottom velocity. Following the approach of van Overveld
et al. [18] and incorporating the particle-bottom friction, the
solution to the BBO equation is given by

Ar

A
= 2(s − 1)√

81χ2(2χ + 1)2 + (9χ + 14s/5 + 1)2
. (12)

This solution predicts values of Ar/A in the range 0.57–0.59,
represented by the blue bands in Fig 3. These bands describe
well our experimental data and agree with the linear fit pre-
sented in Eq. (8).

According to Eq. (12), an increase in δ/D causes a decrease
in Ar/A. However, the effect is small if δ/D 
 s, which is
evident from the narrow blue band in Fig. 3(b). Our experi-
mental data agree with this prediction, as the filled symbols
in Fig. 3(b) have slightly lower Ar/A values compared to the
empty symbols. The spread in the experimental data is only a
few percent, consistent with the width of the blue band. There-
fore, we conclude that variations in δ/D do not significantly
affect the value of Ar/A in this part of the parameter space.

The solutions to the BBO equation imply that the particles
in our experiments roll without slipping, which agrees with
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(a) (b)

(c) (d)

FIG. 4. Typical examples of the patterns in experiment series A3 (D = 10 mm, φ ≈ 0.346) under different oscillatory conditions. At low
values of Ar/D, the particles self-organize into one-particle-thick chains, oriented perpendicular to the direction of oscillation (a). As Ar/D
increases, a combination of chains and two-particle-wide bands is observed (b). Further increasing Ar/D results in the formation of broader
bands that are three (c) or more (d) particles wide. A video is available as Supplemental Material [23].

our visual observations. Moreover, the collapse of the data
onto a single line in Fig. 3(a) and the constant value of Ar/A
suggest that the relative importance of the particle-bottom
friction compared to the driving forces is constant. All in all,
the results confirm that the small variations in � observed in
our experiments have no significant effect on the streamwise
particle motion.

The values of A/D in Fig. 3 are not evenly spaced along the
horizontal axis. There is a larger gap between data points near
the resonance frequency of the optical table (around 4.3 Hz),
corresponding to A ≈ 10 mm, as indicated by the gray shaded
areas in Fig. 3(b). The shaking of the optical table at these
frequency values, as discussed in Sec. II, results in values
of A/D that are significantly higher than the user-defined
amplitude for the motor.

C. Mean pattern characteristics

1. Qualitative comparison

After starting the oscillatory motion of the box, the par-
ticles arrange themselves into different types of patterns,
depending on the value of Ar/D. We first consider a single
coverage fraction φ and describe the pattern characteristics
for various oscillatory conditions. A comprehensive overview
of the parameter space, including variations in φ, is given in
Sec. V. Typical examples of these patterns for the experiment
series A3 are shown in Fig. 4, and a video is available as
Supplemental Material [23]. For low values of Ar/D, the
particles form one-particle-thick chains oriented perpendic-
ular to the direction of oscillation, as shown in Fig. 4(a)
and also in the previous example in Fig. 2. This pattern
has been described in previous studies by Wunenburger,

Carrier, and Garrabos [11] and Klotsa et al. [15]. At slightly
larger values of Ar/D, the pattern consists of particle chains
that are more tortuous, have more defects, and have sec-
tions that are two particles wide, as seen in Fig. 4(b). As
Ar/D is further increased, one-particle-thick chains become
less prevalent and bands of two and three particles wide
become dominant, as shown in Fig. 4(c). This trend con-
tinues as the particles form wider bands for larger values
of Ar/D, as shown in Fig. 4(d). Furthermore, it is common
for bands with different widths to coexist in this part of
the parameter space. For example, in Fig. 4(d), bands with
approximately seven, six, and three rows can be observed
simultaneously.

Due to the chaotic nature of many-particle systems, exactly
reproducing the patterns from our experiments is impossible.
Small variations in the initial conditions lead to significant
differences in the particle trajectories. However, if we repeat
our experiments at the same conditions, then we obtain statis-
tically equivalent patterns. Notably, the mean characteristics
of the patterns once they have reached an equilibrium state
are similar.

Additionally, we frequently observe collisions between
particles and the walls that are perpendicular to the oscillating
direction, as can be clearly seen in the video available as
Supplemental Material [23]. Due to such a collision with the
moving wall, particles rebound toward the center of the box
with a significantly increased velocity. Subsequently, these
isolated particles often collide with particle chains or bands,
leading to defects in the pattern near these walls. However,
to maintain a constant particle coverage and avoid arbitrary
cutoff points, we include all particles in the box in the analysis
of the mean pattern characteristics.
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We characterize the mean state of the system using a radial
pair correlation function (RPCF), gr , which is commonly used
for colloidal systems [9]. The RPCF describes the particle
number density around a reference particle, as a function of
the distance to its center. It is defined as

gr = 1

2πr�rNφ

N∑
i=1

N∑
j=i+1

δi j
r , (13)

with

δi j
r =

⎧⎨
⎩1, if r − �r

2
< ri j < r + �r

2
,

0, otherwise,
(14)

and where r is the radial coordinate with respect to a reference
particle, �r is the bin width, and ri j is the distance between
the centers of particles i and j.

This approach works best for patterns in isotropic sys-
tems since directionality is not considered. To better analyze
the anisotropic patterns in our experiments, we use a modi-
fied two-dimensional pair correlation function (2DPCF), gxy,
defined by

gxy = 1

�x�yNφ

N∑
i=1

N∑
j=i+1

δi j
x δi j

y , (15)

where δ
i j
x and δ

i j
y have equivalent definitions to δ

i j
r in Eq. (14).

Here, x and y are the Cartesian coordinates parallel and per-
pendicular to the direction of oscillation, respectively. Along
these directions, �x and �y are the bin widths, and xi j and
yi j are the distances between the centers of particles i and j in
the x and y direction, respectively. We use Eq. (15) to analyze
the four cases shown in Fig. 4. The results are averaged over
100 frames per experiment, taken at different phases of the
oscillation. The result is shown in Fig. 5 on a logarithmic
scale. We evaluate the function gxy solely at the center of each
bin, with width �x = �y = 0.1D, such that particles are not
double counted.

For all four cases, the 2DPCF shown in Fig. 5 shows
a distinct structure that is qualitatively similar to the pat-
terns observed in the experiments. The red regions indicate
a higher-than-average particle presence. The circular region
around the origin represents the reference particle, which does
not overlap with other particles, such that gxy = 0. For low
values of Ar/D, as shown in Fig. 5(a), the red regions in
the 2DPCF represent one-particle-thick chains, with particles
within each chain appearing at y/D = ±1,±2, . . . . The red
regions are elongated in the x direction due to the tortuosity
of the chains. Neighboring chains (or bands) can be distin-
guished at x/D ≈ ±2 and ±4 in Fig. 5(a), at x/D ≈ ±3 in
Fig. 5(b), and at x/D ≈ ±5 in Fig. 5(c). The spacing between
neighboring chains or bands thus clearly increases with Ar/D,
which we address in more detail in Sec. III C 2.

