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inhomogeneity in tethered membranes
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Understanding the organization of matter under the long-range electrostatic force is a fundamental problem
in multiple fields. In this work, based on the electrically charged tethered membrane model, we reveal regular
structures underlying the lowest-energy states of inhomogeneously stretched planar lattices by a combination of
numerical simulation and analytical geometric analysis. Specifically we show the conformal order characterized
by the preserved bond angle in the lattice deformation and reveal the Poincaré-Klein mapping underlying the
electrostatics-driven inhomogeneity. The discovery of the Poincaré-Klein mapping, which connects the Poincaré
disk and the Klein disk for the hyperbolic plane, implies the connection of long-range electrostatic force and
hyperbolic geometry. We also discuss lattices with patterned charges of opposite signs for modulating in-plane
inhomogeneity and even creating 3D shapes, which may have a connection to metamaterials design. This work
suggests the geometric analysis as a promising approach for elucidating the organization of matter under the
long-range force.
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I. INTRODUCTION

The electrostatic force represents an important and versa-
tile interaction to mediate the organization of materials [1,2],
especially in various self-assembly processes at the nanoscale
[3,4] and in extensive electrolyte solutions [5,6]. For example,
the electrostatic interaction has been exploited by Michael
Faraday in the mid-1800s to prepare colloidal suspensions
of charged gold particles that remain stable to the present
day [7]. The symmetric electrostatic interaction has shown to
provide the symmetry-breaking mechanism for the formation
of a variety of material morphologies in multiple fields, rang-
ing from the electrostatics-driven chirality [8,9], the shape
transitions of shells [10,11] and ribbons [12–14], and exceed-
ingly rich conformations of highly charged biomolecules like
DNA and proteins [15–17], to the assembly of patterned sur-
face coatings [18–20]. Through the Thomson model [21–24],
where the electrically charged particles are confined on the
sphere, and various generalized versions defined on planar
disk [25–28] and curved surfaces [29], much has been learned
about the crucial role of electrostatics in packing charged par-
ticles on confined geometries. While the confluence of theory
and experiment in the past decades shows that in confined
environments the electrostatic force could create unique topo-
logical defect structures and induce non-Euclidean geometries
[29,30], the question of how the electrostatic force regulates
the organization of matter in free-standing charged condensed
matter systems, which represent a host of entities in materials
science and biology, has not yet been fully understood.

The goal of this work is to explore the electrostatic phe-
nomenon in the free-standing, electrically charged tethered
membrane from the perspective of geometry, focusing on the
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regular structure underlying the lowest-energy particle config-
uration as a vestige of the convoluted relaxation process. The
membrane model consists of a collection of charged particles
connected by linear springs in triangular lattice. The element
of elasticity is introduced to balance the repulsive electrostatic
force and to hold the particles together. The elastic triangular
lattice also represents the simplest organization of matter.
Charged elastic membranes may be realized in surfactant bi-
layer systems [31,32] and charged lamellar systems [33]. The
geometry and stress of membranes under various constraints
have been extensively studied [34–42]. The presence of sur-
face charge could significantly influence the elastic rigidity
[43–45] and structural stability [10,13,46,47] of membranes.

In this work we resort to the combination of numerical
simulation and analytical calculation to determine and analyze
the lowest-energy particle configuration, and to explore the
electrostatics-based organization principle of matter. We first
perform preliminary analytical analysis of the few-body 1D
and 2D systems to demonstrate the complexity of the electro-
static force. The complexity arises from both the long-range
nature of the electrostatic force and its interplay with the fluc-
tuating geometry of the membrane in the relaxation process.
We further identify the inhomogeneously stretched planar lat-
tice as the lowest-energy state. Geometric analysis shows the
conformal order and the preserved colinearity and concyclic-
ity in the deformation of the membrane. Based on these key
features, we reveal the Poincaré-Klein mapping underlying
the electrostatics-driven inhomogeneity. The Poincaré-Klein
mapping connects the Poincaré disk and the Klein disk, which
represent two classical models for the hyperbolic plane. We
also discuss the lowest-energy configurations of particles in
lattices with patterned charges of opposite signs for modu-
lating in-plane inhomogeneity and even creating 3D shapes,
which may have connection to metamaterials design. These
results advance our understanding on the organization of
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FIG. 1. Schematic plots of the model system. (a) The model
consists of a collection of charged point particles connected by linear
springs in triangular lattice of hexagonal shape. (b) Notation for
concentric hexagonal layers. The central point is denoted as layer 0.
The outermost hexagonal layer is denoted as layer n. (c) Plots of 1D
systems for preliminary analysis. (d) Plot of an elementary hexagonal
system (n = 1) for analytical analysis.

matter under the long-range force from the perspective of
geometry.

II. MODEL AND METHOD

The model consists of a collection of charged point par-
ticles in triangular lattice of hexagonal shape. Each particle
carries a charge of q0. Adjacent particles are connected by
identical linear springs of stiffness ks and balance length �0.
For convenience in discussion, the hexagonal lattice is di-
vided into a number of layers, as shown in Fig. 1(b). The
total number of particles for a triangular lattice of n layers
N = 3n2 + 3n + 1. For a given configuration, the total energy
of the system is [48,49]:

E = ks

∑
i∈B

(�i − �0)2 + kb

∑
〈α,β〉

(1 − nα · nβ ) + ke

∑
i, j∈V,i �= j

1

ri j
,

(1)

where �i is the length of the spring i, nα is the unit normal
vector of the triangle α, and ri j is the Euclidean distance
of two particles i and j, as shown in Fig. 1(a). The three
terms in Eq. (1) represent the total stretching energy, bending
energy, and electrostatic energy, which are defined on the
bonds, triangular faces, and points in the triangular lattice,
respectively. ke = q2

0/4πε0, where ε0 is the vacuum dielectric
constant. In this work the units of length and energy are �0 and
εs, respectively, and εs = ks�

2
0.

