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Slow and fast particles in shear-driven jamming: Critical behavior
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We do extensive simulations of a simple model of shear-driven jamming in two dimensions to determine and
analyze the velocity distribution at different densities φ around the jamming density φJ and at different low
shear strain rates, γ̇ . We then find that the velocity distribution is made up of two parts which are related to
two different physical processes which we call the slow process and the fast process as they are dominated by
the slower and the faster particles, respectively. Earlier scaling analyses have shown that the shear viscosity
η, which diverges as the jamming density is approached from below, consists of two different terms, and we
present strong evidence that these terms are related to the two different processes: the leading divergence is due
to the fast process, whereas the correction-to-scaling term is due to the slow process. The analysis of the slow
process is possible thanks to the observation that the velocity distribution for different γ̇ and φ at and around
the shear-driven jamming transition has a peak at low velocities and that the distribution has a constant shape up
to and slightly above this peak. We then find that it is possible to express the contribution to the shear viscosity
due to the slow process in terms of height and position of the peak in the velocity distribution and find that this
contribution matches the correction-to-scaling term, determined through a standard critical scaling analysis. A
further observation is that the collective particle motion is dominated by the slow process. In contrast to the usual
picture in critical phenomena with a direct link between the diverging correlation length and a diverging order
parameter, we find that correlations and shear viscosity decouple since they are controlled by different sets of
particles and that shear-driven jamming is thus an unusual kind of critical phenomenon.
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I. INTRODUCTION

Particle transport is an ubiquitous phenomenon with rele-
vance for both industry and every-day life and the behaviors
of such real-life systems are immensely complicated as they
include effects of, e.g., varying particle shape, friction, and
gravity. Even idealized systems [1] where such complications
can be eliminated—spherical (or circular) particles without
any friction and well-controlled volume or pressure—remain
poorly understood. Some salient features are that the shear
viscosity increases as the packing fraction φ approaches the
jamming packing fraction φJ from below, that the relaxation
time increases, and that the particle motion becomes increas-
ingly correlated. It has however been difficult to find a way
to connect together different quantities and behaviors into a
comprehensive picture.

Simulations of shear-driven jamming are typically per-
formed at constant packing fraction φ and low shear strain
rates γ̇ [2], and some of the quantities of interest are pressure
p and shear stress σ . One important characterization of the
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shear-driven jamming transition is through the value of the
critical exponent β that describes the divergence of the shear
viscosity, η ≡ σ/γ̇ , as the jamming density φJ is approached
from below,

η ∼ (φJ − φ)−β. (1)

A starting point for many theoretical attempts to understand
shear-driven jamming has been properties of static jammed
packings at, or slightly above, jamming. A collection of par-
ticles with contact-only interactions forms a rigid network
just at the jamming transition, with the number of contacts
per particle equal to z = zc ≡ 2d [3], (with the generalization
to a finite number of particles in Ref. [4]), and both the
distance between close particles and the weak contact forces
for contacting particles follow power-law distributions with
nontrivial exponents [5–7]. From the values of these expo-
nents, expected to be the same for dimension d � 2, together
with some additional assumptions, one has found β/uz ≈ 3.41
[8,9] for the exponent that describes the dependence of the
viscosity on the distance to isostaticity, η ∼ (z − zc)−β/uz .
This may be compared with results from simulations in two
dimensions that have generally given lower values: β/uz =
1/0.38 = 2.63 [10] and β/uz = 2.69 [11]. (A later work by
the group of Ref. [10] gave a higher value, β/uz ≈ 3.3 [8], in
agreement with the theoretical value, but that was for three
dimensions; determinations in two dimensions tend to give
lower values [12–14].) Similarly, the values of β in two di-
mensions, which have typically been in the range β = 2.2
through 2.83 [15–17] are found to be in agreement with the
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lower values (β/uz ≈ 2.69) when using uz = 1 [18]. One way
to explain this discrepancy between the theoretically found
β/uz ≈ 3.41 [8,9] and the lower values from simulations is
to claim that these lower values are incorrect due to a neglect
of logarithmic corrections to scaling [9]. This is a possibility
since the upper critical dimension of the jamming transition
is widely believed to be ducp = 2 [4,19], which opens up for
logarithmic corrections to scaling. Though this explanation is
a possibility, it could also be that the discrepancy only points
to a lack of understanding of the phenomenon of shear-driven
jamming.

Of the mentioned works, Ref. [10] from simulations of
hard disks, and the simulations that are based on relaxing
configurations of soft disks below φJ [11–14], determine the
divergence in terms of δz, and do not give any value for φJ .
The other works mentioned above are from simulations of soft
disks [15–17] and rely on scaling relations in one way or the
other.

It has long been realized that the particle motion becomes
increasingly collective as φJ is approached from below [20].
One way to study this in simulations is with the overlap
function [21,22] and the associated dynamic susceptibility, χ4,
which gives a measure of the number of particles that move
collectively. With the assumption that the correlated domains
have a compact geometry that quantity gave a length diverging
with ν = 0.9; similar exponents were found also from other
quantities [22]. From a correlation function that, in contrast
to χ4, makes use of the vectorial nature of the velocity field, it
has also been found that it is possible to extract two correlation
lengths from the velocity fluctuations, respectively related to
the rotation and the divergence of the velocity field. It appears
that it is the length scale related to the rotations that is the
more significant one [23].

With a diverging length scale and a diverging dynamic
quantity, η, it could seem that the jamming transition fits
nicely into the ordinary description of a critical phenomenon.
It has however been difficult to understand the detailed con-
nection between these two quantities. The divergence of the
correlation length with ν = 1 has sometimes been taken to
suggest β = 2—one way to get that result is from the deriva-
tion of Eq. (31) in Sec. III H below—which is difficult to
reconcile with the range of β values given above.