Furthermore, the neighboring rows in Figs. 5(a) and 5(b)
have peaks at y/D = ±1,±2, . . . , similar to the central row,
indicating that the particles in neighboring chains are aligned.
This is likely a result of confinement: when two neighboring
chains both touch a side wall, the particles closest to the wall
must be aligned. This alignment might diminish further away
from the walls, due to, e.g., tortuosity and defects. However,

(a) (b)

(c) (d)

FIG. 5. The two-dimensional pair correlation function (2DPCF)
gxy, as defined in Eq. (15), is plotted for the four examples (a)–(d)
from Fig. 4, using a bin width of �x = �y = 0.1D. The 2DPCF
is time-averaged over 100 frames, recorded at different phases of
the oscillation. Positive correlations [log10(gxy ) > 0] are indicated in
red, negative correlations [log10(gxy ) < 0] in blue, and no correlation
[log10(gxy ) = 0] is indicated in white.

our domain is not sufficiently large to discard the influence
of the side walls. As Ar/D increases and the width of the
bands increases, more regions with gxy > 1 around the cen-
tral row appear. Due to the point symmetry of gxy about the
origin, these regions are present on both sides of the central
row and correspond to a hexagonal packing, which is most
evident in Figs. 5(c) and 5(d). Overall, the peak values of gxy

decrease with distance from the origin due to the finite size of
the domain. Additionally, the patterns in the 2DPCF may be
slightly skewed, such as in Fig. 5(b). This skewness is due to
the chains not being perfectly perpendicular to the direction
of oscillation, which can be caused by small variations in the
horizontality and smoothness of the bottom plate.

2. Distance between chains

The two-dimensional representations in Fig. 5 are useful
for identifying qualitative differences between the average
patterns, but extracting quantitative information directly from
them is challenging. Instead, we use one-dimensional pair
correlation functions gx and gy for the x and y directions,
respectively, to obtain characteristic length scales from the
pattern. For gx, we set �y to a large value (�y = 10D), while
keeping �x small (�x = 0.01D) to obtain a high spatial res-
olution in the x direction. Similarly, for gy, we set �x = 10D
and �y = 0.01D. These operations are equivalent to averag-
ing gxy in either the y or x direction, respectively. The results
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(a)

(b)

FIG. 6. The one-dimensional pair correlation functions (a) gx and
(b) gy are calculated for the four cases shown in Fig. 4. We have used
Eq. (15) with (�x = 0.01, �y = 10) and (�x = 10, �y = 0.01) for
gx and gy, respectively. The curves have been shifted by multiples
of two for improved clarity. The horizontal lines are the reference
values for which no correlation is present (gx or gy equal to 1). The
vertical lines in panel (a) correspond to multiples of

√
3/2, whereas

the vertical lines in panel (b) correspond to multiples of 1/2. The red
curve in panel (b) represents the envelope [gy ∼ (y/D)−0.6].

are shown in Fig. 6, for the same four cases of series A3
displayed in Figs. 4 and 5.

For low values of Ar/D (Ar/D = 0.51, 1.00), represented
by the solid and dashed curves in Fig. 6, the peaks in gx cor-
respond to the neighboring chains. The width of these peaks,
which is on the order of one diameter, is primarily caused by
variations in the chains, such as defects and tortuosity. The
peak widths are typically more than one order of magnitude
larger than the measurement uncertainty, which is on the sub-
millimeter level (see Sec. II). Between the peaks, the value of
gx is significantly smaller than one, indicating that there is a
lower-than-average chance of finding a particle in that region.
Contrarily, in gy, we observe sharp peaks at integer values
of y/D, which correspond to the particles within the chains.
The peaks decay as the distance from the reference particle
increases, as indicated by the red envelope in Fig. 6(b). The
observed algebraic decay is a characteristic feature of quasi-
long-range translational order in crystalline structures [9].
Additionally, the finite size of the box in our system also leads
to a less frequent occurrence of particles at large distances.

At higher values of Ar/D (Ar/D = 1.52, 2.25), represented
by the dash-dotted and dotted curves in Fig. 6, additional
peaks are visible in both gx and gy. For gx, these appear
approximately at (1/2)

√
3,

√
3, and (3/2)

√
3, corresponding

to the distances in the x direction between spheres in a hexag-
onal packing. The peak values are slightly shifted toward
larger values, which can be attributed to the outermost rows

FIG. 7. The positions of the peaks in gx as a function of Ar/D, for
all experiment series (see Table I). The error bars represent the full
width at half maximum (FWHM) of these peaks. The (red) curves are
integer multiples of Eq. (16). The (blue) horizontal lines correspond
to integer multiples of

√
3/2.

of particles in the bands not always being tightly packed,
as can be observed in Fig. 4(d). The broad peaks in the
range 4 < x/D < 6 (dash-dotted) or 7 < x/D < 10 (dotted)
correspond to the neighboring bands. Additionally, the smaller
peaks modulating the broad peaks correspond to individual
rows within these bands. In gy, the peaks at integer values
diminish with increasing Ar/D. Additional peaks appear at
half-integer values (0.5, 1.5, 2.5 . . . ), which correspond to the
distances in a hexagonal arrangement.

To quantify the distance between the chains, we calculate
the (normalized) interchain distance λ/D and its full width at
half maximum (FWHM) of each peak in gx for all experiments
in each experiment series. The results are plotted as a function
of Ar/D in Fig. 7, with the error bars representing the FWHM
values. The data from the different experiment series collapse
onto several curves without requiring rescaling. The data on
the lowest curve, starting at λ/D ≈ 2, corresponds to the
neighboring chains or bands, while the data with larger values
of λ/D correspond to nonneighboring chains or bands.

We have excluded a part of the oscillating box when calcu-
lating gx for the experiments from series A5 with Ar/D < 0.7.
This is necessary because irregularly shaped clusters tend to
form during these experiments, particularly close to the side
walls. The peaks in gx associated with these clusters would
have obscured the data due to the chain spacing, making it
difficult to analyze the results accurately. In Sec. V we address
the origin of these clusters in this part of the parameter space.

Based on the data from the lowest curve in Fig. 7, we
observe that the distance between the centers of neighboring
chains follows

λ

D
≈ 2 +

(
Ar

D

)2

. (16)

The red curves in the figure represent the value of λ/D and
its integer multiples (i.e., 2λ/D, 3λ/D and 4λ/D) as given by
Eq. (16). This equation further implies a minimum spacing
between neighboring chains equal to one particle diameter
(λ = 2D) when Ar/D approaches zero. Moreover, the spacing
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between neighboring chains is equal to two particle diameters
(λ = 3D) when Ar/D = 1.

The experimental data in Fig. 7 shows good agreement
with the proposed relation for the chain spacing [lowest red
curve, corresponding to Eq. (16)] across all values of the
particle coverage fraction φ. Even for low values of φ where
the pattern does not fully cover the box, the data follows
the curve. The chain spacing is thus primarily determined
by hydrodynamic interactions between the chains, which are
characterized by Ar/D. Equation (16) further implies that the
spacing is set by the equilibrium between short-range repul-
sion and long-range attraction. Conversely, if the chain solely
repel each other, then the pattern would spread out over the
box and the spacing would be determined by the confinement,
i.e., by φ.