We employ the standard annealing Metropolis Monte Carlo
algorithm to determine the lowest-energy states of the model

system under the free boundary condition [50]. The boundary
particles are free of any external force except the elastic and
electrostatic force from other particles as defined in Eq. (1).
Given an initial configuration of tethered particles, we simul-
taneously move each particle by a random vector dω̂, where
ω̂ is a random unit vector in 3D space and d is the step
size. The displacement vectors on the particles are statistically
independent. An update of the positions of the particles is de-
noted as one sweep. The particle configuration is updated by
consecutive sweeps until the system reaches the lowest-energy
state under some specified termination conditions. Specifi-
cally, the relaxation process of the system is terminated if the
standard deviation of energy in the last 5000 sweeps (denoted
as δE ) becomes sufficiently small. Typically, δE is as small
as 10−2εs. The value of d is in the range of [10−4�0, 10−5�0].
The value of the final temperature Tf in the last 5000 sweeps
is in the range of [10−5εs/kB, 10−6εs/kB], where kB is the
Boltzmann’s constant.

III. RESULTS AND DISCUSSION

This section consists of two subsections. In Sec. III A we
first perform preliminary analytical analysis of the few-body
1D and 2D systems and show the complexity of the long-range
electrostatic force. By numerical simulation, we identify the
inhomogeneously stretched planar lattice as the lowest-energy
state in the parameter space of (kb, ke) across several orders
of magnitude, and analyze the inhomogeneity phenomenon in
terms of the bond length. We also discuss the variations of lat-
tice shape and energy in the relaxation process. In Sec. III B,
by geometric analysis, we show the conformal order and the
preserved colinearity and concyclicity in the lattice defor-
mation. Based these key geometric features, we reveal the
Poincaré-Klein mapping underlying the electrostatics-driven
inhomogeneity, which implies the connection of long-range
electrostatic force and hyperbolic geometry. We also discuss
lattices with patterned charges of opposite signs that may
have a connection to metamaterials design and briefly discuss
possible realizations of the theoretical model.

A. Inhomogeneously stretched planar lattice as the
lowest-energy state

We first analyze the analytically tractable 1D few-particle
systems, focusing on the distribution of the particles along
the line in mechanical equilibrium. The schematic plot of
the N particles connected by N − 1 linear springs is shown
in Fig. 1(c). For the case of N = 4, it can be shown that
r12 < r1′1, indicating the phenomenon of inhomogeneity un-
der the long-range repulsive force in a 1D lattice system (see
Appendix A for more information). This conclusion could be
generalized to the two boundary springs in 1D systems of
N > 3 regardless of the values of ks and ke. For example, for
the cases of N = 5 and N = 6, based on the similar argument
for the case of N = 4, one could derive that r12 < r01 and
r3 < r2, respectively. By computation, we find that a spring
that is closer to the center of the 1D lattice is subject to
stronger pulling force from the two groups of the particles on
its two sides; it is a challenge to present a rigorous proof due to
the long-range nature of the electrostatic force. In other words
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the spring length decreases from the center to the ends of the
1D lattice in mechanical equilibrium.

For the 2D case we analyze the mechanically equilibrium
configuration of the elementary single-layer hexagonal system
composed of only seven particles connected by linear springs,
as shown in Fig. 1(d). Combination of analytical and numer-
ical approaches confirms the stability of the flat hexagonal
configuration in Fig. 1(d) (see Appendix A for more informa-
tion). For a larger hexagonal system, it is expected that similar
to the 1D case, the long-range repulsive force may lead to
inhomogeneous distribution of particles. From the perspective
of geometry, the inhomogeneity of particle distribution could
be regarded as a modification of the metric structure over
the lattice [36]. As such, one may inquire if a larger hexag-
onal lattice equipped with a spatially varying metric would
be buckled to the 3D space under the electrostatic force for
reducing energy.

To address this question, we employ the standard an-
nealing Metropolis Monte Carlo algorithm to determine the
lowest-energy states of larger 2D lattice systems [50]. The
dimensionless quantity h̃ is proposed to measure the degree
of flatness of the deformed shape:

h̃ = 1

〈d〉

√√√√ 1

N

N∑
i=1

h2
i , (2)

where hi is the distance between particle i and the plane
of the reference triangle spanned by the three particles lo-
cated at the furthest corners of the hexagon. The average
side length of the reference triangle is denoted as 〈d〉.
For the cases of n = {1, 2, 3, 4, 5, 6, 7, 8, 9}, we systemati-
cally explore the parameter space of (kb, ke) across several
orders of magnitude: kb = {0.01, 0.1, 1, 10, 100} and ke =
{0.001, 0.01, 0.1, 1, 10, 100}. It turns out that the value of h̃
monotonously decreases with the reduction of temperature
and reaches a small value within the order of 10−3 for Tf ∼
10−6εs/kB. In the relaxation process the value of h̃ shows no
dependence on n. To conclude, simulations suggest that the
system tends to evolve towards a stretched planar lattice as
the lowest-energy state. To further substantiate this numerical
observation, we also relax the lattice system on the plane
(2D relaxation), and compare the energies of the fully relaxed
configurations via 3D and 2D relaxations under a given low
temperature, which are denoted as E3D and E2D, respectively.
It is found that E2D is always slightly smaller than E3D, in-
dicating that the energy of the fully relaxed lattice via 3D
relaxation could be further lowered by flattening.

We also track the variation of the hexagonal lattice shape
in the relaxation process from the perspective of the integral
of the Gaussian curvature for varying values of n, ke, and kb:
n = {1, 2, 3, 4, 5, 6, 7, 8, 9}, kb = {0.01, 0.1, 1, 10, 100}, and
ke = {0.001, 0.01, 0.1, 1, 10, 100}. It turns out that the total
Gaussian curvature uniformly converges to zero in all of the
cases (see Appendix B for more information). We further
inquire if the planar lattice as the lowest-energy state is related
to the hexagonal shape. To address this question, we remove
2nr rows of particles from the originally hexagon-shaped
lattice and perform simulations to determine the lowest-
energy configurations. Simulations also show planar lattices

FIG. 2. Analysis of bond length and bond angle reveals con-
formal order in the electrostatics-driven inhomogeneity in the
lowest-energy configurations. (a) The bond length gradually de-
creases from about 1.8 at the center to about 1.1 at the boundary, as
indicated by the color legend. n = 18, kb = 0.01, ke = 0.1. (b) Dis-
tributions of the average bond angle 〈θ〉i in each layer i for both the
lowest-energy configuration obtained by simulations (blue square)
and the configuration generated by the Poincaré-Klein mapping (or-
ange circle). The averaging procedure in each layer is over all of the
bond angles associated with each vertex along the layer [see the red
hexagons in Fig. 1(b)]. The magnitude of the standard deviation is
indicated by the length of the error bars. The error bars associated
with simulations are slightly longer than those associated with the
Poincaré-Klein mapping for n > 14. n = 18, kb = 0.01, ke = 0.1.

as the lowest-energy states; the values of h̃ of the numerically
obtained lowest-energy configurations are within the order of
10−3. As such, the suppression of out-of-plane deformation is
not unique to the hexagonal shape of the lattice, and it shall be
related to the long-range nature of the electrostatic force [27].