In this paper we present evidence for, and explore some
consequences of, the existence of two different processes in
the system with different scaling properties: the fast process
which is dominated by fast particles from the tail of the veloc-
ity distribution and the slow process which is dominated by the
big fraction of slow particles from the peak of the distribution.
It has already been shown that the divergence of the viscosity
is dominated by a small fraction of particles with the highest
velocities [24], which means that the behavior described in
Eq. (1) is controlled by the fast process. In this paper we show
that the collective motion is governed by the slow process. A
consequence is that the link between correlation length and
the diverging shear viscosity is only an indirect one, which
seems to imply that shear-driven jamming is a very unusual
kind of critical phenomenon.

The analyses in the presented paper are for two-
dimensional systems, only. Preliminary studies in three and
four dimensions do however show that the same kind of

analysis works very well also in these higher dimensions, and
we therefore expect the conclusions to hold also in the more
physically relevant case of three dimensions. These results
will be presented elsewhere.

Though a critical divergence of a quantity as in Eq. (1) is
described by a critical exponent there are usually additional
terms that have to be included in the analyses unless one
happens to have access to data only very close to the critical
point. This goes under the heading of “corrections to scaling”
and is due to the presence of irrelevant variables in the scal-
ing function. In shear-driven jamming one has indeed found
that a single diverging term cannot successfully fit the data
[16,17] and the inclusion of a correction-to-scaling term was
found to give reasonable analyses. The finding of two different
processes in shear-driven jamming, however, opens up for a
different interpretation of this additional term. The evidence
suggests that the correction-to-scaling term is due to the slow
process which means that it is possible to relate this term
to a separate physical process, which is unusual for critical
phenomena.

A shorter presentation of the results of the present paper is
given in Ref. [25].

The remainder of the paper is organized as follows:
In Sec. II we describe the simulations and the measured
quantities and give a motivation for the use of the velocity
distribution for analyzing shear-driven jamming. We also
review the scaling relations and discuss shortly different ways
to analyze the transition. In Sec. III we describe the results,
to a large extent through analyses of data at φ ≈ φJ . We do
this by first showing that the correction-to-scaling term of
the shear stress may be related to the properties of the peak
in the velocity distribution. We then first turn to the behavior
at densities in a (narrow) interval around φJ and show that
the two different terms—where one is the contribution to
σ from the peak in the distribution and the other is the
remainder—both scale with φ − φJ and γ̇ . We then also show
that the same kind of analysis may actually be used also in
the hard disk limit, i.e., in the region well below φJ and at
sufficiently low γ̇ that the shear viscosity is independent of
shear rate. We also discuss the origin of the high velocities
of the fast process and then turn to the collective particle
motion and argue that the diverging correlation length and
the leading divergence of the shear viscosity, as jamming is
approached, are due to different sets of particles. We then
present a rationalization of some of our findings. In Sec. IV
we finally summarize the results, discuss some open questions
and some connections between our findings and the literature,
and sketch some directions for future research.

II. MODELS AND MEASURED QUANTITIES

A. Simulations

For the simulations we follow O’Hern et al. [1] and use
a simple model of bi-disperse frictionless disks in two di-
mensions with equal numbers of particles with two different
radii in the ratio 1.4. We use Lees-Edwards boundary condi-
tions [26] to introduce a time-dependent shear strain γ = t γ̇ .
With ri j the distance between the centers of two particles
and di j the sum of their radii, the relative overlap is δi j =
1 − ri j/di j and the interaction between overlapping particles
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is Vp(ri j ) = εδ2
i j/2; we take ε = 1. The force on particle i

from particle j is fel
i j = −∇iVp(ri j ), which gives the force

magnitude f el
i j = εδi j/di j . The total elastic force on a particle

is fel
i = ∑

j fel
i j where the sum is over all particles j in contact

with i.
The simulations discussed here have been done at zero

temperature with the RD0 (reservoir dissipation) model [27]
with the dissipating force fdis

i = −kd vi where vi ≡ vtot
i − yiγ̇ x̂

is the nonaffine velocity, i.e., the velocity with respect to a
uniformly shearing velocity field, yiγ̇ x̂. In the overdamped
limit the equation of motion is fel

i + fdis
i = 0 which becomes

vi = fel
i /kd . We take kd = 1 and the time unit τ0 = d2

s kd/ε =
1. Length is measured in units of the diameter of the small
particles, ds. The equations of motion were integrated with the
Heuns method with time step �t/τ0 = 0.2. Unless otherwise
noted the results are for N = 65 536 particles.

B. Measured quantities

Using ri j = ri − r j we determine the pressure tensor,

pel = 1

V

∑
i< j

fel
i j ⊗ ri j, (2)

which is measured during the simulations once per unit time.
Here V = L × L is the volume. The pressure is obtained from
the pressure tensor through

p = 1
2

[〈
pel

xx

〉 + 〈
pel

yy

〉]
,

and the shear stress is given by

σ = −〈
pel

xy

〉
. (3)

The analyses below will focus on the dissipation and a
crucial relation is then the connection between shear stress and
〈v2〉 (where v ≡ |v| is the nonaffine velocity) which follows
from the requirement of power balance between the input
power V σ γ̇ and the dissipated power kd

∑
v2

i , where the sum
is over all the particles. This gives [28]

σ γ̇ = N

V
kd〈v2〉, (4)

which implies σ ∼ 〈v2〉/γ̇ .

C. The velocity distribution

Though Eq. (4) could lead to the thinking that measures
of the velocity and measures of σ only give the same in-
formation, our claim is that there is more information in the
velocity distribution. To see this we consider the behavior of
continuously sheared hard spheres below φJ . For that case
it has been found that the displacement (i.e., velocity) is
governed by steric exclusion [15] and that the forces will at
each moment adjust to give the velocities that are required by
steric hindrance. This implies that the forces and the shear
stress are controlled by the velocity and it also suggests
that velocity is a more fundamental quantity, and that there
might be more information in the full velocity distribution
than what is contained in 〈v2〉 and thereby in the shear stress,
σ . In the present work we set out to extract some of that
information.