However, we note that for Ar/D � 0.6 in Fig. 7, the values
of λ/D systematically decrease as φ increases. Specifically,
the data points for small values of φ (e.g., the triangles) lie
slightly above the red curve, while the data points for large
values of φ (e.g., the diamonds and the circles) lie slightly
below the red curve. This result implies that confinement does
play a role in this part of the parameter space, which we
further discuss in the context of the interaction potentials in
Sec. V.

Our results are further consistent with those of Wunen-
burger, Carrier, and Garrabos [11], who reported that the chain
spacing is independent of the particle coverage fraction φ for
low values (around φ ≈ 0.07). We confirm this finding and ex-
tend it to higher values of φ by almost one order of magnitude.
Nonetheless, the scaling proposed by Wunenburger, Carrier,
and Garrabos [11] differs considerably from ours, as they
suggested that λ/D ∼ (Ar/D)0.5[Ar (2π f )D/ν]−0.21. This can
be rewritten to λ/D ∼ (Ar/D)0.29(δ/D)0.42, implying that the
spacing depends on both Ar/D and δ/D. However, for our
experiments, we do not find such a dependence on δ/D and we
can show that the relation proposed by Wunenburger, Carrier,
and Garrabos [11] does not hold for our results. For constant
values of � and Ar/D, the ratio δ/D is a function of the
particle size: δ/D ∼ (gD3/ν2)−1/4, where the term between
brackets is commonly known as the Galilei number. There-
fore, experiments with identical values of � and Ar/D but
different particle diameters result in different values of δ/D. In
Fig. 7, we observe that different symbols overlap at a constant
value of Ar/D, regardless of variations in δ/D through dif-
ferent frequencies and particle sizes. Hence, we conclude that
within the region of the parameter space we explored, Ar/D
is a relevant parameter for the chain spacing, but δ/D is not.
Likewise, the chain spacing is not uniquely determined by the
particle Reynolds number Ar (2π f )D/ν = 2(Ar/D)(δ/D)−2.

In the bottom-right corner of Fig. 7, for large Ar/D, the
data represent the spacing between particles within the same
band with hexagonal packing. The FHWM is small in this
region, which indicates that the spacing between individual
rows within a band deviates little from the peak positions. For
D = 10 mm (open symbols), the values are integer multiples
of

√
3/2 (indicated by the blue horizontal lines), as expected

from the peak positions in Fig. 6. However, for D = 5 mm
(filled symbols), some peaks are located in between the blue
lines, at integer multiples of 1/2. To understand the differ-
ences, we compare the patterns for different particle sizes.

The hexagonal arrangement within each band has two
distinct orientations, rotated 30◦ with respect to each other,
as shown in Fig. 8. Close to the side walls, the particles
form rows that are aligned with and touching the walls. This
suggests that particles are attracted to the walls, and that this
attraction is stronger than the attraction to neighboring parti-
cles on the other side. Likewise, Klotsa et al. [15] observed
that one-particle-thick chains are attracted to the side walls.
Further away from the boundaries, each band instead consists
of a staggered arrangement of particle chains, where each
chain is oriented perpendicular to the oscillation direction.
Between the two regions with different orientations, there
is a region of a few particles wide with many defects. The
region with wall-oriented particles is significantly narrower
for the 10 mm particles than for the D = 5 mm particles, with
the region being approximately 4 and 13 particles wide for
the specific cases in Figs. 8(a) and 8(b), respectively. There
are thus significantly more particles in the wall-oriented part
for the smaller particles, which leads to the peaks at integer
multiples of 1/2 in gx in Fig. 7.

3. Chain width

To describe the chain width, we use the fraction

Fn = Mn

N
, (17)

where Mn is the number of particles with n nearest neighbors
and N is the total number of particles. Two particles are
considered nearest neighbors if their center-to-center distance
is smaller than a cutoff value: ri j/D < 1.3. This cutoff value
is chosen based on previous work on periodic patterns, which
suggests that a value should be chosen between the closest
and the next-closest particle distance in the packing (between
1 and

√
2 for square packing and between 1 and

√
3 for

hexagonal packing) [9,26].
In Fig. 9(a), we present the fractions of particles with 2,

4, and 6 nearest neighbors as a function of Ar/D. Across all
experiment series, a similar trend is observed which matches
observations from the experiments, e.g., as shown in Fig. 4. At
low Ar/D, F2 ≈ 0.75, meaning that about 70–80% of particles
are part of one-particle-thick chains where each particle has
two nearest neighbors. As Ar/D increases, F2 decreases while
F4 increases, signifying that particles form bands that are two
rows wide. The increase of F6 at even higher values of Ar/D
shows that the bands become wider, with at least three rows.
Additionally, the symbols from experiment series with equal
values of φ fall on top of each other. For example, open and
filled squares overlap, and open and filled upward triangles
overlap. Conversely, when φ is increased, the transitions of
F2 to F4 and F4 to F6, occur at lower values of Ar/D. The
particles not accounted for are those with zero, one, three, and
five neighbors that are related to isolated particles and defects
in the chains and bands. For each experiment,

∑6
n=0 Fn = 1.

For the cases with large φ (open circles and open dia-
monds) and Ar/D � 0.6, approximately 20% of the particles
have either four or six nearest neighbors. These particles are
part of irregularly shaped clusters that emerge when φ is suf-
ficiently large. In Sec. V, we provide an explanation for why
these clusters are only found in these particular experiment
series.

025103-9



VAN OVERVELD, CLERCX, AND DURAN-MATUTE PHYSICAL REVIEW E 108, 025103 (2023)

(a) (b)

FIG. 8. Images from two experiments with (a) D = 10 mm and (b) D = 5 mm, for similar values of Ar/D and plotted on the same scale.
The particles in each band are closely packed in a hexagonal arrangement with different orientations in different parts of the domain. Near the
side wall (top), the orientation is such that the particles align with it, whereas far away from the boundaries (bottom), the orientation is rotated
by 30◦. The hexagons are added to clarify the orientations near the wall (red) and in the bulk (blue).

The gray symbols in Fig. 9(a) represent the sum F2 + F4 +
F6, which is the fraction of particles that are neither defects
nor isolated particles. At low values of Ar/D, around 20% of
the particles are part of defects or isolated, and this percentage
increases to 40–60% for larger values of Ar/D. Notably, the
cases with low particle coverage fractions tend to have more
defects for large Ar/D. For instance, the upward triangles in
Fig. 9(a) demonstrate that around Ar/D ≈ 2, only 30–40% of

the particles have two, four, or six nearest neighbors. Further-
more, we observe that in these cases, there is no peak in F4, in
contrast to the well-defined peaks for slightly higher φ values
(squares, diamonds, and circles).