We further analyze the in-plane deformations in the lowest-
energy planar lattices. It is found that the fully relaxed lattice
in mechanical equilibrium is inhomogeneously stretched.
The inhomogeneous distribution of particles is presented in
Fig. 2(a). The bond length significantly decreases when ap-
proaching the boundary of the system, implying that the
disruption of the lattice may be initiated from the center of
the system. The degree of inhomogeneity is controlled by the
characteristic length scale �es. Simulations at varying values
of ke (and fixed value of ks) show that increasing �es leads to
stronger stretching of the springs and larger variation in the
distribution of the bond length over the lattice.

How shall we understand the phenomenon of inhomogene-
ity in the electrostatics-driven deformation of the lattice? The
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FIG. 3. Convergence of the ratio of the electrostatic energy Ee

and the stretching energy Es with the increase of ke. n = 6, kb = 0.01.
The value of the energy is obtained for fully relaxed configuration.

crucial element for shaping the inhomogeneous distribution
is the combination of the long-range nature of the physical
interaction and the discrepancy in the ambient environment of
the particles. Specifically, in the hexagonal lattice, each parti-
cle “sees” distinct distributions of the other particles (except
the particles located at the lattice sites of C6 symmetry), ulti-
mately leading to spatially varying electrostatic force over the
lattice in mechanical equilibrium. Simulations show that the
deformation towards the center of the hexagonal lattice in me-
chanical equilibrium is larger for compensating the stronger
electrostatic repulsion.

Regarding the energetics in the relaxation process, the vari-
ation of the ratio of the electrostatic energy Ee to the stretching
energy Es for the stretched lattices in mechanical equilibrium
is plotted in Fig. 3; the bending energy is vanishingly small.
With the stretching of the lattice, the ratio Ee/Es decreases,
indicating the conversion of the electrostatic energy to the
stretching energy. With the increase of ke up to 105, the ratio
Ee/Es converges to about 2; statistics of the cases of varying n
from 1 to 9 shows that Ee/Es = 2.030 ± 0.003 for ke = 105.

To understand the convergence of the ratio Ee/Es to the
common limiting value of about 2, we present the analytical
result for the two-particle system. From the balance of the
electrostatic force and the elastic stretching force, we solve
for the equilibrium configuration of the system and calculate
the limiting value of the energy ratio:

lim
ke→∞

Ee

Es
= lim

ke→∞
2�3

es

�eq(�eq − �0)2
= 2, (3)

where the equilibrium distance �eq of the two particles
could be derived from the force balance equation and �es =
(ke/ks)1/3. The characteristic length scale �es arises from the
competition of the electrostatic force and the elastic force. The
expression for �eq has the same form as Eq. (A3) by replacing
γ̃ for �3

es/(2�3
0). In the limit of ke → ∞, �eq ∼ k1/3

e . The
analytical result for the two-particle system and the numerical
results for the large systems suggest that the partition of the
electrostatic energy and the elastic stretching energy conforms
to a constant ratio of 2 in the limit of large ke.

B. Conformal order and Poincaré-Klein mapping underlying
the stretched planar lattice

In the preceding subsection, we have revealed the inho-
mogeneously stretched planar lattice as the lowest-energy
configuration under the competing electrostatic force and

elastic force. In this subsection we focus on analyzing the geo-
metric structures underlying the inhomogeneity phenomenon.

To seek the regularity underlying the inhomogeneous parti-
cle distribution, we analyze the distribution of the bond angle,
and inquire if the bond angle is invariant in the electrostatics-
driven deformation of the lattice. In mathematics strictly
angle-preserved deformation is known as conformal trans-
formation. Quasiconformal order has been revealed in the
beautiful gravity’s rainbow formed by electrically charged
steel beads in gravity field [51–53]. Recently, quasiconformal
order has been reported in the inhomogeneous packings of
long-range repulsive particles confined on the disk [28], self-
assembled vortices in a type II superconducting disk [54], and
Lennard-Jones particles confined on the sphere [55].

The plot of the bond angle along the layers of the lattice is
shown in Fig. 2(b). A key observation is that the average bond
angle is uniformly 60◦; the standard deviation increases when
approaching the boundary. Therefore, the deformation of the
interior region of the lattice could be regarded as conformal. In
other words, each triangular cell in the interior region experi-
ences isotropic expansion according to the geometric property
of conformal transformation [51]. Furthermore, in the sense of
average bond angle, the lattice deformation is quasiconformal.
We also vary the values of n and ke (see Appendix B). It is
found that the average bond angle is uniformly 60 degrees
as the value of ke is varied by several orders of magnitude,
indicating that the preserved average bond angle is a common
feature in the electrostatics-driven deformation of the lattice.
Note that in the measurement of bond angles in the deformed
lattice, the vertices are connected by straight lines. However,
the lattice is bent in the continuum limit. Using smooth curves
instead of straight lines to connect vertices may reduce the
magnitude of the error bar especially near the boundary in
Fig. 2(b) [51].

In addition to the invariant bond angle, are there any other
invariant properties in the deformation of the lattice? Scrutiny
of the lowest-energy configurations reveals some common
features that are illustrated in Fig. 4(a). First, the particles
remain on the principal axes (the three solid red lines) of the
triangular latticed in the deformation. Second, the particles
remain on the concentric circles (the dashed red circle) in the
deformation. For the case in Fig. 4(a), the mean deviations
of the points both from the three principal axes and from the
concentric circles are at the order of 10−2. Third, the bond
length is appreciably shorter when approaching the boundary
of the system. These geometric features inspire us to ex-
plore the mathematical structure underlying the deformation.
Specifically, we search for a mapping that could reproduce
these key features in the in-plane deformation.