To measure the distribution function P (v) we define the
bin size � and vk = k� and let the histogram H (vk ) be
the fraction of the nonaffine particle velocities in the range
[vk − �/2, vk + �/2). Histograms are created from files with
configurations that are stored every 10 000 time step. The
distribution function, P (vk ) = H (vk )/�, is normalized such
that

∫
P (v)dv = 1. From Eq. (4) follows an expression for

the shear stress in terms of the velocity distribution function,

σ = N

V

kd

γ̇

∫
P (v)v2dv. (5)

D. Scaling relations

For easy reference we here show derivations of some scal-
ing relations from the standard scaling assumption [29,30],

σ (φ, γ̇ )by/ν = ḡσ (δφ b1/ν, γ̇ bz ) + b−ωh̄σ (δφ b1/ν, γ̇ bz ). (6)

Here b is a length rescaling factor, y is the scaling di-
mension of σ , ν is the correlation length exponent, δφ =
φ − φJ , z is the dynamical exponent, ω is the correction-
to-scaling exponent, and ḡσ and h̄σ are unknown scaling
functions.

With b = γ̇ −1/z in Eq. (6) and with q = y/zν one finds

σ (φ, γ̇ ) = γ̇ q

[
gσ

(
φ − φJ

γ̇ 1/zν

)
+ γ̇ ω/zhσ

(
φ − φJ

γ̇ 1/zν

)]
. (7)

One way to determine the critical behavior of the shear-
driven jamming transition has been to fit σ (φ, γ̇ ) or p(φ, γ̇ )
at densities around φJ , to this expression [16]. The scaling
functions gσ and hσ were then taken to be exponentials of
polynomials in (φ − φJ )/γ̇ 1/zν , and both φJ and the critical
exponents were determined through scaling fits of both p
and σ .

Right at φJ , with the notation q2 = q + ω/z, Eq. (7) be-
comes

σ (φJ , γ̇ ) = γ̇ qgσ (0) + γ̇ q2 hσ (0). (8)

The conclusion of a behavior as in Eq. (8) was reached in a dif-
ferent way in Ref. [17]. An analysis, consistent with Eq. (8),
of a similar model, commonly used for granular materials, has
also been done [31].

To get the scaling relation for the shear viscosity one writes
an expression for σ (φ, γ̇ )by/ν/(γ̇ bz ) from Eq. (6) and takes
b = (−δφ)−ν . This then becomes

η(φ, γ̇ ) = (φJ − φ)−βgη

(
γ̇

(φJ − φ)zν

)

+ (φJ − φ)−β2 hη

(
γ̇

(φJ − φ)zν

)
, (9)

where β = zν − y and β2 = zν − y − ων. The first term is the
leading divergence and the second is the correction to scaling
term. When comparing with the expressions for q and q2 in
Eq. (8) one finds

β/zν = 1 − q, (10a)

β2/zν = 1 − q2. (10b)
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For sufficiently small γ̇ the scaling functions in Eq. (9) ap-
proach constants, and one arrives at

η(φ, γ̇ → 0) = c1(φJ − φ)−β + c2(φJ − φ)−β2 , (11)

which is the behavior in the hard disk limit.
One approach to shear-driven jamming is then to consider

the shearing of a collection of hard disks (or soft disk in the
limit γ̇ → 0) below φJ , and thus with the average number
of contacts z < zc. This is sometimes called the floppy flow
regime. Another approach, relevant at higher shear strain rates
and/or closer to φJ , is to examine the behavior where the
elasticity of the particles is important. This is the elastoplas-
tic regime which at φJ is described by Eq. (8). Though it
could seem that the behaviors in these different regimes are
governed by very different physical processes, we note that
the respective behaviors both follow from a single scaling
assumption, which suggests that both regions are governed by
the same fundamental physics.

The present article presents an analysis of the shear-driven
jamming transition which is very different from earlier anal-
yses. Most of the analyses are done on data at φ = φJ and
for different γ̇ , but in Sec. III E we demonstrate that the same
kind of analysis works well also for data in the hard disk limit
at φ < φJ .

III. RESULTS

A. Two terms in σ

The focus of the present paper is not on the values of the
exponents and the main conclusion from Eq. (7) is that the
shear stress consists of two terms. In the analyses below we
will take φJ ≈ 0.8434 [16,18]. We write Eq. (8) as

σ (φJ , γ̇ ) = a1γ̇
q + a2γ̇

q2 ≡ σ1(φJ , γ̇ ) + σ2(φJ , γ̇ ). (12)

It is now perfectly possible to determine the exponents q and
q2 by fitting σ (φJ , γ̇ ) to the middle expression of Eq. (12),
but to get higher precision in the determinations we follow
Ref. [31] and make use of the expectation that the same
exponents should be present also in the analogous expression
for the pressure,

p(φJ , γ̇ ) = b1γ̇
q + b2γ̇

q(p)
2 . (13)

The simultaneous fits of σ (φJ , γ̇ ) and p(φJ , γ̇ ) with this ap-
proach, when taking q(p)

2 = q2, are shown in Fig. 1, and gives
the exponents

q = 0.284(4), q2 = 0.567(7).

The error estimates correspond to three standard deviations.
More details on this approach and some similar methods are
given in Appendix A

B. Scaling of the peak properties

The velocity distributions at φ = 0.8434 ≈ φJ and for
a range of different shear strain rates from γ̇ = 1 × 10−8

through 2 × 10−5 are shown in Fig. 2(a). [Since these fig-
ures with double-log scale are not immediately amenable for
simple interpretation, Appendix B shows both P (v) and a few
other quantities on both logarithmic and linear scales.] At each

FIG. 1. Determination of the exponents q and q2 that characterize
the two terms in the shear stress. The figures show results from si-
multaneous fits of σ and p at φ = 0.8434 ≈ φJ to Eqs. (12) and (13),
demanding that both q and q2 are the same, i.e., q(p)

2 = q2—method C
of Appendix A. Panels (a) and (b) show σ (φJ , γ̇ ) and p(φJ , γ̇ ). The
dashed lines are the main terms, ∼γ̇ q, whereas the solid lines are the
full expressions. The simpler approach to fit σ (φJ , γ̇ ) to Eq. (12),
only—this is method A of Appendix A—gives just slightly different
values of q and q2. Note that the size of the secondary terms, in
absolute terms, is about the same for both quantities, as b2 ≈ a2. The
relative size of the secondary term is however considerably smaller
for p than for σ .