We propose a model to explain the observed variations in
chain widths by connecting them to earlier observations on the
distance between the chains. We first assume that all particles
are arranged in chains spanning between both side walls, i.e.,

(a) (b)

FIG. 9. The fraction of particles Fn with n nearest neighbors [see Eq. (17)] as a function of (a) Ar/D and (b) φ × [2 + (Ar/D)2], for all
experiment series (see Table I). The gray symbols in panel (a) represent F2 + F4 + F6, i.e., the fraction of particles that is not a defect. The
vertical lines in panel (b) correspond to the critical values π/4 and π/2, according to Eqs. (19) and (20), respectively. The dotted line at
φ[2 + (Ar/D)2] = 3π/8 lies halfway between the two critical values.
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with length Ly equal to the width of the domain. Each chain
contains Ly/D particles and there are a total of ND/Ly chains
in the system. Next, we assume that the distance between the
chains, as given by Eq. (16), is an intrinsic length scale that is
independent of the confinement. The collection of chains then
spans a distance

Lc = ND2

Ly

[
2 +

(
Ar

D

)2
]

(18)

in the x direction, where edge effects have been neglected. The
collection fits inside the domain when Lc < Lx, with Lx the
length of the domain. Hence, two-particle-wide bands should
form when Lc > Lx, in other words, when

φ

[
2 +

(
Ar

D

)2
]

>
π

4
, (19)

where we have used the definition of the particle coverage
fraction from Eq. (2) [φ = πND2/(4LxLy)]. The condition in
Eq. (19) is satisfied for all values of Ar/D if φ > π/8 ≈ 0.39.
Above this critical particle coverage fraction, the spacing be-
tween one-particle-thick chains is always incompatible with
the domain size and the particles should always form bands to
accommodate the preferred spacing.

The previous analysis can be repeated for the case of
two-particle-wide bands, where each band contains 2Ly/D
particles, while the expression for the spacing remains un-
changed. This analysis yields that three-particle-wide bands
should form when

φ

[
2 +

(
Ar

D

)2
]

>
π

2
. (20)

It is worth noting that Eqs. (19) and (20) depend on φ and not
explicitly on the domain size. Thus, even though the model is
derived for a bounded domain, it is also valid for periodic and
infinitely large domains, where the intrinsic spacing between
the chains may also become incompatible with the coverage
fraction.

We validate our model by plotting the fraction of particles
with n nearest neighbors, Fn, as a function of the left-hand side
of Eq. (19) in Fig. 9(b). Here, we observe the collapse of the
data from different values of φ from Fig. 9(a). Furthermore, at
the critical value π/4, there is a decrease in F2 and an increase
in F4 marking the transition from one-particle-thick chains to
two-particle-wide bands. For higher coverage fractions, i.e.,
the circles, diamonds, and squares, the transition is sharper
than for lower coverage fractions, i.e., the triangles. More-
over, the critical value π/2 obtained from Eq. (20) marks the
maximum in F4 and the onset of the increase in F6. These
two changes in Fn correspond to the transition from two-
to three-particle-wide bands. Finally, note that the blue and
orange symbols in Fig. 9(b) intersect approximately halfway
between the two transitions, at the dotted line.

IV. PHYSICAL MECHANISM FOR CHAIN
ATTRACTION AND REPULSION

A. Numerical method

We uncover the physical mechanism behind the attraction
and repulsion between the chains using numerical simu-
lations. We employ a second-order accurate finite volume
method that fully resolves the flow around the spherical parti-
cles. The particles are simulated using an immersed boundary
method, as implemented by Breugem [17]. This code has
been recently used to study the steady streaming flows and
dynamics of particle pairs in oscillating flows by van Overveld
et al. [14,18]. For a detailed explanation of the numerical
method and its adaptation for oscillating flows, we refer the
reader to the aforementioned sources.

In our simulations, we are primarily interested in the time-
averaged flow around the chains for different configurations
and flow conditions. To allow for an easier comparison, the
particles are fixed in space, while the flow and bottom os-
cillate with a user-defined amplitude. Note that Ar and A are
equal in these cases. Specifically, we simulate cases in which
either one or two perfectly straight chains of ten spheres are
placed inside a double periodic box with lateral dimensions
of 20 × 10 and a height of 5 diameters. The flow is solved
on a uniform Cartesian grid with a grid spacing of D/24.
We further set the ratio between the viscous length scale and
the particle diameter to δ/D = 1/30. This corresponds to a
frequency of 2.86 Hz for particles with 10 mm diameter and,
given that � = 0.75, an amplitude-to-diameter ratio of A/D ≈
2.3. We average the flow fields over a single period once the
transients have sufficiently died out, which is typically after
20 periods. Additionally, the time-averaged flow fields are
averaged over the y axis, which yields an average flow field
in the xz plane.

B. Steady streaming and resulting forces

Figure 10 shows the flow field around a single chain of
particles for three different values of Ar/D(=A/D). The sim-
ulations reveal the presence of small “inner” vortices near
the particles and larger “outer” vortices that fill most of the
domain and span the full height. In this two-dimensional
representation, the inner vortices appear to partially overlap
with the particles, especially for Ar/D = 0.5. The vortices
are actually located in between successive particles, i.e., at
different y positions compared to the particle centers. Addi-
tionally, combining the vertical velocity and streamlines, we
deduce that a downward flow above the chain (blue) signifies a
diverging flow in the horizontal xy plane at midparticle height.
Conversely, an upward flow above the chain (red) signifies a
converging flow in this plane.

The radius of the inner vortices is roughly proportional
to Ar/D, as indicated by the magenta circular arcs in the
figure. The size difference of these vortices leads to qualitative
differences in the flow around the chains. For Ar/D = 0.5,
the inner vortices are smaller than a particle diameter, leading
to a downward flow above the chain and flow away from the
chain at midparticle height. In contrast, for the larger values
of Ar/D (1.0 and 2.0), the inner vortices are substantially
larger than one particle diameter and are mainly located next
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(a) (b) (c)

FIG. 10. The side-view of the flow field around a single particle chain from our numerical simulations, for three different values of Ar/D.
The flow fields are averaged over a full period of the oscillation and over the y direction. The black lines are streamlines of the average velocity
field and the color corresponds to the vertical velocity, normalized by the velocity amplitude 2πA f . The sizes of the vortices close to the
chain are roughly proportional to Ar/D, as indicated by the magenta circles with radii of [0.75,1.25,2.25], respectively. Note that the circle
midpoints are not at the same location in the different images. We shift them vertically downwards with increasing Ar/D, placing them at
z/D = [0.50, 0.33, 0.00], respectively, such that they better overlap with the edges of the vortices.

to the projection of the chain. This results in a flow directed
toward the particle at midparticle height and upwards above
the chain. The inner vortices in these cases resemble those
seen for rolling grain ripples [27] and the oscillatory flow over
a wavy wall [28].