The Poincaré disk and the Klein disk represent two kinds of
important models for representing the infinitely large 2D hy-
perbolic plane in an open unit disk in 2D Euclidean space [56].
Notably, the concept of hyperbolic geometry is widely applied
to the analysis of complex networks in recent years [57,58].
Hyperbolic geodesics are mapped to arcs in the Poincaré disk,
and to straight lines in the Klein disk, as indicated by l and l ′

in Fig. 4(b) and Fig. 4(c). Circles on the hyperbolic plane pre-
serve their shape in the Poincaré disk [C1 and C2 in Fig. 4(b)].
In contrast, only concentric circles preserve their shape in the
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FIG. 4. Poincaré-Klein mapping underlying the electrostatics-driven inhomogeneity in the lowest-energy configurations. (a) The configu-
ration obtained by simulations (solid black dots) is well fitted by the theoretical configuration generated by Poincaré-Klein mapping (empty
blue triangles). The values of the fitting parameters in Eq. (7) are λ = 0.032, 
 = 22.028, L = 0.005, n = 6, kb = 0.01, ke = 0.1. An infinitely
large hyperbolic disk is represented in the Poincaré disk (b) and Klein disk (c). l and l ′ correspond to hyperbolic geodesics in these two models.
Circles on the hyperbolic plane preserve their shape in the Poincaré disk [C1 and C2 in Fig. 4(b)]. In contrast, only concentric circles preserve
their shape in the Klein disk [C′

1 and C′
2 in Fig. 4(c)]. Quantitative information about the two models is presented in the paper. (d) Illustration

of the Poincaré-Klein mapping. The Poincaré disk and the Klein disk are indicated by the two lines labeled as P and K, respectively. The
semicircle between represents a semisphere. Any point in the Poincaré disk (labeled as A) is mapped to A′ in the Klein disk. The line BA′ is
perpendicular to the disk K .

Klein disk [C′
1 and C′

2 in Fig. 4(c)]. These features could be
rigorously derived from the metric tensor over the disk. The
line element ds in the Poincaré disk is [56]

ds2 = 4‖dx‖2

(1 − ‖x‖2)2
, (4)

where x = (x1, x2), and ‖ · ‖ denotes the Euclidean norm.
‖x‖ � 1. The line element ds in the Klein disk is [56]

ds2 = ‖dx‖2

1 − ‖x‖2
+ (x · dx)2

(1 − ‖x‖2)2
, (5)

where ‖x‖ � 1.
These two kinds of models are connected by the Poincaré-

Klein mapping [56] (see Appendix D for more information):

f (z) = 2z

1 + |z|2 , |z| � 1. (6)

Equation (6) states that a point A at z in the Poincaré disk
is mapped to the point A′ at f (z) in the Klein disk. The
Poincaré-Klein mapping in Eq. (6) is illustrated in Fig. 4(d).
The semicircle between the lines K and P represents a hemi-
sphere of unit radius. The Poincaré disk and the Klein disk are
represented by the lines P and K, respectively.

In order to characterize the deformation of the lattice, we
rescale Eq. (6) by introducing two parameters λ and 
:

w(z; λ, 
) = 

2λz

1 + λ2|z|2 . (7)

The generalized Poincaré-Klein mapping in Eq. (7) preserves
the key features in the deformation of the lattice. First, two
arbitrary points on a radial line in the z plane denoted as
z1 = r1eiθ and z2 = r2eiθ are mapped to w1 = α1eiθ and w2 =
α2eiθ , where αi = 
 2λri

1+λ2r2
i
. The new points are still on the

same radial line. Second, two arbitrary points on a concen-
tric circle denoted as z1 = reiθ1 and z2 = reiθ2 are mapped
to w1 = βeiθ1 and w2 = βeiθ2 , where β = 
 2λr

1+λ2r2 . The new
points remain on a concentric circle.

Now, we search for the optimal values of the param-
eters λ and 
 in Eq. (7) for fitting the deformation of
the lattice. Specifically, the optimal values of λ and 
 are
determined by minimizing the deviation of the configu-
ration generated by the Poincaré-Klein mapping from the
lowest-energy configuration obtained in simulations. The di-
mensionless quantity to be minimized is L = 〈δr〉/〈�〉. 〈δr〉 =√∑N

i=1[(xs
i − xm

i )2 + (ys
i − ym

i )2]/N , where the superscripts
of s and m indicate the data from the simulation and the
Poincaré-Klein mapping. 〈�〉 is the average bond length in
the lowest-energy configurations. We work in the discretized
parameter space of λ and 
. λ ∈ (0, 1) and 
 ∈ (0, 100) in the
resolution of δλ = δ
 = 10−3.

Figure 4(a) shows that the configuration generated by the
Poincaré-Klein mapping (marked as empty blue triangles)
agrees well with the deformed lattice in mechanical equilib-
rium (solid black dots connected by bonds) for the case of
n = 6. We also check larger systems up to n = 18 and a series
of values of ke ranging from 0.001 to 100, and find good agree-
ment of the configurations generated by the Poincaré-Klein
mapping and those by simulations. For example, for ke = 100,
the values of L (an indicator for the deviation of the lattices
generated by simulations and by the Poincaré-Klein mapping)
for both cases of n = 6 and n = 18 are approximately equal
to 0.006; the lattices are strongly stretched for ke = 100.

Furthermore, we check nonhexagonal cases. For the circu-
lar and the triangular lattices as shown in Fig. 5, simulations
show that the lowest-energy configurations of both cases are
still well fitted by the Poincaré-Klein mapping. Note that due
to the discreteness of the crystalline lattice, the circular lattice
in Fig. 5(a) possesses the C6 symmetry. Recall that the exis-
tence of the Poincaré-Klein mapping relies on the preserved
colinearity and concyclicity in lattice deformation. Therefore,
it is expected that the Poincaré-Klein mapping structure exists
in lattices of certain symmetries for which the key features of
colinearity and concyclicity are preserved in the deformation.
To study the deviation of the deformations with respect to the
Poincaré-Klein mapping, we also check truncated hexagonal
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FIG. 5. Presence of Poincaré-Klein mapping in nonhexagonal
lowest-energy lattices. The lowest-energy configurations of the cir-
cular (a) and triangular (b) lattices obtained by simulations (solid
black dots) are well fitted by the theoretical configurations generated
by Poincaré-Klein mapping (empty blue triangles). The values of the
fitting parameters in Eq. (7) are (a) λ = 0.04, 
 = 19.20, L ≈ 0.003;
(b) λ = 0.01, 
 = 63.88, L ≈ 0.010. In both cases kb = 0.01, ke =
0.1.