γ̇ there is a peak in P (v) at low velocities and we identify peak
height Pp and peak position vp. These quantities are then used
to rescale both axes in the figure such that the peaks fall on top
of each other and, as shown in Fig. 2(b) and in the zoomed-in
Fig. 2(c), these data collapse nicely up to and slightly above
the peak. The same kind of behavior is found for P (v) also at
densities away from φJ which is clear from Fig. 2(d) which
shows the same kind of data for γ̇ = 10−7 and φ = 0.82,
0.83, 0.84, 0.8434, and 0.8560. This therefore suggests that
the low-velocity part of the distribution is governed by a
simple dynamics with a robust behavior that gives a similar
shape of the distribution independent of detailed properties
of the system, as, e.g., number of contacts. This is in clear
contrast to the behavior above the peak where the distributions
are algebraic, P(v) ∼ v−r , with an exponent that changes with
γ̇ and φ and appears to approach r = 3 at criticality [24]. (The
distributions are eventually cut off exponentially, which is an
effect of the finite strength of the contact forces that puts a
limit on the total net force and thereby on the velocity [24].)
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FIG. 2. Velocity distribution at φ = 0.8434 ≈ φJ and several dif-
ferent shear strain rates. Panel (a) gives P (v) for several different
shear strain rates. As is clear from panel (a) each data set has a clear
peak and panel (b) shows the same data rescaled to make the peaks
coincide. It is then found that the rescaled P (v) collapse below and
up to the peak whereas the data above the peak depend strongly on
γ̇ . Panel (c) is a zoom-in on the data of panel (b). Panel (d) shows
that the same kind of collapse is found also for P (v) at γ̇ = 10−7 for
φ both below and above φJ .

To capture the velocity dependence in the expression for σ ,
Eq. (5), we now introduce S(v) which is the contribution to σ

from the velocities up to v:

S(v) = N

V

kd

γ̇

∫ v

0
P (v′)v′2dv′. (14)

After introducing x = v/vp and f (x) = P (v)/Pp the contri-
bution to σ for velocities up to the peak, i.e., for all v < vp,
becomes

S(vp) = N

V
kdWp

∫ 1

0
f (x)x2dx, (15)

FIG. 3. Peak properties at φ = 0.8434 ≈ φJ from Fig. 2 and
determinations of the related exponents. Panel (a) is the peak height,
Pp, whereas panel (b) is the (velocity) position of the peak, vp.

which shows that the dependency on φ and γ̇ is only through
the peak properties given by Wp = Ppv

3
p/γ̇ , since the curves

for different γ̇ and φ collapse for v � vp.
Fig. 3, which is again obtained at φ = 0.8434 ≈ φJ , shows

that both Pp and vp depend algebraically on γ̇ to very good
approximations. We find

Pp(φJ , γ̇ ) ∼ γ̇ uP , uP = −0.733, (16a)

vp(φJ , γ̇ ) ∼ γ̇ uv , uv = 0.766. (16b)

For Wp ≡ Ppv
3
p/γ̇ this gives

Wp(φJ , γ̇ ) ∼ γ̇ uP γ̇ 3uv γ̇ −1 ∼ γ̇ uw , (17)

with

uw ≡ 3uv + uP − 1 = 0.565, (18)

which is in very good agreement with q2 ≈ 0.567 from the
fit of σ (φJ , γ̇ ) to Eq. (12). This therefore suggests that the
secondary term, σ2, is related to the slow particles in the peak
of the distribution.

C. Magnitude of σs

We now split the velocity distribution into two terms for the
two different processes, dominated by slow and fast particles,
respectively,

P (v) = Ps(v) + P f (v), (19)

where we take Ps(v) = P (v), for v � vp. To get a clue to the
shape of Ps(v) above the peak, we turn to Fig. 4 which shows
the velocity distribution at lower densities, φ = 0.76, 0.80,
and 0.82. It is there found that the high-velocity tail shrinks
away as φ is lowered and apparently vanishes at φ = 0.76,
shown in Fig. 4(a). What remains is an exponentially decaying
P (v) and we take this as a guidance for constructing Ps(v)
above the peak at general φ.

Defining σs to be the contribution to σ from Ps(v),

σs = N

V

kd

γ̇

∫
Ps(v)v2dv,
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FIG. 4. Rescaled velocity distributions at low densities, φ =
0.76, 0.80, and 0.82. Note that the x axes have linear scales, in
contrast to the logarithmic scales in Fig. 2. At the lowest density,
φ = 0.76, in panel (a), the distribution is exponential whereas there
start to develop deviations from that behavior at the higher densities
in panels (b) and (c). We gather that the exponential decay is the
characteristics of the slow process whereas the deviations from that
behavior develop into the algebraic tails of Fig. 2 that characterize
the fast process.

and using the same kind of reasoning as in Eq. (15), we
introduce fs(x) = Ps(v)/Pp and find

σs = N

V
kdWp

∫
fs(x)x2dx = N

V
kdWpI2, (20)

where I2 is the integral,

I2 ≡
∫

fs(x) x2 dx. (21)

To determine the numerical value of I2 we assume σs = σ2

and determine σ2 from σ2 = σ − a1γ̇
q with a1 and q from the

fit to Eq. (12) to get

I2 = V

N

[σ (φJ , γ̇ ) − a1γ̇
q]

kd Wp(φJ , γ̇ )
, (22)

which is shown in Fig. 5. Since the size of the secondary
term depends sensitively on the assumed φJ we here make
use of φJ = 0.843 43 obtained in Appendix A. Here σ (φJ , γ̇ )
from Eq. (3) together with Wp(φJ , γ̇ ) from the peak properties
give estimates of I2 for different γ̇ . We note that the different
estimates of I2 are encouragingly similar and give I2 ≈ 3.4.
[The error bars in Fig. 5 are due to the uncertainties in a1 and
q in the fit to Eq. (12).]

