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The boundary layer near a cooled inclined plate, which is immersed in a stably stratified fluid rotating about
an axis parallel to the direction of gravity, is a model for katabatic flows at high latitudes. In this paper the base
flow of such an inclined buoyancy layer is solved analytically for arbitrary Prandtl numbers. By applying linear
stability analyses, five unstable modes are identified for both the fixed temperature and the isoflux boundary
conditions, i.e., the stationary longitudinal roll (LR) mode, the oblique roll with low streamwise wave-number
(OR-1) and high streamwise wave-number (OR-2) modes, and the Tolmien-Schlichting (TS) wave with low
streamwise wave-number (TS-1) and high streamwise wave-number (TS-2) modes. It is indicated that the
Coriolis effect induced by the rotation leads the critical modes to be three dimensional, and a larger tilt angle of
the plate and stronger Coriolis effect cause both TS wave modes to be more unstable for both thermal boundary
conditions. When the Coriolis effect is considered, the OR-1 and OR-2 modes are the most unstable mode at
low and high tilt angles, respectively, but the TS-1 wave mode may be the most unstable one when the plate
is nearly vertical. In addition, the spanwise phase velocities of the TS wave modes change directions as the tilt
angle passes some threshold values for both thermal boundary conditions except for the TS-1 wave mode with
a fixed temperature boundary condition, which propagates in the same spanwise direction for all explored tilt
angles.
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I. INTRODUCTION

A buoyancy-driven boundary layer or buoyancy layer
near a cooled or heated inclined plate immersed in a sta-
bly stratified fluid is a classical model in meteorology and
oceanography. For example, katabatic winds are formed when
the mountain surface becomes colder than the surrounding
air, and plumes occur beneath floating ice shelves and at the
front of tide water glaciers [1]. Prandtl [2] first introduced
this model to analyze valley and mountain winds, where a
parallel flow solution is derived with a reversal in the ve-
locity profile. For its applications in meteorology we refer
to the book by Stull [3]. It was shown experimentally and
numerically that such kinds of buoyancy layers can be formed
near the vertical sides of a cavity, which are maintained at
different temperatures [4,5]. Gill and Davey [6] investigated
the linear stability of such a buoyancy layer near a vertical
wall, and the inclined case was first analyzed by Iyer [7],
who found two types of instabilities: the transverse (stream-
wise periodic) traveling Tolmien-Schlichting (TS) waves and
the longitudinal (spanwise periodic) rolls (LR). Later on,
the spatiotemporal stability and the transition to unsteadiness
of natural convection near vertical walls are studied numer-
ically and theoretically [8–10], and most previous studies
focused on the transverse TS wave mode [11]. Based on three-
dimensional stability analyses of Prandtl’s buoyancy layer, an
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oblique-roll (OR) mode is found to be more unstable than
the transverse TS wave mode and the LR mode at some
inclination angles and Prandtl numbers because of the ambient
thermal stratification [12], and may be subject to transient
growth [13].

In high latitudes and on long glaciers, a cross-slope wind
occurs and the rotation-induced Coriolis effect on the kata-
batic flow must be considered. In order to understand the
circulation induced by cooling of the air at the slopes of
Antarctica, a one-dimensional model of the boundary-layer
flow was developed for the unit Prandtl number, and the
base flow solution was solved for a stably stratified am-
bient medium [14]. Recently, some models were proposed
to include the Coriolis effect in the buoyancy layer, and
showed at the far field that the temperature did not approach
asymptotically to the background value [15] and the wall-
normal velocity did not vanish [16], suggesting an unstable
background stratification. However, aircraft-based field mea-
surement of katabatic wind over the Greenland ice sheet
illustrates stably stratified buoyancy layers and circumstance
[17]. Therefore, there are different opinions on whether there
exists a tilt buoyancy layer in a stably stratified rotating
medium, and this is the main motivation of the present paper.

II. PHYSICAL MODEL AND METHODS

We consider the Prandtl buoyancy layer near a flat plate
inclined at an angle χ with respect to the horizontal. The
system is rotating about a vertical axis with angular velocity
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FIG. 1. Schematic geometry of an inclined buoyancy layer rotat-
ing about an axis parallel to the direction of gravity.