shapes. Such anisotropic shapes are created by removing nr

rows of particles from two opposite edges in the hexagon-
shaped lattice (see Appendix B for the shapes of truncated
hexagonal membranes). In the cases of nr = {0, 2, 4, 8} for
n = 9, kb = 0.01, and ke = 1, we analyze the deviation of the
lowest-energy lattices generated by simulations and by the
Poincaré-Klein mapping, which is characterized by L. It is
found that the value of L monotonously increases from 0.004,
0.017, 0.031 to 0.042 as the value of nr is increased from 0,
2, 4 to 8, respectively. In other words, the deviation of the
deformation with respect to the Poincaré-Klein mapping is
enlarged with the enhanced anisotropy of the lattice shape.
In Fig. 2(b) we also show the distribution of the bond angle in
each layer of the lattice for the configuration generated by the
Poincaré-Klein mapping. While the deformation in the central
region of the lattice could be regarded as conformal, the lattice
deformation as a whole is quasiconformal in the sense of
average bond angle. In fact, the condition for the formation
of strictly conformal lattice is critical; no uniform field could
stabilize a perfect conformal crystal with the inverse power
potential [53]. Strictly speaking, for the deformation defined
by Eq. (7), only the deformation at the origin is conformal for
the following reason.

According to the geometric property of conformal transfor-
mation, no shearing occurs in the deformation for preserving
the angle. For the deformation characterized by g(z) =
u(x, y) + iv(x, y) (z = x + iy), the strain field could be
derived as [52]

uxx = 1

2

[(
∂u

∂x

)2

+
(

∂v

∂x

)2

− 1

]
,

uyy = 1

2

[(
∂u

∂y

)2

+
(

∂v

∂y

)2

− 1

]
,

uxy = uyx = 1

2

(
∂u

∂x

∂u

∂y
+ ∂v

∂x

∂v

∂y

)
. (8)

Note that a typo in Ref. [52] has been corrected in Eqs. (8). It
is straightforward to check that uxy = uyx = 0 and uxx = uyy if

g(z) satisfies the Cauchy-Riemann conditions [59]:

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (9)

For w(z; λ, 
) in Eq. (7), the Cauchy-Riemann conditions are
satisfied only at z = 0. As such, the deformation as charac-
terized by Eq. (7) is strictly conformal only at the origin of
the system. The z = 0 point in the continuum description of
Eq. (7) corresponds to an area containing a number of particles
in the discretized particle system.

Here we emphasize that the revealed Poincaré-Klein map-
ping underlying the electrostatics-driven inhomogeneity in
tethered membranes is based on the invariant properties in
the large deformation of the lattice. Note that, considering
the complexity of the long-range interaction in organizing
particles, it is important to focus on the invariant elements
in the deformation. Specifically, the key features of the pre-
served colinearity and concyclicity in the strongly deformed
lattice provide important clues for uncovering the connection
with hyperbolic geometry. In comparison with the classical
scenario of a stretched elastic disk by applying force on the
boundary, which results in homogeneous strain field [60] (see
Appendix C for more information), the electrostatic force
creates inhomogeneity in the hexagon-shaped lattice system,
which in turn encodes the information of how electrostatics
regulates the distribution of matter. As such, geometric analy-
sis of the inhomogeneity phenomenon represents an important
approach for extracting such information. For example, in the
context of this work, the unique geometric perspective of the
Poincaré-Klein mapping is useful for capturing the character-
istic invariant features of colinearity and concyclicity in the
lattice deformation as well as suggesting the connection of
long-range force and hyperbolic geometry.

We also discuss the extension of the current study by
tailoring the distributions of charges of different signs for
targeted shapes with potential connection to metamaterials
design, as inspired by the suggestion of the anonymous ref-
eree. The lowest-energy states of the lattices under typical
distributions of charges are presented in Fig. 6, where the red
triangles represent particles carrying charges of the same sign;
the remaining particles are oppositely charged. In Figs. 6(a)
and 6(b) the red triangles are along concentric hexagons. In
Figs. 6(c) and 6(d) the red triangles are along the three prin-
cipal axes and are randomly distributed, respectively. These
systems are relaxed by the annealing Metropolis Monte Carlo
algorithm. The expression for the total energy of the system is
the same as Eq. (1) except the last term whose sign becomes
negative if the pair of points i and j carry opposite charges.
Systematic study of the lattice system at varying values of
ke and kb shows that charges of opposite signs stick together
for large ke. Such cases are indicated by the cross symbols in
the tables for the corresponding charge distributions in Fig. 6;
nonstick cases are marked by the tick symbols. The values of
ke and kb for the presented lattice shapes are in green in the
tables.

From Figs. 6(a) and 6(b) we see that the originally
quasiplanar lattice becomes a saddle-like shape as the bending
rigidity is reduced from kb = 1 to kb = 0.01; the amount of
the out-of-plane deformation in the lattice in Fig. 6(a) is at the
order of 10−2. The saddle-like shape becomes more curved
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FIG. 6. Lowest-energy states of the lattices under typical distributions of charges. The red triangles represent particles carrying charges of
the same sign; the remaining particles are oppositely charged. The cases that charges of opposite signs stick together are marked by the cross
symbols in the tables for the corresponding charge distributions; nonstick cases are marked by the tick symbols. The values of ke and kb for the
lattice shapes are in green in the tables. {ke, kb} = {0.1, 1} (a), {0.1, 0.01} (b), {0.1, 0.1} (c), and {0.1, 0.1} (d). ks = 1.

with the reduction of the value of kb from 0.1 to 0.01. The
formation of the negatively curved saddle-like shape could
be attributed to the circumferential expansion and the radial
shrinking of the lattice under the electrostatic force [56]. The
lowest-energy shapes of the lattices in Figs. 6(c) and 6(d) are
quasiplanar. The amount of the out-of-plane deformations is
at the order of 10−2. These results demonstrate the modulation
of both the lattice shape and the in-plane particle arrangement
by the design of charge pattern.