FIG. 5. Estimates of I2 from Eq. (22). The input for these data
are both estimates of σ2(φJ , γ̇ ) ≡ σ (φJ , γ̇ ) − a1γ̇

q and Wp(φJ , γ̇ )
from the velocity distributions. Beside the displayed error bars,
which show one standard deviation, an important source of error
is the uncertainty in φJ . The present estimate is based on assuming
φJ = 0.843 43 as obtained in Appendix A.

We now take fs(x) to be given by the rescaled distributions
up to (and slightly above) the peak and assume an exponen-
tially decaying fs(x) for x > 1, and adjust the exponentially
decaying part of fs(x) to give I2 = 3.4, when integrated with
Eq. (21). The outcome of this procedure is the dashed line in
Fig. 6 which shows a possible shape of fs(x).

Before continuing it is worth pointing out that the rea-
soning above rests on the assumption that P (v) up to the
peak is altogether governed by the slow process. Even though
this leads to a consistent picture it should be stressed that
there is of course nothing to preclude the possibility that the
distribution for the fast process actually is small but nonzero
at v = vp.

D. Behavior at densities around φJ

After the analyses of the behavior at φ ≈ φJ we now turn to
the behavior also away from φJ . The aim is not to get reliable
determinations of the critical exponents—such determinations
would require both estimates of the uncertainties in Wp and
a better understanding of the finite-size effects on σs—but
rather to show that σs from the peak properties through Wp

and Eq. (20) behaves the same as the secondary term from
Eq. (7),

σ2 = γ̇ q2 hσ

(
φ − φJ

γ̇ 1/zν

)
, (23)

FIG. 6. Possible shape of fs(x) together with data for shear rates
γ̇ = 10−8 through 10−4. Panel (a) shows the exponential decay of
fs(x) whereas the zoom-in in panel (b) shows the same data close to
the peak.
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FIG. 7. Comparison of σ2/σ and σs/σ from two very different
analyses. Panel (a) is from the scaling collapse according to Eq. (7)
where σ2, as defined in Eq. (12), is the secondary, correction-to-
scaling, term. Panel (b) is σs from the peak properties through
Eq. (20) with I2 = 3.4. The open circles connected with a dashed
line are the values from panel (a). The great similarity of the two
quantities suggest that they are related.

also away from φJ . Figures 7(a) and 7(b) show the rel-
ative contributions of σ2 and σs and it is clear that they
are very similar. Note that σ2—determined from the fit
of σ (φ, γ̇ ) to Eq. (7)—is only available for the range of
data that can be used for the fit whereas σs can be de-
termined from the peak of the velocity distribution for all
data.

The identification of σ2 with σs means that we should
expect σs to scale with the exponent q2 ≡ q + ω/z. We in-
troduce σ f which is the contribution to σ due to the fast
process,

σ f ≡ σ − σs. (24)

This quantity should—just as the main term—scale with
the exponent q. Figure 8 shows σs and σ f versus φ for
γ̇ = 10−8 through 10−5. Figures 8(a) and 8(b) are the raw
data, Figs. 8(c) and 8(d) are the same data rescaled by
γ̇ q2 and γ̇ q, and Figs. 8(e) and 8(f) show the attempted
data collapses when plotted versus (φ − φJ )/γ̇ 1/zν with φJ =
0.8434 and 1/zν = 0.26 [16]. The scaling collapses are very
good.

Generally speaking, the conclusions arrived at in this
way match the results from Ref. [16]. One notable point in
Ref. [16] is that q > 1/zν which implies that σ (φ, γ̇ → 0) ∼

FIG. 8. Raw data and scaling analyses of σs and σ f ≡ σ − σs.
The vertical dashed lines are φ = 0.8434 ≈ φJ . For clarity we show
data for the four shear strain rates, only: γ̇ = 10−8, 10−7, 10−6,
and 10−5. Panels (a) and (b) are the raw σs vs φ and σ f vs φ.
Panels (c) and (d) are the same quantities but scaled by γ̇ q2 and γ̇ q,
respectively, which make the data cross at φJ . Panels (e) and (f) are
after also rescaling the x axis to make the data collapse. Note that σs

are directly from the peak properties as the value of I2 just enters as
a trivial rescaling parameter. σ f , however, also depends on the value
of I2 since it controls the size of the amounts subtracted from σ , as
shown in Eqs. (20) and (24).

(φ − φJ )y where y = qzν > 1. Though more detailed scaling
analyses of σ f and σs will have to be deferred to a later paper,
we can still attempt a determination of 1/zν from σ f (φJ , γ̇ ).
This is done by noting that σ1 = γ̇ qgσ ((φ − φJ )/γ̇ 1/zν ) from
Eq. (7) implies that

d ln σ1(φ, γ̇ )

dφ

∣∣∣∣
φJ

∼ γ̇ −1/zν . (25)

To estimate 1/zν we take σ1 = σ f and determine the above
derivative for different shear strain rates 10−8 � γ̇ � 2 ×
10−5 by fitting ln σ f to second order polynomials in φ − φJ

for data from narrow intervals around φJ , |φ − φJ |/γ̇ 0.26 <

0.3. From the γ̇ dependence of the term linear in φ − φJ we
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FIG. 9. Velocity distributions at the low shear strain rate γ̇ =
10−8 both at five densities φ = 0.830 through 0.838 representative
of the hard disk limit and the jamming density, φ = 0.8434 ≈ φJ .
The properties of the peaks determine Wp = Ppv

3
p/γ̇ which are used

in Eq. (20) with I2 = 3.4 to estimate σs.

find 1/zν ≈ 0.263 and (with q = 0.284) y = qzν ≈ 1.08, in
agreement with Ref. [16]. It should be noted that the present
approach is much more direct than the scaling analysis [16]
that handles the secondary term through a complicated fitting.
In the present approach that term is eliminated through the
peak properties Wp(φ, γ̇ ) and the single parameter I2 from
Eq. (22).