In Fig. 11, we present the results for simulations with two
fixed chains, with different spacing between them, such that
λ/D = [4, 2, 1]. In addition, we have calculated the average
horizontal force on each particle, Fx, which is nondimension-
alized by ρ f (πD3/6)Aω2 and averaged over a full oscillation
period. An extensive overview with more values of λ/D is
given as Supplemental Material [23]. The other parameters of
the simulations are identical to those in Fig. 10. The size and
strength of the vortices between the two chains are highly de-
pendent on the distance between the chains. For Ar/D = 0.5
and relatively large spacing (λ/D = 4), as shown in Fig. 11(a),
the outer vortices induce an upward flow between the chains
and a converging flow in the horizontal plane at midparticle
height. This flow results in an attractive force between the
chains. However, as the spacing decreases [λ/D = 2 and 1, in
Figs. 11(d) and 11(g)], both the large-scale outer vortices be-
tween the chains and the upward flow disappear. This results
in a (weakly) repulsive force between the chains.

When Ar/D = 1.0 and the chain spacing is relatively large
(λ/D = 4), in Fig. 11(b), four outer vortices and a weak
upward flow between the chains are present. However, two
of the outer vortices do not reach the bottom between the
particles. As the chain spacing decreases to λ/D = 2, the two
outer vortices between the chains are greatly reduced, result-
ing in a downward flow between the chains. Correspondingly,
there is a diverging flow in the horizontal midparticle plane
and a strong repulsion between the chains. However, as the
spacing gets sufficiently small, i.e., as λ/D = 1 in Fig. 11(h),
the flow around the two chains becomes qualitatively similar
to the flow around a single chain, as shown in Fig. 10(b).
Furthermore, the force between the chains becomes strongly
attractive, indicating that a two-particle-wide band is stable
for these flow conditions.

For Ar/D = 2.0 and sufficiently small spacings (λ/D = 1),
in Fig. 11(i), the flow field around the two chains is similar to

that around a single chain and the force between the chains
is strongly attractive. However, for a relatively large spacing
[λ/D = 4 in Fig. 11(c)], the inner vortices fill the entire region
between the chains, such that no outer vortices are present
there. The inner vortices induce a strong repulsion between
the chains, similar to the case shown in Fig. 11(e).

In summary, the interplay of the inner and outer vortices
induces attractive and repulsive hydrodynamic interactions
between the chains. For a large spacing, the outer vortices
generate a converging flow in the horizontal midparticle plane,
resulting in an attractive force. However, as the spacing de-
creases to intermediate values, these outer vortices do not fit
between the chains, leading to a diverging flow and a strong
repulsion. Finally, when both the spacing is small and Ar/D
sufficiently large, the chains strongly attract each other, with
a flow resembling that around a single chain.

The configuration where two chains touch each other
(λ/D = 1) is not always stable. For sufficiently low values of
Ar/D, the chains repel each other, such as in Fig. 11(g). The
figure suggests that there is a critical value of Ar/D between
0.5 and 1.0, at which the net force between the chains changes
from repulsive to attractive. Below this critical value, the
chains always repel each other, whereas above it, the chains
attract each other if they are sufficiently close.

To get more insight into the net forces between the chains,
we have performed additional numerical simulations with two
rows of particles. The position of the particles is fixed, and
the average streamwise force is calculated for different values
of Ar/D ranging from 0.5 to 1.0. The outcomes of these
simulations are shown in Fig. 12. We have used three different
configurations, each two rows of particles wide, based on the
observations from the experiments.

The red configuration represents a two-particle-wide band
with hexagonal packing. The purple configuration represents
two touching chains that are aligned in the spanwise direction,
similar to the alignment of the particles in two neighbor-
ing chains. The brown configuration represents a band with
hexagonal packing, in the orientation that we observe in our
experiment near a side wall. For all three configurations,
the streamwise force as a function of Ar/D exhibits similar
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 11. The side-view of the average flow field from our numerical simulations, similar to Fig. 10, here for two particle chains. The
distance between the chains λ/D and the relative excursion length Ar/D are both varied. The arrows indicate the direction of the (dimensionless)
horizontal hydrodynamic forces on the particles, while their color is proportional to the magnitude of these forces, with blue as repulsive and
red as attractive. The magenta circles and their midpoints correspond to those drawn in Fig. 10. A more extensive overview with additional
values of λ/D is provided in the Supplemental Material [23].

behavior, with repulsion at low values of Ar/D and attraction
for higher values. The transition from repulsion to attraction,
i.e., the zero-crossing in Fig. 12, occurs at Ar/D ≈ 0.7 for
the red and purple configurations, and at Ar/D ≈ 0.8 for the
brown configuration.

For the brown configuration, we additionally distinguish
between the inner and outer particles based on their distance
from the centerline. We have calculated the average forces
acting on these particles, where a positive value indicates a
force directed toward the centerline, while a negative value
indicates a force directed away from it. The force on the outer
particles (dotted line) is always directed toward the centerline.
Conversely, the force on the inner particles (dashed line) is
always directed away from the centerline. As a result, the
forces on the particles in the brown configuration tend to
straighten the band, leading to the purple configuration.

Despite the expectation that the brown configuration al-
ways tends to straighten, we have frequently observed it in
our experiment, particularly near the side walls, as shown

in Fig. 8. However, for the transition from the brown to the
purple configuration, the hexagonal packing should change
to a square packing, requiring the particles to move in the y
direction (parallel to the band). Hence, there must be sufficient
space for the particles to move and reorient during the reorga-
nization. It is likely that the presence of a wall or clusters of
other particles inhibits such a reorganization.

V. OVERVIEW OF THE PARAMETER SPACE

Based on our experiments, we have identified two transi-
tions: from chains to two-particle-wide bands and from two-
particle-wide bands to multiple-particle-wide bands. These
transitions, as described by Eqs. (19) and (20), are based on
the intrinsic spacing between the chains. Furthermore, our
numerical simulations have revealed that for Ar/D � 0.7, the
two-particle-wide bands are unstable. These conditions divide
the parameter space, represented by the (Ar/D, φ) plane, into
different regions, as illustrated in Fig. 13. In this figure, we
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FIG. 12. The average value of the hydrodynamic force in the
oscillation direction, Fx [nondimensionalized by ρ f (πD3/6)Aω2], on
each particle for different configurations (as indicated by the different
colors) and different values of Ar/D. The vertical black lines show
the centerlines of each configuration. Positive values correspond to
(attractive) forces toward the centerline of the configuration, and thus
to a stable configuration. Negative values correspond to (repulsive)
forces away from the centerline of the configuration, and thus to an
unstable configuration. Note that the particles in the brown config-
uration are additionally split into inner particles (with a cross) and
outer particles (unmarked), with the average forces on these particles
represented by the dashed and dotted lines, respectively.

show the positions of all our experiments in the parameter
space, with each experiment colored according to the most
common number of nearest neighbors (two, four, or six),
corresponding to Fig. 9.