�∗ as shown in Fig. 1. The temperature in the ambient fluid
T ∗

∞(s∗) varies linearly in the vertical direction,

T ∗
∞(s∗) = T ∗

∞(0) + N∗
∞s∗, (1)

where s∗ is measured vertically opposite to the direction of
gravity g. N∗

∞ is the temperature gradient in the medium. We
consider the katabatic winds, which means the mountain or
glacier surface is colder than the surrounding air, forcing the
wind to rush down the slope. The wall temperature is de-
creased by a fixed amount �T ∗ below that of the fluid outside
the boundary layer. The coordinates x∗ and y∗ are parallel and
normal to the wall, while z∗ points in the spanwise direction.
The subscript “∞” and the superscript “∗” denote the ambient
condition and dimensional quantities, respectively.

The governing equations in the Boussinesq approximation
are given by

∂V∗

∂t∗ +V∗ · ∇V∗+2�∗ × V∗ = − ∇(P∗/ρr ) − gγ (T ∗−T ∗
∞)

+ ν∇2V∗,

∂T ∗

∂t∗ + V∗ · ∇T ∗ = κ∇2T ∗,

∇ · V∗ = 0, (2)

where ρr , ν, κ , and γ are the reference fluid density cor-
responding to T ∗

∞(0), the kinematic viscosity, the thermal
diffusivity, and the coefficient of thermal expansion, respec-
tively.

In the following, the dimensionless variables are defined as

(X,Y, Z ) = (x∗, y∗, z∗)

d
, t = t∗ν

d2
,

T = T ∗ − T ∗
∞

�T ∗ , d =
[

4νκ

gγ sin2(χ )N∗∞

]1/4

. (3)

The dimensionless parameters of this flow system are the
Grashof number G, the Coriolis number τ , and the Prandtl

number Pr,

G = gγ sin(χ )�T ∗d3

ν2
, τ = �∗d2/ν, Pr = ν

κ
.

The nondimensional variables are U = U0 + u, V = V0 + v,
W = W0 + w, and T = θ0 + θ , where u, v, w, θ are perturba-
tions and U0, V0, W0, and θ0 constitute the undisturbed base
flow solution. Prandtl [2] found that in the case τ = 0, the
base flow is directed in the X direction and the velocity and
the temperature profile are functions of the distance from the
boundary, i.e.,

U0 = −G

2
e−Y sin(Y ), V0 = W0 = 0,

θ0 = −e−Y cos(Y ). (4)

Inspired by the Prandtl’s solution, we consider the rotation
effect and assume that the boundary layer is a parallel flow,
i.e., V0 = 0 and U0, W0, and θ0 are functions of Y . After
applying the following boundary conditions,

U0(0) = W0(0) = θ (0) + 1 = U0(∞) = θ0(∞) = 0, (5)

the base flow solution of the rotating buoyancy layer can be
solved as

U0 = −G

2
μ2e−μY sin(μY ),

V0 = 0,

W0 = G

2
τ cos(χ )[e−μY cos(μY ) − 1],

θ0 = −e−μY cos(μY ), (6)

where μ is defined by

μ ≡ {1 + [τ cos(χ )]2}1/4. (7)

Note that using G instead of the Rayleigh number Ra = G Pr
as the control parameter, the dimensionless base flow solution
is independent of Pr. Different from the previous solutions
[15,16], the present temperature difference from the surround-
ings θ0 vanishes in the far field and the wall-normal velocity is
zero, corresponding to a stably stratified ambient fluid, a result
consistent with the field measurement of katabatic wind over
the Greenland ice sheet [17]. It is checked that the solution
of the previous one-dimensional mode [14] is a special case of
the present solution at Pr = 1, and when the Coriolis effect is
excluded or τ = 0, the base flow solution [Eqs. (6)] is reduced
to the Prandtl solution [2].