E. Behavior at φ < φJ as γ̇ → 0

The analyses above are for densities where elastoplastic
processes are important such that the viscosity is highly rate-
dependent and it is interesting to also examine the behavior in
the hard particle region where the viscosity is independent of
shear strain rate. This is reached by taking sufficiently small
γ̇ at φ < φJ . From the scaling picture one expects the same
analysis to apply also for hard particles below φJ , and we here
explicitly demonstrate that that actually is the case.

To approach the hard disk limit we have done simulations
of soft disks at densities φ = 0.830 through 0.838 and shear
strain rate γ̇ = 10−8 such that the average overlap of contact-
ing particles is <10−5ds, which means that the simulations are
indeed very close to the hard disk limit. From Fig. 9 which
is P (v) both at five densities �0.838, well below φJ , and
at φ = 0.8434 ≈ φJ we first note that there is no qualitative
difference between the velocity distribution at φJ , where the
elastic effects are important, and the distribution well below
φJ , characteristic of the hard disk limit.

Figure 10 shows our results for the viscosity in the hard
particle limit. The open circles are η ≡ σ/γ̇ with σ from
Eq. (3). The open squares are ηs ≡ σs/γ̇ where σs is deter-
mined with Eq. (20) with Wp = Ppv

3
p/γ̇ from the properties

of the peak together with the value I2 = 3.4. The solid dots are
the contribution from the fast particles η f = η − ηs. As shown
in Fig. 10 the values for these exponents from the fitting of ηs

and η f below φJ to the algebraic divergences [given by the
two terms in Eq. (11)] are β = 2.66 and β2 = 1.67, in very
good agreement with β = 2.75 and β2 = 1.67 from Eq. (10),
1/zν = 0.26, and the values of q and q2 given below Eq. (13).

FIG. 10. Analyses of the shear viscosity for data in the hard disk
limit, γ̇ = 10−8 and φ = 0.830 through 0.838. The open circles are
η = σ/γ̇ , the open squares are ηs ≡ σs/γ̇ with σs from the properties
of the velocity distributions, as discussed in the caption of Fig. 9.
The filled circles are η f ≡ σ f /γ̇ , where σ f = σ − σs. The fit of ηs

to an algebraic divergence gives β2 = 1.67 whereas the fit of η f

gives β = 2.66. As discussed in the main text these values are in
good agreement with the corresponding values of q2 and q from the
analyses of data at φJ .

The conclusion from the section is thus that the splitting
of data into slow and fast particles works the same for hard
particles as for the data around φJ and also that the corre-
sponding different determinations of the exponents are in very
good agreement.

F. Fast particles

After this comparison of the properties of the peak in the
velocity distribution and the secondary term, as determined
from the scaling analysis of σ (φJ , γ̇ ) together with an analysis
in the hard disk limit below φJ , we now turn to the high
velocity regime and the main process, to try to understand the
origin of the highest velocities far out in the tail of the distri-
bution. To that end we have examined several configurations
with fast particles at density φ = 0.80. A typical case is as in
Fig. 11(a), where the fast particle, shown in dark gray, only
has two contacting particles and is therefore in an unbalanced
configuration. Since the contact forces in this particular case
are quite large and the three particles are not entirely in line
this configuration gives a large net force on the gray particle
and thereby a high velocity.

In Appendix C we comment on the understanding that
the wide velocity distribution should be related to the system
going back and forth between jammed and unjammed states,
and argue that it is not a tenable explanation.

Though a single unbalanced particle is the simplest case,
the two dark gray particles in Fig. 11(b) also have high veloc-
ities. In this case a large net force on the big dark gray particle
also makes the small dark gray particle move, and this kind of
behavior may extend to chains of several particles. It should
however be noted that a bigger number of particles give lower
velocities for the same driving force. The conclusion from this
study is thus that the fast process is due to particles being
squeezed, which is in contrast to getting their velocities by

024904-8



SLOW AND FAST PARTICLES IN SHEAR-DRIVEN … PHYSICAL REVIEW E 108, 024904 (2023)

FIG. 11. Configuration with fast particles, shown by dark gray.
Panel (a) shows a particle with velocity v/〈v〉 ≈ 8.5. The reason for
its high velocity is that it is squeezed between the two other particles,
shown by light gray, and is therefore not in a force-balanced state.
Panel (b) shows a configuration with two fast particles where a large
net force on the big dark gray particle pushes on the small dark gray
particle, which happens to be free to move and therefore also gets a
high velocity.

being pushed by other contacting particles with similar veloc-
ities. In Appendix D it is shown that most of the dissipation
is due to particles with z = 3 or 4 contacts even though the
fastest ones have z = 2. The Appendix also gives evidence
that the squeezing mechanism that is behind the fast particles
with z = 2, illustrated by Fig. 11(a), is also behind the fast
particles with z = 3 or 4. This question is discussed in some
detail to counter an argument that suggested that the presented
mechanism for fast particles would be expected to work in two
dimensions only and not in three dimensions or higher.

A consequence of this picture is the presence of an addi-
tional timescale, related to the typical contact force, beside the
timescale given by the shear strain rate. This is then a property
which these particles have in common with avalanches that
develop according to their intrinsic dynamics once they are
set into motion.

It is interesting to note that two different timescales have
previously been found in analyses of the velocity autocorre-
lation function [32], where one of the timescales is directly
related to the shear strain rate whereas the other is the “internal
timescale,” tint ∼ 1/σ . The conclusion that the dynamics of
the fast particles in Fig. 11 is governed by a timescale related
to the contact force, fits well together with σ ∼ 〈 fi j〉.