We finally briefly discuss possible experimental
realizations of the theoretical model. One may employ
charged beads to fabricate the experimental system as
introduced in a recent work on the experimental realization of
the theoretical model of charged beads on a string in polymer
science [61]. In Ref. [61] the system comprises electrically
charged, millimeter-scale Teflon and Nylon beads placed on
a paper over a flat aluminum sheet. To fabricate a tethered
membrane corresponding to our theoretical model, one may
employ these electrically charged beads and introduce elastic
springs. In addition to the above-mentioned macroscopic
beads system, one may also resort to electrically charged
colloids confined on liquid interface for constructing a
flat tethered membrane. The effective interactions between
colloids are tunable. To obtain the approximately Coulombic
interaction, the Debye length in the Yukawa interaction could
be increased by reducing the salt concentration [3,62] and
minimizing the image-charge effect [63].

IV. CONCLUSION

In summary, the theme of this work is to analyze the
deformations of tethered membranes under the combined
electrostatic and elastic forces. The triangular lattice system
provides a suitable model for understanding the organization
of matter by the long-range electrostatic force. The long-range
nature of the electrostatic force and its complicated interplay
with the fluctuating geometry of the membrane impose a

challenge to this problem. By combination of numerical sim-
ulation and analytical geometric analysis, we show the crucial
role of the long-range electrostatic force for the suppression
of out-of-plane deformations and the formation of inhomo-
geneity in the lowest-energy configurations. Especially, we
highlight the revealed Poincaré-Klein mapping that captures
the invariant geometric features in the inhomogeneous de-
formation and also implies the connection of long-range
repulsive force and hyperbolic geometry. This work suggests
the geometric analysis as a promising approach for elucidating
the inhomogeneous organization of matter under the long-
range force. As inspired by the suggestion of the anonymous
referee, it is of interest to extend the current study by tailoring
the charge patterns of different signs for targeted shapes and
particle distributions, which may have connection to metama-
terials design. Preliminary results demonstrate the modulation
of in-plane inhomogeneity and the appearance of saddle-like
shapes under different kinds of charge patterns.
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APPENDIX A: PRELIMINARY ANALYTICAL ANALYSIS
OF 1D AND 2D SYSTEMS

The schematic plot of 1D system consisting of N particles
connected by N − 1 linear springs is shown in Fig. 1(c).
For the trivial case of N = 3, the lengths of the two springs
are identical. For the case of N = 4, r12 < r1′1. A proof by
reductio ad absurdum is presented below. Suppose r12 � r1′1,
the total elastic force on particle 1, 
F (s)

1 = ks(r12 − r1′1)x̂, is
either pointing rightward or zero. Consequently, the total elec-
trostatic force 
F (e)

1 on particle 1 is either pointing leftward or
zero to satisfy the force balance condition. However, the sup-
posed condition of r12 � r1′1 leads to an electrostatic force on
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particle 1 pointing rightward. This contradiction indicates the
impossibility of r12 � r1′1. Therefore, for the case of N = 4,
r12 is always smaller than r1′1.

For the 2D case, we perform analysis of the mechani-
cally equilibrium configuration of the elementary single-layer
hexagonal system composed of only seven particles connected
by linear springs, as shown in Fig. 1(d). The hexagonal con-
figuration is confined on the plane. For an arbitrary particle
on the boundary denoted as 5 in Fig. 1(d), the balance of the
electrostatic force F (e)

5 and the elastic stretching force F (s)
5

along the x axis leads to

2ks(�eq − �0) = ke

�2
eq

(√
3

3
+ 9

4

)
, (A1)

where �eq is the equilibrium bond length, and

�es =
(

ke

ks

) 1
3

. (A2)

From Eq. (A1), we obtain

�eq

�0
=

⎡
⎣γ̃ + 1

27
+

√(
γ̃ + 1

27

)2

−
(

1

27

)2
⎤
⎦

1
3

+
⎡
⎣γ̃ + 1

27
−

√(
γ̃ + 1

27

)2

−
(

1

27

)2
⎤
⎦

1
3

+ 1

3
,

(A3)

where

γ̃ =
(√

3

12
+ 9

16

)
�3

es

�3
0

. (A4)

The dimensionless quantity γ̃ reflects the competition of the
electrostatic force and the elastic force.

It is of interest to discuss Eq. (A3) in the limiting cases of
γ̃ → 0 (strong spring stiffness) and γ̃ → ∞ (strong electro-
static effect). As γ̃ → 0,

�eq

�0
= 1 + 2γ̃ − 8γ̃ 2 + o(γ̃ 2). (A5)

It is reasonable that �eq = �0 when γ̃ = 0 (i.e., ke = 0). In
contrast, the asymptotic expression for �eq as γ̃ → ∞ is

�eq

�0
= (2γ̃ )

1
3 = β

�es

�0
, (A6)

where β = (
√

3
6 + 9

8 )
1
3 ≈ 1.12. The exponent 1/3 in Eq. (A6)

originates from the cubic term in Eq. (A1), which arises from
the competition of the elastic force and the electrostatic force.

Previous study shows the counterintuitive instability of
charged elastic rings under the long-range electrostatic force
[64]. Here it is of interest to examine the possible out-of-plane
deformation of the elementary hexagonal configuration in
Fig. 1(d). To this end we first impose a random perturbation δ
r
in 3D space on an arbitrary particle labeled 5, and calculate the
variation of energy. δ
r = (δx, δy, δz). The resulting variation

of the total energy is

δE =ke

7∑
i=1,i �=5

(
1

|
ri5 + δ
r| − 1

|
ri5|
)

+ ks

2

∑
i=2,4,7

[(|
ri5 + δ
r| − �0)2 − (|
ri5| − �0)2], (A7)

where |
ri5| is the distance between particle i and 5. Keeping
up to the second order terms, Eq. (A7) becomes

δE = C11δx2 + C22δy2 + C33δz2, (A8)

where

C11

ks
= �3

es

4�3
eq

(
19

√
3

18
+ 55

8

)
+ 3

4
,

C22

ks
= �3

es

4�3
eq

(
7
√

3

18
+ 49

8

)
+ 3

4
,

C33

ks
= �3

es

4�3
eq

(
5
√

3

9
+ 1

2

)
.

(A9)

All of these coefficients are positive. Therefore, δE > 0. In
other words, the system is stable under arbitrary perturbation
of any particle.

We further examine the case where all of the particles
in Fig. 1(d) are perturbed by performing numerical simula-
tions. The magnitude of the statistically independent random
perturbation on each particle is restricted within the range
from −0.3�eq to 0.3�eq. For each given value of ke in
{0.001, 0.01, 0.1, 1, 10, 100}, we generate 104 statistically in-
dependent particle configurations and compute the variation
of energy by Eq. (A7). It turns out that the energy is always
increased upon simultaneous perturbation on every particle.