The transition from one-particle-thick chains (blue) to two-
particle-wide bands (orange) in Fig. 13 occurs approximately
at the dotted curve, which lies approximately halfway between
the solid black curves. This transition corresponds to the in-
tersection of F2 and F4 halfway between the two curves, as
previously shown in Fig. 9(b). Furthermore, it is worth noting
that two-particle-wide bands are absent when Ar/D < 0.7.

We now elaborate on the different regions inside the param-
eter space, using the experiments indicated with red dots in
Fig. 13. Snapshots of these experiments are shown in Fig. 14.
Each image is a typical example of the pattern found in the
corresponding region of the parameter space.

In the first column of Fig. 14 (corresponding to Ar/D ≈
0.5), two-particle-wide bands are unstable and therefore ab-
sent. Even at high values of φ, the particles do not form
two-particle-wide bands but rather cluster together in irregular
shapes. While some of these clusters have hexagonal packing,
they lack a uniform orientation, whereas the two-particle-wide
bands are oriented perpendicularly to the oscillation direction.

In the second column (corresponding to Ar/D ≈ 1.0), the
two-particle-wide bands are always stable, but their presence
is not always necessary to fit the pattern if φ is sufficiently
small. However, depending on the initial conditions and the
local particle number density, some two-particle-wide bands
can form and be stable, such as shown in Fig. 14(h). For
higher values of φ, these bands are increasingly more common
as they are required to fit the pattern with its preferential

spacing inside the domain. Increasingly large values of φ yield
increasingly wide bands when Ar/D � 0.7.

In the third column (corresponding to Ar/D ≈ 2.0), the
two-particle-wide bands are always stable and always re-
quired to fit the pattern with its preferential spacing, for the
values of φ considered here. The typical width of the bands
increases with φ. However, for low values of φ, e.g., as shown
in Fig. 14(i), we expect to find a combination of one-particle-
thick chains and two-particle-wide bands. Instead, we observe
a combination of bands and isolated particles with high mobil-
ity. Consequently, the fraction of defects is high, as previously
noted in Fig. 9(a) for this part of the parameter space.

We can understand the absence of one-particle-thick chains
based on the interaction between two isolated particles. When
this interaction is sufficiently large, they form a pair with a
small gap between them, aligned perpendicularly to the os-
cillation direction. Such a pair is the building block for longer
chains [15]. In their numerical simulations, van Overveld et al.
[14] showed that for Ar/D � 1, the equilibrium distance be-
tween the particles is typically small [∝(δ/D)1.5]. However, as
Ar/D � 2, the gap spacing rapidly increases [∝(Ar/D)3] due
to the advection of vorticity away from the pair. This leads to
weaker instantaneous interactions between the particles and
destabilizes the pair configuration. This mechanism adds a
smooth transition region between 1 < Ar/D < 2 in the pa-
rameter space in Fig. 13. Above this transition, the interaction
between pairs of particles is too weak for one-particle-thick
chains to be stable.

It should be noted that the mechanism described above be-
comes irrelevant as Ar/D increases further, beyond the upper
solid black curve [Eq. (20)] in Fig. 13. In that region, there are
no one-particle-thick chains, as they do not fit in the domain
with their preferential spacing. Instead, multiple-particle-wide
bands form to fit the pattern in the domain, and these bands are
stable.

Figure 13 further shows the location in the parameter space
of different data points from previous studies. Our results
agree well with the data that is available from the litera-
ture. All black symbols below the lower solid black curve
correspond to one-particle-thick chains, which is consistent
with the regions in the parameter space as well as our own
experimental observations. For the two right-pointing black
triangles at φ ≈ 0.1, Mazzuoli et al. [27] reported multiple-
particle-wide bands, which again agrees with our predictions
for the parameter space.

Although the regions in the parameter space that we pro-
pose in Fig. 13 are supported by previous studies, we cannot
make a one-to-one comparison with our experimental data due
to other differences. These include differences in the particle-
fluid density ratio, the relative importance of particle-bottom
friction, and the smoothness of the bottom. For example,
the rightmost black symbol corresponds to a simulation by
Mazzuoli et al. [27] where particles moved on top of a layer
of other particles.

VI. CONCLUSIONS

In this paper, we have described the self-organization of
dense spherical particles in an oscillating flow into either one-
particle-thick chains or multiple-particle-wide bands, oriented
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FIG. 13. The location of all our experiments within the (Ar/D, φ) parameter space. The data are colored based on which fraction is largest:
F2 (blue), F4 (orange), or F6 (green). The vertical black line corresponds to Ar/D = 0.7 and the solid black curves to φ[2 + (Ar/D)2] =
[π/4, π/2] [see Eqs. (19) and (20)]. The dotted black curve lies halfway between the two transitions. The data for the two lowest values of φ

(B1 and B2, filled symbols) are slightly shifted toward lower φ values for clarity. The black symbols represent data from previous studies by
Wunenburger, Carrier, and Garrabos [11] (dots), Klotsa et al. [15] (left-pointing triangle), and Mazzuoli et al. [27] (right-pointing triangles).
The red symbols (labeled a–i) indicate the cases shown in Fig. 14.

perpendicular to the direction of oscillation. Our experiments
using an oscillating box show different stages of the forma-
tion, including the expansion and contraction of the pattern in
the direction of oscillation. These phenomena are attributed
to the repulsive and attractive interactions between chains,
respectively.

We further show that the equilibrium chain spacing is an
intrinsic quantity that is set by hydrodynamic interactions,
which are characterized by Ar/D. Conversely, the particle
coverage fraction φ determines the width of the chains or
bands. Using the intrinsic spacing between the chains and
properties of the confinement, we accurately predict the tran-
sition from chains to bands.

Direct numerical simulations, where the flow around the
particles is fully resolved, show that the interplay between the
inner and outer vortices in the time-averaged flow determines
the interactions between chains. The equilibrium spacing
follows from the balance between long-range attractive and
short-range repulsive forces, attributed to the vortices in the
steady streaming flow. Our simulations further reveal the
physical mechanism that stabilizes the bands when Ar/D �
0.7. When the chains are sufficiently close together, the inner

vortices between the chains are completely suppressed, such
that the average flow field around such a double band is then
similar to that around a single chain.

In conclusion, our study provides an extensive under-
standing of the self-organization of spherical particles into
patterns in an oscillating flow. Using insights from both ex-
periments and numerical simulations, we have identified the
key dimensionless parameters that govern the equilibrium
state of the system. Our analysis includes a comprehensive
overview of the parameter space, where we identify different
regions and explain the transitions between them. The insights
gained from this study provide valuable information about the
characteristics of fluid-immersed patterns and the underlying
physical processes. Moreover, the findings can be used to
develop novel approaches for controlling and manipulating
particle-laden flows, through external forcing conditions or
confinement. Additionally, the diverse range of observed pat-
terns demonstrates the potential of hydrodynamic interactions
to impose soft confinement boundaries on a collection of
particles through long-range attractions.

The data that support the findings of this study are openly
available in 4TU.ResearchData at [29].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 14. An overview of the patterns in our experiments for the nine cases indicated by red dots in Fig. 13.