The examples discussed above are for the simple case of
the fastest particles far out in the tail of the distribution, but it
is less clear if it is possible to separate all particles into “fast”
and “slow,” as would seem to be required by the splitting of the
velocity distribution into two terms as in Eq. (19). One attempt
in that direction would be to start from the picture that most
particles—the slow ones—move around by being pushed by
other particles with similar velocities and that the squeezing
give rise to “fast” particles. One would however also need to
characterize a particle as fast if it is pushed by another fast
particle, but it is at present not clear if it is possible to device
reasonable and useful criteria for such splitting into slow and
fast particles. Another possibility would be to give up the idea
of a strict splitting of particles into two disjunct categories,
and instead say that any given particle may participate in, or
be affected by, both the fast and the slow process.

G. Spatial velocity correlations

When the correlation length has been identified, one ex-
pects that the finite-size dependence should be controlled by
the dimensionless ratio ξ/L, where L is the linear system size.
In shear-driven jamming this does however not work out as
expected. One example from the literature is in an attempted
finite-size scaling analysis at φJ [33] where a decent collapse
was found when data from different L were plotted versus
L/γ̇ −1/z, with z = 6.5, which is clearly different from the
expected z = 1/0.26 = 3.85. (As will be discussed elsewhere
this difficulty is resolved by including a correction-to-scaling
term. This finite-size scaling does however work differently
than commonly expected.) Another example that is difficult
to reconcile with the expected behavior is a recent examina-
tion of the finite-size dependence of data in a density range
well below φJ , where the onset of finite-size effects appeared
at a constant L, even though the correlation length changes
by more than a factor of two across the density interval in
question [14].

In critical phenomena one expects a direct link between the
diverging correlation length and the diverging order parame-
ter. As discussed above the shear viscosity is dominated by
the fastest particles and we will now argue that the correla-
tions are instead dominated by the slower particles, which is
thus in contrast to this usual picture. To demonstrate that the
correlations are dominated by slower particles we will use two
sets of data, the “overlap function” and the velocity correlation
function. The former has been widely used in the literature but
the advantage of the latter is that it allows for a more direct
interpretation in terms of the particle displacements.

To demonstrate that the velocity correlations are dominated
by the slow particles we first examine the overlap function
[21,22] which for each individual configuration is determined
from the positions of particles i at a reference time ri(0) and
the positions at a time t later, but compensated for the affine
displacement, i.e., ri(t ) − �i(t )x̂. The overlap function is then

Q1(a, t ) = 1

N

N∑
i=1

exp

(
−|ri(t ) − �i(t )x̂ − ri(0)|2

2a2

)
,

where a is a probing distance. The affine displacement,
from the affine velocity field, vx = yγ̇ , is given by �i(t ) =∫ t

0 yi(t ′)γ̇ dt ′. The dynamic susceptibility is [22]

χ4(a, t ) = N
(〈

Q2
1(a, t )

〉 − 〈Q1(a, t )〉2
)
. (26)

Figure 12(a) shows χ4 versus γ ≡ t γ̇ . The peak in the
plot shows the amount of shear at which half the particles
have moved at least the probing length, a = 0.001. We note
that it is possible to extract a typical velocity from this, and
determine the velocity from v ≡ a/t . These data are shown
in Fig. 12(b) and lead to the conclusion that the collective
dynamics is dominated by particles with v4 ≈ 1.25 × 10−6.
We note that this velocity is not far from the peak velocity,
vp = 0.86 × 10−6, that characterizes the distribution of slow
particles.

To show that most of the dissipation—and thus the domi-
nant contribution to the shear stress—is due to particles with
v > v4, i.e., particles with considerably higher velocities than
this characteristic velocity, we note that S(v4)/σ—the fraction
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FIG. 12. Dynamical susceptibility determined with probing
length a = 0.001. Panel (a) is χ4 vs γ determined from the fluctua-
tions in Q1(a, γ ) which is, in turn, essentially the fraction of particles
that have moved the distance a during the shear γ . Panel (b) is the
same data but plotted against v = a/t ≡ aγ̇ /γ , which is the average
velocity needed for the particle to move the distance a during a shear
γ . We note that peak in χ4 is not far from the peak velocity vp, shown
by the dashed line.

of the dissipation due to particles with v � v4—is small and
decreases with decreasing shear strain rate. For γ̇ = 10−6,
10−7, and 10−8 the respective fractions are S(v4)/σ ≈ 0.051,
0.044, and 0.024. The conclusion is thus that correlations
and the contribution to the shear viscosity (i.e., dissipation)
decouple in the γ̇ → 0 limit as they are governed by different
sets of particles.

A different way to reach the same conclusion is through
analyses of the correlation function [23]

g(x) = [〈v↗(0)v↘(xx̂)〉 + 〈v↘(0)v↗(xx̂)〉]/(v2/2), (27)

where v↗ = (vx + vy)/
√

2 and v↘ = (vx − vy)/
√

2. In
Ref. [23] it was concluded that g(x) may be fitted to

g(x) = Ae−x/ξ − Be−x/�, A, B > 0, (28)

where the two terms describe the fluctuations in the rotation
and the divergence of the velocity field, governed by different
length scales. It was furthermore found that the diverging
ηp ≡ p/γ̇ scales with ξ , which thus suggests that it is ξ , which
describes the decay of the rotations in the velocity field, that is
the more significant correlation length, even though � is often
considerably bigger [23].