To conclude, the stability of the flat hexagonal configura-
tion in Fig. 1(d) is confirmed by combination of analytical and
numerical approaches.

APPENDIX B: MORE INFORMATION ABOUT THE
RELAXATION PROCESS AND THE BOND-ANGLE
DISTRIBUTIONS IN FULLY RELAXED LATTICES

In this Appendix we present more information about the
relaxation of truncated hexagonal membranes and the vari-
ation of the lattice shape in the relaxation process. We also
present the distributions of the bond angle along the layers of
the lattice in the fully relaxed lattices at varying ke.

In the main text, the stretched planar shape has been iden-
tified as the lowest-energy state of the hexagonal membrane
under the long-range electrostatic force. To check if the flat-
ness of the membrane is related to the hexagonal shape, we
further discuss the relaxation of truncated hexagonal mem-
branes. Specifically, we remove nr rows of particles from two
opposite edges in the hexagon-shaped lattice and obtain trun-
cated hexagonal lattices with broken C6 symmetry as shown in
Fig. 7. These elongated lattices are fully relaxed by the same
procedure as in the main text.

We systematically check truncated hexagonal mem-
branes of varying size in the broad parameter space
of ke and kb: ke = {0.001, 0.01, 0.1, 1, 10, 100}, and kb =
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 7. Relaxations of truncated hexagonal membranes under the electrostatic force. nr rows of particles are removed from two opposite
edges in the hexagon-shaped lattice. Typical membrane shapes in the relaxation process are presented for each case. For visual convenience,
the color of the figures is rendered by the heights of the triangles in the lattice; the brighter triangles are located at a larger height. In the
lowest-energy shapes, h̃ = 8.02 × 10−5 (d), 9.78 × 10−5 (h), and 2.53 × 10−4 (l), respectively. n = 9, kb = 0.01, ke = 100.

{0.01, 0.1, 1, 10, 100}. n = {2, 3, 4, 5, 6, 7, 8, 9}. For each
given value of n, nr = {1, . . . , n − 1}. It turns out that the
truncated membranes uniformly converge to the flat shape in
all of the cases. Some typical cases are shown in Fig. 7. The
value of the dimensionless quantity h̃, which is introduced
to characterize the degree of the out-of-plane deformation
in the main text, is within the order of 10−3 in all of the
cases in our simulations. To conclude, this observation clearly
shows that the flat lowest-energy shapes are uncorrelated to
the hexagonal shape of the membrane.

Furthermore, we track the variation of the hexagonal lattice
shape in the relaxation process from the perspective of the in-
tegral of the Gaussian curvature. For a smooth surface � with
piecewise smooth boundary consisting of p regular curves de-
noted as C1 . . .Cp, according to the generalized Gauss-Bonnet
theorem [65], the integral of the Gaussian curvature is∫

�

KG dA = 2πχ (�) −
p∑

i=1

∫
Ci

kg ds −
p∑

i=1

γi, (B1)

where χ (�) is the Euler characteristic of the surface �. kg is
the geodesic curvature. γi is the turning angle from curve Ci

to Ci+1 at their meeting point; Cp+1 = C1.
Note that within our numerical precision the following

expression is verified to be an invariant in the relaxation of
the lattice: ∫

�

KG dA +
p∑

i=1

γi. (B2)

The temporally varying values of the first and the second
terms for the case of n = 6 are presented in Table I. It is found
that the value of the expression in Eq. (B2) is very close to 2π ;
2π ≈ 6.2831853. In comparison with Eq. (B1), the integral
of the geodesic curvature is vanishingly small in the entire

relaxation process of the lattice. As such, Eq. (B1) is verified
within our numerical precision.

Now we apply Eq. (B1) to our triangular lattice system and
obtain the expression for the integral of the Gaussian curvature
over the hexagonal cell (denoted as Sv) surrounding the vertex
v as shown in Fig. 8(a):

∫
Sv

KG dA = 2π −
k∑

i=0

θi, (B3)

where θi is the angle of the two adjacent bonds vvi and vvi+1.
Note that χ (Sv ) = 1, and

∑
i γi = ∑

i θi. In the derivation for
Eq. (B3), it is assumed that the boundary curve is geodesic.
By the sum of the integrated Gaussian curvature in Eq. (B3)
over the whole lattice, we obtain the total Gaussian curvature.

We systematically track the variation of the
total Gaussian curvature in the relaxation pro-
cess for varying values of n, ke and kb: n =
{1, 2, 3, 4, 5, 6, 7, 8, 9}, kb = {0.01, 0.1, 1, 10, 100}, and
ke = {0.001, 0.01, 0.1, 1, 10, 100}. The main results are
summarized in Fig. 8(b). We see that the total Gaussian
curvature uniformly converges to zero in all of the cases.
Oscillation of the curve occurs in the relaxation process,
indicating the exploration of the system into both positively
and negatively curved shapes (see the inset figure). Closer
examination of 54 oscillating curves shows the preference of
negatively curved shapes (46 out of 54) in the final stage of
the relaxation process. This observation implies that thermal
fluctuation tends to deform the membrane to the hyperbolic
shape. The inset figures also show the smoothing of the shape
with the reduction of temperature.

In Fig. 9 the distributions of the bond angle along the layers
of the lattice in the lowest-energy states at varying ke are
presented. We see that the average bond angle is uniformly
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TABLE I. Variations of the integral of the Gaussian curvature (
∫

�
KGdA) and the sum of the turning angles (

∑
i γi) in the relaxation of the

lattice. The numbers in the bottom line are very close to 2π ; 2π ≈ 6.2831853. The generalized Gauss-Bonnet theorem is thus verified within
our numerical precision. n = 6, kb = 0.01, ke = 100.