In the following stability analysis, the normal mode of
infinitesimal disturbance is represented as

⎧⎪⎪⎨
⎪⎪⎩

u
v

w

θ

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

iα

k2
′(Y ) + �(Y )

(Y )

iβ

k2
′(Y ) − α

β
�(Y )

�(Y )

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

ei(αX+βZ−ωt ), (8)

where k2 = α2 + β2, and α and β are the streamwise and
spanwise wave numbers, respectively. (Y ), �(Y ), and �(Y )
are the eigenfunctions of normal velocity, normal vorticity,

025102-2



INSTABILITIES OF ROTATING INCLINED BUOYANCY … PHYSICAL REVIEW E 108, 025102 (2023)

and disturbance temperature, respectively, and the prime ′ represents d/dY . Introducing the above mode into the linearized
governing equations, we have(

β2

k2
U ′

0 + −αβ

k2
W ′

0

)
 + i(αU0 + βW0 − ω)� + 2τβ

k2
(i cos χ′ − α sin χ) = � ′′ − k2� + G

β2

k2
�,

(′′ − k2)(iαU0 + iβW0 − iω) − i(αU ′′
0 + βW ′′

0 ) = 2τk2

β
(−i cos χ� ′ + α sin χ�) + ′′′′

− 2k2′′ + k4 − iαG�′ − k2G ctg χ �,

�′′ − k2� − i(αU0 + βW0 − ω)Pr � = 4

G

(
iα

k2
′ + � + ctg χ

)
+ Pr θ ′

0, (9)

with the following boundary conditions,

�(0) = ′(0) = (0) = �(0) = 0,

�(∞) = ′(∞) = (∞) = �(∞) = 0, (10)

where the prime ′ indicates d/dY .
Equations (9) and (10) constitute an eighth-order differen-

tial equation with eight boundary conditions, an eigenvalue
problem governing the dispersion relationship

F (ω, α, β; G, τ, χ ) = 0, (11)

which are solved by a spectral collocation method based on
Chebyshev polynomials. A value of Ymax of 30 was found to
be sufficiently large for all unstable modes discussed in this
paper. The eigenfunctions expanded in Chebyshev series are
substituted into Eqs. (9) and (10), which are applied at the
Gauss-Lobatto points and are solved by the QZ method [18].
The number of Chebyshev polynomials is 100, which was
found to be large enough to obtain consistent eigenvalues of
the buoyancy layer with the Coriolis effect. In addition, the
effect of a uniform-heat-flux or isoflux boundary condition on
the unstable modes is discussed as well, and �′(0) = 0 will
be used in conditions Eqs. (10) instead of �(0) = 0.

In this paper, temporal stability analyses are carried out,
and the neutral states, where the wave numbers and the fre-
quency are set to be real, are mainly discussed because they
separate the stable and unstable states. The onset of instability
occurs first at the critical state, where the Grashof number
reaches its local minimum value Gc, and the corresponding
critical wave numbers and frequency (αc, βc, ωc) can be ob-
tained simultaneously for three kinds of unstable modes, i.e.,
the traveling TS waves with zero β, the longitudinal rolls with
zero α, and the oblique-roll mode.

III. RESULTS AND DISCUSSION

Without the Coriolis effect or in the limit τ = 0, W0 = 0,
and Eqs. (9) degenerates to Eqs. (4) in Tao [12], which
owns the same eigenfunctions for (α, β, ω) and (α,−β, ω)
at any given G. It is noted that the present work discusses
the katabatic winds, the downslope flows due to the cooled
plates, while Tao’s basic solution is for anabatic winds, where
the flow direction is upward along the inclined heated plate.
According to the definition, the Coriolis number τ is close to
infinity as the tilt angle χ approaches zero, and when χ is
larger than 2◦, τ at any latitude is less than 0.5 for the atmo-

sphere. Therefore, only Pr = 0.72 and the effect of τ � 0.5
are considered in this paper.

A. Coriolis effect for plate with fixed temperature

In comparison with the Prandtl buoyancy layer, the ad-
ditional Coriolis term in Eq. (2) brings multiple influences,
e.g., acting as a driving force to cause the cross flow and
then change the base flow, and providing an additional force
normal to the tilted plate and then affecting the flow instabil-
ities. For buoyancy layers with a fixed temperature boundary
condition, i.e., �(0) = 0, the isocontours of G in the α-β
space are shown in Fig. 2 for the neutral states at χ = 40◦
and different Coriolis numbers τ .