ACKNOWLEDGMENTS

We thank NWO for the computational resources pro-
vided on Snellius (Grant No. EINF-2132). We further thank
Wim-Paul Breugem (Delft University of Technology) for pro-
viding us access to the numerical code. Finally, we thank
Janne-Mieke Meijer and Wouter Ellenbroek (both Eindhoven
University of Technology) for the fruitful discussions about
our experimental results and analysis methods.

APPENDIX: ROLE OF PARTICLE-BOTTOM FRICTION

We study the role of particle-bottom friction on the
streamwise motion of a single particle in an oscillating
box filled with viscous fluid, using the numerical code by
Breugem [17]. This code is also used to uncover the physical
mechanism behind the chain interactions, as described in
Sec. IV. In this section, a single spherical particle is placed
inside a double periodic box with lateral dimensions of
20 × 10 and a height of 5 diameters. The flow is solved on a
uniform Cartesian grid with a grid spacing of D/24 and the
particles are simulated using an immersed boundary method.
We further set A/D = 0.909, δ/D ≈ 0.0265, � = 0.75, and
s = 7.5, i.e., closely matching the experimental conditions
for which Ar/D = 0.5. The value of the Coulomb friction
coefficient μc is varied between 0.0 and 0.5.

Figure 15 shows, for three different values of μc, the veloc-
ities as a function of time during the 20th oscillation period,
when the system has reached a quasi-steady state and the
transients have died out. The velocities are normalized by the
velocity amplitude of the box, 2πA f , and time is normalized
by the oscillation frequency, f , such that one unit of time
corresponds to one oscillation period.

In the absence of particle-bottom friction [μc = 0.0,
in Fig. 15(a)], the particle rotation, represented by the

dash-dotted curve, is approximately zero. The hydrodynamic
interactions cause slight rotation of the particle, but these
effects are sufficiently small to be insignificant for the overall
motion (around 0.01 on the scale used in Fig. 15).

For slightly larger values of the Coulomb friction co-
efficient values, e.g., for μc = 0.10 in Fig. 15(b), the
particle-bottom friction affects both the translational and rota-
tional motion. The particle rotates throughout the oscillatory
motion, as indicated by nonzero values of the dash-dotted
curve. However, the rotational velocity is not sufficiently large
to match the velocity of the bottom, which is indicated by the
solid curve. When the bottom velocity exceeds that of the part
of the particle in contact with the bottom, the particle experi-
ences a positive acceleration due to the Coulomb friction. This
force is proportional to μc but is independent of the velocity
difference between the particle and bottom. Therefore, the
slope (i.e., the acceleration) of the dash-dotted curve remains
constant until the dash-dotted curve intersects the solid curve
and the velocities match. After this point, the process reverses.
This type of particle motion is commonly referred to as rolling
motion with slip.

When the Coulomb coefficient is sufficiently large, e.g.,
when μc = 0.2 in Fig. 15(c), the particle rolls without slip
throughout the oscillatory motion, such that the dash-dotted
curve overlaps the solid curve. Note that our experiments
fall into this regime. Increasing μc further does not increase
the friction force or affect the particle motion. Finally, it is
worth noting that the amplitudes of the relative particle-fluid
velocities (dotted curves) decrease as friction becomes more
important.

In Fig. 16, we present our numerical simulation results for
Ar/A as a function of μc/�, which sets the relative importance
of particle-bottom friction [14]. When increasing μc/� from
0.0 to 0.27, there is a smooth transition from Ar/A ≈ 0.778,
as the particle slides over the bottom, to Ar/A ≈ 0.565, as the
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FIG. 15. Velocities as a function of time, obtained from numer-
ical simulations of a single spherical particle inside an oscillating
box. The data is normalized by the velocity amplitude of the box and
shown for three different values of the Coulomb friction coefficient
μc. The different lines indicate the velocity of the box (solid), the
particle velocity in the laboratory frame (dashed), the particle veloc-
ity relative to the box (dotted), and the velocity of the point of the
particle in contact with the bottom (dash-dotted). The simulations
are carried out with A/D = 0.909, δ/D ≈ 0.0265, � = 0.75, and
s = 7.5.

particle rolls without slip. At intermediate values, the particle
rolls with slip.

For the particle to roll without slipping, the Coulomb force
must always exceed the force Fc based on the inertia of
the particle [see Eq. (10)]. Here we have assumed that the
particle rotation is solely due to particle-bottom friction. The
condition for rolling without slipping is then given by

μc

�
� 2

5

s

s − 1

Ar

A
,

� 4s/5√
81χ2(2χ + 1)2 + (9χ + 14s/5 + 1)2

, (A1)

FIG. 16. The ratio Ar/A obtained from numerical simulations
of a single spherical particle in an oscillating box. The three filled
symbols correspond to the cases shown in Fig. 15. Our exper-
imental data fall within the gray area, where we have assumed
that μc ≈ 0.3. The dotted line at Ar/A = 0.565 indicates the con-
stant value of Ar/A for μc/� > 0.27. The red and blue lines at
Ar/A ≈ 0.80 and Ar/A ≈ 0.58 represent the solutions of the Basset-
Boussinesq-Oseen (BBO) equation, given by Eqs. (9) and (12), re-
spectively. The dashed vertical line corresponds to μc/� = 0.27 [see
Eq. (A1)], above which the particle rolls throughout the oscillatory
motion.

where we have used the solution to the BBO equa-
tion [Eq. (12)]. For the simulations discussed in this
Appendix, with δ/D ≈ 0.0265, we obtain μc/� � 0.270,
which is indicated in Fig. 16. The condition in Eq. (A1)
further confirms that the ratio μc/� determines the magni-
tude of particle-bottom friction and, consequently, the particle
rotation.

Finally, we have shaded the region in Fig. 16 that en-
compasses all our experimental data. We have estimated that
μc ≈ 0.3 for the interface between glass bottom and stainless
steel particles [20]. While the value of μc in the experi-
ments may be slightly larger than 0.3, our results remain
unchanged since it does not affect the relative particle-fluid
motion. The value of Ar/A remains constant above μc/� ≈
0.27. Nonetheless, Fig. 16 emphasizes the importance of
keeping � (approximately) constant in our experiments. If
� were varied such that μc/� � 0.27, then the particle
motion would transition from rolling without slipping to
rolling with slip or sliding, depending on the specific value
of μc/�.

Based on the shaded region in Fig. 16, we can conclude
that in our experiments, where the relative importance of
particle-bottom friction is constant, the particles always roll
without slipping. As a result, keeping μc/� constant results
in a constant value of Ar/A.

[1] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Granu-
lar solids, liquids, and gases, Rev. Mod. Phys. 68, 1259
(1996).

[2] P. Sánchez, M. R. Swift, and P. J. King, Stripe Formation in
Granular Mixtures Due to the Differential Influence of Drag,
Phys. Rev. Lett. 93, 184302 (2004).