Number of steps (×104) 0 3 5 19 61 89 117 138 180

∫
�

KG dA 0 4.589743 3.885128 1.352282 −3.802723 −1.881432 −0.658368 -0.078556 0.000004∑
i γi 6.283185 1.693442 2.398058 4.930903 10.085908 8.164617 6.941553 6.361742 6.283181∫

�
KG dA + ∑

i γi 6.283185 6.283185 6.283186 6.283185 6.283185 6.283185 6.283185 6.283186 6.283185

60◦ as the value of ke is varied from ke = 0.01 (a), ke = 1
(b), and ke = 100 (c). It indicates that the preserved average
bond angle is a common feature in the electrostatics-driven
deformation of the lattice. In the central region of the lat-
tice, the bond angle is well preserved in the deformation.
We also notice that the magnitude of the standard deviation
in the bond-angle distribution increases as the value of ke is
increased.

APPENDIX C: ELASTICITY ANALYSIS OF ELASTIC DISK
UPON STRETCHING

In this Appendix we present analytical continuum elastic-
ity analysis of an isotropic elastic disk by applying a radial
outward force on the boundary.

The distribution of stress over the disk in mechanical equi-
librium is governed by the following equation of equilibrium
[60]:

∂kσik = 0, i, k = x, y. (C1)

FIG. 8. Analysis of the relaxation process of the 2D system from
the perspective of the variation of the Gaussian curvature. (a) Nota-
tions for the calculation of the Gaussian curvature in the main text.
(b) Variation of the total Gaussian curvature over the whole lattice
in the relaxation process. s represents the number of simulation
steps. �s = 9000, 9000, 25 000 for the curves of n = 6, n = 8,

and n = 9, respectively. kb = 0.01. The zoomed-in inset shows the
convergence of the integrated Gaussian curvature to zero.

In the following we rewrite Eq. (C1) in terms of the displace-
ment vector u(x).

The stress-strain relation is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σxx = E

1 − σ 2
(uxx + σuyy),

σyy = E

1 − σ 2
(uyy + σuxx ),

σxy = E

1 + σ
uxy,

(C2)

where σxx, σyy, σxy are the components of the stress tensor;
uxx, uyy, uxy are the components of the strain tensor; E is
the Young’s modulus and σ is the Poisson’s ratio. For small
deformations, the strain tensor is given by

uxx = ∂ux

∂x
, uxy = 1

2

(
∂ux

∂y
+ ∂uy

∂x

)
, uyy = ∂uy

∂y
. (C3)

where ux, uy are the components of the displacement vector.
Substituting Eq. (C2) and (C3) into Eq. (C1), we obtain the
balance equations in terms of the displacement vector:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
1

1 − σ 2

∂2ux

∂x2
+ 1

2(1 + σ )

∂2ux

∂y2
+ 1

2(1 − σ )

∂2uy

∂x∂y
= 0,

1

1 − σ 2

∂2uy

∂y2
+ 1

2(1 + σ )

∂2uy

∂x2
+ 1

2(1 − σ )

∂2ux

∂x∂y
= 0.

(C4)

Equations (C4) can be written in the vector form

∇[∇ · u(x)] − 1
2 (1 − σ )∇ × [∇ × u(x)] = 0, (C5)

where u(x) is the displacement vector at the point x on the
undeformed disk.

Upon the radial outward force f on the boundary, the disk
is subject to radial stretching. We therefore search for the
solution of rotational symmetry; i.e., the displacement vector
u(x) is independent of the polar angle φ. Furthermore, the
azimuthal component of the displacement vector is zero. In
other words the solution is in the form of u(x) = ur (r)r̂.
Here we work in the polar coordinates (r, φ). Equation (C5)
becomes

∇ · u = 1

r

d (rur )

dr
= const. (C6)

We therefore have

ur = C1r + C2

r
, (C7)

where the constants C1 and C2 are to be determined by the
boundary condition. By applying the boundary conditions that
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FIG. 9. Distributions of the average bond angle 〈θ〉i in each layer i for both the lowest-energy configuration obtained by simulations (blue
circle) and the configuration generated by the Poincaré-Klein mapping (orange triangle) at varying ke. The averaging procedure in each layer
is over all of the bond angles associated with each vertex along the layer. The magnitude of the standard deviation is indicated by the length of
the error bars. The error bars associated with simulations are slightly shorter than those associated with the Poincaré-Klein mapping for large
values of n in (b) and (c). n = 9, kb = 0.01. The optimal values for the parameters λ and 
 in the Poincaré-Klein mapping, as well as the value
for L, are listed here: (a) λ = 0.010, 
 = 50.311, L = 0.002; (b) λ = 0.010, 
 = 51.541, L = 0.004; (c) λ = 0.004, 
 = 129.374, L = 0.011.

the displacement is finite at r = 0 and σrr = f at r = R, we
finally obtain the expressions for the strain field:

urr = uφφ = 1 − σ

E
f , urφ = 0. (C8)

Equation (C8) shows that the strain field created by the bound-
ary radial force is homogeneous.

APPENDIX D: ON THE CONNECTION OF THE
POINCARÉ DISK AND THE KLEIN DISK

In this Appendix we will show that under the Poincaré-
Klein mapping the line element dsp in the Poincaré disk is
identical to the line element dsk in the Klein disk.

Consider an arbitrary point (xp, yp) in the Poincaré disk.
Under the Poincaré-Klein mapping [56]

f (z) = 2z

1 + |z|2 , |z| � 1, (D1)

it is mapped to (xk, yk ):

xk = 2xp

1 + x2
p + y2

p

, yk = 2yp

1 + x2
p + y2

p

. (D2)

From Eqs. (D2) we have

dxk = 2
(
1 − x2

p + y2
p

)
(
1 + x2

p + y2
p

)2 dxp − 4xpyp(
1 + x2

p + y2
p

)2 dyp,

dyk = − 4xpyp(
1 + x2

p + y2
p

)2 dxp + 2
(
1 + x2

p − y2
p

)
(
1 + x2

p + y2
p

)2 dyp.

(D3)

Therefore, the line element dsk in the Klein disk is

ds2
k = dx2

k + dy2
k

1 − x2
k − y2

k

+ (xkdxk + ykdyk )2(
1 − x2

k − y2
k

)2 . (D4)

By inserting Eqs. (D2) and (D3) into Eq. (D4), we have

ds2
k = 4

(
dx2

p + dy2
p

)
(
1 − x2

p − y2
p

)2 . (D5)

The term in right-hand side of Eq. (D5) is recognized as
ds2

p. Therefore, we have shown that ds2
k = ds2

p under the
Poincaré-Klein mapping as defined in Eq. (D1). This result
is as expected because both the Poincaré disk and the Klein
disk represent the common hyperbolic plane.
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