According to the linear stability analysis, whenever there
is a critical Grashof number, above which there will be
its corresponding unstable mode. When τ = 0, it is shown
in Fig. 2(a) that there are three unstable modes, i.e., the
longitudinal roll (LR) mode, the TS wave mode with a
lower streamwise wave number (TS-1), and the TS wave
mode with a higher streamwise wave number (TS-2), whose
critical parameters (G, α, β, ω) are (62.38, 0, 0.488, 0),
(324.53, 0.192, 0,−9.96), and (331.93, 0.501, 0,−14.93),
respectively, and show several features. First, at the critical
state of the LR mode, where the Grashof number reaches
its local minimum, the critical frequency is zero, represent-
ing a stationary mode. Second, for katabatic flows without a
rotation effect, the two TS wave modes are two dimensional
(β = 0) as marked in Fig. 2(a). Similar phenomena have been
found for other buoyancy-driven boundary-layer flows [6,19],
where it is explained that the TS-1 mode is controlled by the
buoyancy-driven mechanism and the TS-2 mode is governed
by the shear-driven mechanism.

The dimensional thickness of the buoyancy layer is ap-
proximately 5d , which can be obtained from Eqs. (6). Note
that the critical Grashof number is the ratio of buoyancy
force to viscous force, and τ is the reciprocal of the Eckman
number and represents the ratio of Coriolis force to viscous
force. As discussed above, the critical Grashof numbers for
the buoyancy layers are much higher than 1 while τ is consid-
ered to be less than 1, and hence in the present configuration
the buoyancy force is much higher than the Coriolis force,
and the present buoyancy layer is intrinsically different from
the Eckman layer, where the Coriolis force is necessary and
is balanced by the viscous force. According to the normal-
ized eigenfunctions of the three modes shown in Fig. 3,
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FIG. 2. Isocontours of the Grashof number at neutral state for χ = 40◦ and the Coriolis number (a) τ = 0, (b) τ = 0.1, (c) τ = 0.2,
(d) τ = 0.3, (e) τ = 0.4, and (f) τ = 0.5, respectively. The critical parameters for the LR, TS-1, and TS-2 modes labeled in (a) are
(G, α, β, ω) = (62.38, 0, 0.488, 0), (324.53, 0.192, 0, −9.96), and (331.93, 0.501, 0, −14.93), respectively. Since modes with larger G are
more stable and of less interest, the contours for G > 500 are not shown. The inset of (c) represents the neutral curve for β = 0.56 marked
with the thick red solid line.

(a) (b) (c)

FIG. 3. Normalized critical eigenfunction profiles at χ = 40◦ and τ = 0 for (a) LR mode, (b) TS-1 mode, and (c) TS-2 mode with the
fixed temperature boundary condition. RMS represents the root-mean-square of the disturbance velocity, and the subscript max indicated the
maximum.
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(a)(i)

(b)(i)

(a)(ii)

(b)(ii)

(a)(iii)

(b)(iii)
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(c)(ii)

(d)(ii)

(c)(iii)
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FIG. 4. The critical parameters obtained at different Coriolis numbers τ and tilt angles χ are shown in the left, middle, and right columns
for the oblique-roll modes, TS-1 mode, and TS-2 mode with the fixed temperature boundary condition, respectively. The gray arrows indicate
the variation directions of the parameters with the increase of τ .

the TS-2 mode is confined in the buoyancy layer, while the
perturbations of the LR and TS-1 modes penetrate into the
stably stratified medium three times farther than the thickness
of the buoyancy layer.

With the increase of τ , the isocontours of G for the neu-
tral states evolve differently for different modes as shown in
Figs. 2(b)–2(f). For the LR mode at χ = 40◦, increasing τ

leads to a right movement of the local minimum of G in the
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(a) (b) (c)

FIG. 5. Normalized critical eigenfunction profiles at χ = 40◦ and τ = 0 for (a) LR mode, (b) TS-1 mode, and (c) TS-2 mode with the
isoflux boundary condition. RMS represents the root-mean-square of the disturbance velocity, and the subscript max indicated the maximum.