025103-17

https://doi.org/10.1103/RevModPhys.68.1259
https://doi.org/10.1103/PhysRevLett.93.184302


VAN OVERVELD, CLERCX, AND DURAN-MATUTE PHYSICAL REVIEW E 108, 025103 (2023)

[3] I. S. Aranson and L. S. Tsimring, Patterns and collective behav-
ior in granular media: Theoretical concepts, Rev. Mod. Phys.
78, 641 (2006).

[4] A. F. Fortes, D. D. Joseph, and T. S. Lundgren, Nonlinear
mechanics of fluidization of beds of spherical particles, J. Fluid
Mech. 177, 467 (1987).

[5] G. A. Voth, B. Bigger, M. R. Buckley, W. Losert, M. P. Brenner,
H. A. Stone, and J. P. Gollub, Ordered Clusters and Dynamical
States of Particles in a Vibrated Fluid, Phys. Rev. Lett. 88,
234301 (2002).

[6] C. C. Thomas and J. P. Gollub, Structures and chaotic fluctua-
tions of granular clusters in a vibrated fluid layer, Phys. Rev. E
70, 061305 (2004).

[7] P. Blondeaux, Sand ripples under sea waves part 1: Ripple
formation, J. Fluid Mech. 218, 1 (1990).

[8] Z. Xu, L. Wang, F. Fang, Y. Fu, and Z. Yin, A review on
colloidal self-assembly and their applications, Curr. Nanosci.
12, 725 (2016).

[9] V. Lotito and T. Zambelli, Pattern detection in colloidal assem-
bly: A mosaic of analysis techniques, Adv. Colloid Interface
Sci. 284, 102252 (2020).

[10] B. Zhang, A. Snezhko, and A. Sokolov, Guiding Self-Assembly
of Active Colloids by Temporal Modulation of Activity, Phys.
Rev. Lett. 128, 018004 (2022).

[11] R. Wunenburger, V. Carrier, and Y. Garrabos, Periodic order
induced by horizontal vibrations in a two-dimensional assembly
of heavy beads in water, Phys. Fluids 14, 2350 (2002).

[12] N. Riley, On a sphere oscillating in a viscous fluid, Q. J. Mech.
Appl. Math. 19, 461 (1966).

[13] D. Klotsa, M. R. Swift, R. M. Bowley, and P. J. King, Inter-
action of spheres in oscillatory fluid flows, Phys. Rev. E 76,
056314 (2007).

[14] T. J. J. M. van Overveld, M. T. Shajahan, W.-P. Breugem,
H. J. H. Clercx, and M. Duran-Matute, Numerical study of a
pair of spheres in an oscillating box filled with viscous fluid,
Phys. Rev. Fluids 7, 014308 (2022).

[15] D. Klotsa, M. R. Swift, R. M. Bowley, and P. J. King, Chain
formation of spheres in oscillatory fluid flows, Phys. Rev. E 79,
021302 (2009).

[16] N. A. Araújo, L. Janssen, T. Barois, G. Boffetta, I. Cohen, A.
Corbetta, O. Dauchot, M. Dijkstra, W. Durham, A. Dussutour

et al., Steering self-organisation through confinement, Soft
Matter 19, 1695 (2023).

[17] W.-P. Breugem, A second-order accurate immersed boundary
method for fully resolved simulations of particle-laden flows,
J. Comput. Phys. 231, 4469 (2012).

[18] T. J. J. M. van Overveld, W.-P. Breugem, H. J. H. Clercx, and
M. Duran-Matute, Effect of the Stokes boundary layer on the
dynamics of particle pairs in an oscillatory flow, Phys. Fluids
34, 113306 (2022).

[19] O. Dangles, T. Steinmann, D. Pierre, F. Vannier, and J. Casas,
Relative contributions of organ shape and receptor arrangement
to the design of Cricket’s cercal system, J. Comp. Physiol. A
194, 653 (2008).

[20] Friction coefficients and calculator, https://www.
engineeringtoolbox.com/friction-coefficients-d_778.html
(2004) [Accessed: March 2023].

[21] D. B. Allan, T. Caswell, N. C. Keim, and C. M. van der Wel,
Soft-matter/trackpy: Trackpy v0.4.2 (2019), https://zenodo.org/
record/3492186.

[22] J. C. Crocker and D. G. Grier, Methods of digital video mi-
croscopy for colloidal studies, J. Colloid Interface Sci. 179, 298
(1996).

[23] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.108.025103 for videos of Figs. 2 and 4, and
the extended version of Fig. 11.

[24] S. Corrsin and J. Lumley, On the equation of motion for a
particle in turbulent fluid, Appl. sci. Res. 6, 114 (1956).

[25] A. J. Goldman, R. G. Cox, and H. Brenner, Slow viscous mo-
tion of a sphere parallel to a plane wall—I. Motion through a
quiescent fluid, Chem. Eng. Sci. 22, 637 (1967).

[26] T. Besseling, M. Hermes, A. Fortini, M. Dijkstra, A. Imhof,
and A. Van Blaaderen, Oscillatory shear-induced 3D crys-
talline order in colloidal hard-sphere fluids, Soft Matter 8, 6931
(2012).

[27] M. Mazzuoli, A. G. Kidanemariam, P. Blondeaux, G. Vittori,
and M. Uhlmann, On the formation of sediment chains in an
oscillatory boundary layer, J. Fluid Mech. 789, 461 (2016).

[28] W. Lyne, Unsteady viscous flow over a wavy wall, J. Fluid
Mech. 50, 33 (1971).

[29] http://doi.org/10.4121/9c7664af-4684-43cf-95cc-
a3fba6951e23.

025103-18

https://doi.org/10.1103/RevModPhys.78.641
https://doi.org/10.1017/S0022112087001046
https://doi.org/10.1103/PhysRevLett.88.234301
https://doi.org/10.1103/PhysRevE.70.061305
https://doi.org/10.1017/S0022112090000908
https://doi.org/10.2174/1573413712666160530120807
https://doi.org/10.1016/j.cis.2020.102252
https://doi.org/10.1103/PhysRevLett.128.018004
https://doi.org/10.1063/1.1483842
https://doi.org/10.1093/qjmam/19.4.461
https://doi.org/10.1103/PhysRevE.76.056314
https://doi.org/10.1103/PhysRevFluids.7.014308
https://doi.org/10.1103/PhysRevE.79.021302
https://doi.org/10.1039/D2SM01562E
https://doi.org/10.1016/j.jcp.2012.02.026
https://doi.org/10.1063/5.0115487
https://doi.org/10.1007/s00359-008-0339-x
https://www.engineeringtoolbox.com/friction-coefficients-d_778.html
https://zenodo.org/record/3492186
https://doi.org/10.1006/jcis.1996.0217
http://link.aps.org/supplemental/10.1103/PhysRevE.108.025103
https://doi.org/10.1007/BF03185030
https://doi.org/10.1016/0009-2509(67)80047-2
https://doi.org/10.1039/c2sm07156h
https://doi.org/10.1017/jfm.2015.732
https://doi.org/10.1017/S0022112071002441
http://doi.org/10.4121/9c7664af-4684-43cf-95cc-a3fba6951e23