α-β space, and hence the stationary longitudinal roll mode
changes to a three-dimensional traveling oblique-roll (OR-1)
mode due to the Coriolis effect. The evolution of two TS wave
modes has contrary trends, i.e., βc of the TS-1 and TS-2 modes
increases and decreases with the increase of τ at χ = 40◦,
respectively, indicating that these two-dimensional TS wave
modes change to three-dimensional ones. It is noted that G at
the neutral state is not a single-valued function of the wave-
number vector. The thick solid line segment shown in Fig. 2(c)
corresponds to the neutral curve illustrated in the inset, where
the same wave-number vector, e.g., (α, β ) = (0.2, 0.56), has
different neutral-state Grashof numbers.

The effects of the Coriolis number and the tilt angle on
the critical parameters of different modes are summarized
in Fig. 4, and several characteristics should be noted. First,
a larger tilt angle χ and stronger Coriolis effect lead the
buoyancy layer to be more unstable to both TS wave modes,
while Gc of the OR-1 mode decreases first then increases
with the augment of χ . According to the present analyses, the
OR-1 mode is the most unstable mode at low and moderate
tilt angles, e.g., χ < 60◦. Second, the effects of τ and χ on
the critical wave numbers are quite different for the TS-1 and
TS-2 modes. For the TS-1 mode, stronger rotation or higher τ

leads to larger αc and βc, and larger χ corresponds to larger αc

and βc as well when χ > 10◦. However, for the TS-2 mode,
increasing τ enhances and decreases αc when χ is less and
larger than 60◦, respectively, but decreases and increases βc

as 10◦ < χ < 55◦ and χ > 55◦, respectively. Consequently,
when the tilt angle of the plate passes 55◦, the TS-2 mode
changes its spanwise traveling direction due to the Coriolis
effect. Third, the critical frequency ωc of the TS-2 mode is
affected by τ only at small tilt angles, e.g., χ < 45◦, and ωc

of TS-1 is nearly independent of τ at different tilt angles.
As shown in Fig. 4(b)(ii), −ωc decreases monotonically in
a similar way as NB = 2

sin χ
P−1/2, the Brunt-Väisälä or buoy-

ancy frequency of the internal wave in the ambient fluid,
and even coincides with NB at small tilt angles, reflecting
the buoyancy-driven mechanism. In the previous study on the
anabatic flow [12], the buoyancy frequency coincides with the
critical frequency of not the TS wave mode but the OR mode
when χ > 22◦. It is mentioned that the frequency of the TS

wave mode shown in Fig. 5(c) of Ref. [12] is ωcG1/5
c P−1/4,

not the critical frequency ωc. Fourth, at large tilt angles, e.g.,
χ > 60◦, a new oblique-roll mode emerges due to the Coriolis
effect, which has a lower Gc than that of the OR-1 mode
and becomes the most unstable mode when τ and χ are
large enough, and is referred to as the OR-2 mode hereafter.
The OR-2 mode has a larger αc but a smaller βc than those
of the OR-1 mode for the same base flow. Increasing τ will
increase the ωc, αc, and βc of both oblique-roll modes, but
different from the OR-1 mode, enlarging χ will increase the
ωc and decrease the βc of the OR-2 mode.

B. Coriolis effect for isoflux plate

The Prandtl-type buoyancy layers have a special feature,
i.e., the velocities and temperature of the basic state only
vary in the normal direction [Eqs. (4) and (6)] and hence it
has a uniform heat flux or isoflux boundary due to the fact
that θ ′

0(0) = μ. Therefore, when the unstable boundary layer
retains the isoflux boundary condition, we have �′(0) = 0
instead of �(0) = 0, and the corresponding linear instabilities
are analyzed and discussed as follows.

For a mode with α = 0, �′ does not appear explicitly in
Eq. (9), then the eigenvalues for different temperature bound-
ary conditions would be very close to each other when the
temperature perturbations are small near the wall. For exam-
ple, the critical parameters for the LR mode with the isoflux
boundary condition at χ = 40◦ and τ = 0 are (G, α, β, ω) =
(62.38, 0, 0.489, 0), which almost coincide with those solved
for the fixed temperature condition. As shown in Fig. 5,
the corresponding eigenfunctions are nearly the same as
those shown in Fig. 3 except for the θ curve near the wall
(Y = 0). For modes with α �= 0, the term iαG�′ in Eq. (9)
makes the linearized momentum equations at Y = 0 differ-
ent for different temperature boundary conditions, leading to
quantitatively different eigenvalues and eigenfunctions. For
example, (G, α, β, ω) of the TS-1 and TS-2 modes with
the isoflux boundary condition are (138.55, 0.279, 0,−6.72)
and (364.55, 0.546, 0,−17.26) at χ = 40◦ and τ = 0,
respectively.
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(a)(i)

(b)(i)

(a)(ii)

(b)(ii)

(a)(iii)

(b)(iii)

(c)(i)

(d)(i)

(c)(ii)

(d)(ii)

(c)(iii)

(d)(iii)

χ (deg) χ (deg) χ (deg)
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χ (deg) χ (deg) χ (deg)

χ (deg) χ (deg) χ (deg)

FIG. 6. The critical parameters obtained at different Coriolis numbers τ and tilt angles χ are shown in the left, middle, and right columns
for the oblique-roll modes, TS-1 mode, and TS-2 mode with the isoflux boundary condition, respectively. The gray arrows indicate the variation
directions of the parameters with the increase of τ .

Since the base flow solution is the same for cases with these
two kinds of temperature boundary conditions, the unstable
modes and the relations between the critical parameters and
the configurations (e.g., χ and τ ) are similar as shown in

Fig. 6, e.g., there are five unstable modes, the LR, OR-1,
OR-2, TS-1, and TS-2 modes. The main qualitative difference
lies in the critical spanwise wave number of the TS-1 mode
as shown in Fig. 6(d)(ii), where a stronger Coriolis effect
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or higher τ leads to lower βc as χ < 30◦ for the isoflux
boundary condition, while for a fixed temperature condition
[�(0) = 0] increasing τ will enlarge βc at all explored tilt
angles [Fig. 4(d)(ii)]. Therefore, with the isoflux boundary
condition, the spanwise phase velocities of the TS-1 mode
are different for the plates with small and large tilt angles.
In addition, when the boundary plate is nearly vertical, it is
shown in Fig. 6 that the most unstable mode is the TS-1 mode
in the explored parameter space, not the oblique-roll modes.

IV. CONCLUSION

A katabatic boundary-layer flow will be formed if a cooled
slope is immersed in a thermally stratified ambient medium.
When such a buoyancy layer is subjected to a rotation with the
axis parallel to the direction of gravity, e.g., the glacier wind at
high latitudes, the Coriolis force has important influences on
the base flow and its hydrodynamic instabilities. To the best
of our knowledge, the stability of such a katabatic buoyancy
layer has yet to be studied theoretically. Different from the
previous models, the present model is for arbitrary Prandtl
numbers and the ambient thermal stratification is not disturbed
by the base flow of the buoyancy layer. There are a total of
five unstable modes revealed by the linear stability analyses
for both the fixed temperature and the isoflux thermal bound-
ary conditions. When the Coriolis effect caused by rotation
is included, the stationary longitudinal roll (LR) mode will
change to the oblique-roll mode (OR-1), and both TS wave

modes change from two dimensional to three dimensional. For
both TS wave modes at both thermal boundary conditions,
increasing the Coriolis parameter τ decreases their critical
Grashof numbers Gc at different tilt angles χ of the boundary,
indicating that the rotation destabilizes the TS wave modes.
The Coriolis effect on the oblique-roll modes, however, shows
different features: Enhancing the rotation or increasing τ sta-
bilizes the OR-1 mode at low and moderate tilt angles, but
destabilizes the OR-2 mode at large tilt angles, and hence
OR-2 becomes more unstable than OR-1 at large χ and τ .
It is found that the Brunt-Väisälä frequency coincides with the
critical frequency of the TS-1 mode when χ � 10◦, suggest-
ing a strong connection between the oscillatory behavior of
the TS-1 mode and the internal waves for small tilt angles. In
addition, the rotation has strong effects on the critical wave
numbers or phase velocities as well. For example, increasing
τ will decrease the critical spanwise wave numbers of the TS
wave modes with the isoflux boundary condition and the TS-2
wave mode with the fixed temperature boundary condition at
low tilt angles, but increase them at large tilt angles. These en-
couraging results are expected to be helpful in understanding
the meteorological phenomena at high latitudes.
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