Since g(x) gives clear evidence for long-range velocity
correlations it can be used to demonstrate that the correlations
are dominated by the slower particles. To this end we define
a threshold velocity v50 such that half the power is dissipated
by particles with low velocities, v < v50 and half by the high
velocity particles, v > v50. We thus take v50 to be the limit
between low and high velocities, which is similar in spirit
to “slow” and “fast” particles above, but with the difference
that there is no sharp limit in the latter definition as the slow

FIG. 13. The splitting of the correlation function into three dif-
ferent terms. We here designate each particle as having “low” or
“high” velocity with the threshold v50 = 5.46 × 10−6 chosen such
that the sets of particles with low and high velocities each dissipate
half the power. This is thus similar in spirit to the separation into slow
and fast particles. Since each term that contributes to g(x) involves
two particles the full correlation function g(x) may be split into three
functions: gll (x) from two low velocity particles, glh (x) from one low
velocity particle and one high velocity particle, and ghh(x) from two
high velocity particles. Since it is gll and (to a less extent) glh that
dominate the correlations, the conclusion is that it is the low velocity
particles that are behind the long-range correlations in g(x). The solid
line is ∼e−x/ξ with ξ = 19.4. The figure is for N = 65 536 particles,
φ = 0.8434, and γ̇ = 10−7.

and the fast distributions overlap each other over a sizable
velocity region. We then split g(x) into terms gll (x), glh(x), and
ghh(x), which are the contributions to the correlation function
from two low velocity particles, one particle with low velocity
and one with high, and two high velocity particles, such that
the full correlation function is g(x) = gll (x) + glh(x) + ghh(x).
These different terms, obtained at φ = 0.8434 ≈ φJ and γ̇ =
10−7 with v50 = 5.46 × 10−6, are shown in Fig. 13.

The conclusion from this figure is that it is the low velocity
particles that strongly dominate the correlations. The contri-
butions from gll (x) is about 85%, from glh(x) the contribution
is about 14%, and the contribution from ghh(x)—two high ve-
locity particles—is less than 1% at large distances. In a sense
this finding is not surprising since one can expect the build up
of long-range correlations in a system of elastic particles to
be a slow process whereas the high velocities only exist for
shorter times.

The finding that slower particles contribute more to the
velocity correlations than the faster particles leads to the ex-
pectation that a reduced system size should affect different
parts of the velocity distribution differently. This expectation
is borne out in Fig. 14 where it is found that the peak in the
distribution moves to lower velocities as N decreases whereas
the tail moves in the opposite direction to higher velocities. An
explanation of the finite-size dependence of the peak velocity
is given in Sec. III H, but we here present an explanation of
the shift of the tail in the distribution to higher velocities.
The reasonable explanation is that a reduced system size
means a hindering of certain large-scale reorganizations that
are needed for finding new low-energy configurations. When
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FIG. 14. Finite-size dependence of P (v) at φ = 0.8434 ≈ φJ

and γ̇ = 10−7. This figure shows that the low velocity region and
the high velocity region are affected differently by a reduced system
size such that the low-velocity peak moves to even lower velocities
whereas the high-velocity tail extends to higher velocities.

these large-scale reorganizations are no longer possible the
system builds up bigger tensions, which are now and then
reduced in more dramatic events with higher velocities, which
leads to a shift of the tail of the velocity distribution to higher
velocities.

H. Attempts to rationalize the findings

As an attempt to rationalize the findings we start by consid-
ering the slow process and turn to the fast process as a second
step.

As a starting point we consider two contacting hard par-
ticles initially at rest at different y coordinates, ±y/2 and
separation d0n with the unit vector n = (nx, ny). Due to
the homogeneous velocity profile these particles will expe-
rience opposite forces from this flow along the x direction,
±(y/2)kd γ̇ x̂, and also contact forces f el

± in direction ±n. If
there are no other interacting particles, then the total velocities
vtot

± will be vtot
± ∓ yγ̇ x̂ = f el

± /kd , which together with fel ‖ n
and vtot ⊥ n gives

nyv
tot
± = nx f el/kd ± (y/2)γ̇ ,

nxv
tot
± = −ny f el/kd .

By multiplying these two equations, respectively, by ny and
nx and adding them together, the expression for the relative
particle velocity becomes

vtot ≡ vtot
+ − vtot

− = nyy γ̇ .

In the presence of other particles that could hinder the dis-
placement we expect this to instead lead to a force kdv

tot.
Since the velocities at higher densities are correlated across
a distance ξ [23] it follows that any given contact should
contribute a quantity ∝γ̇ to the velocity field of each particle
in the volume ∼ξ 2 centered at that contact.

We now instead turn to the behavior of a single particle
and a consequence of the above discussion is that its velocity
becomes affected by the n = c2

ξ ξ
2/d2

0 contacts in a volume
ξ 2, where cξ is a factor of order unity. We further assume that
the relative velocity vtot

k ∼ d0γ̇ at contact k contributes ηikd0γ̇

to the velocity of particle i. For simplicity we take ηik to be
random and independent with 〈ηik〉 = 0 and 〈η2

ik〉 = c2
η. The

velocity of a given particle then becomes vi = ∑n
k=1 ηikd0γ̇

where the sum is over the n contacts with rik < ξ . This gives
〈vi〉 = 0, and the variance 〈v2

i 〉 = nc2
ηd2

0 γ̇ 2 then defines a char-
acteristic velocity

v′ =
√〈

v2
i

〉 = cη

√
nd0γ̇ = cγ̇ ξ , (29)

where c ≡ cηcξ is a constant of order unity. For hard disks (or
equivalently, soft disks at γ̇ → 0) at densities below φJ this
becomes [cf. Eq. (4)]

η′
hd = N

V
kd

v′2

γ̇ 2
= N

V
kd c2ξ 2 ∼ ξ 2, (30)

and together with ξ ∼ (φJ − φ)−1 [23] this leads to

η′
hd ∼ (φJ − φ)−2, (31)

which is an estimate of the contribution from the slow parti-
cles, only, and not the full shear viscosity.

For an order of magnitude check we turn to low densi-
ties φ = 0.78 through 0.83 where the contribution from the
slow particles should dominate the total η, determine ξ as in
Ref. [23] and make use of values of η together with Eq. (30)
to determine

c2 = η

kd (N/V )ξ 2
= 0.8 ± 0.2,

which shows that c is indeed a constant of order unity.
After this discussion of hard particles below jamming we

turn to the behavior at φJ . We then make use of the correlation
length ξ ∼ γ̇ −1/z, with 1/z = 0.26 [23]. Equation (29) then
gives the characteristic velocity

v′ ∼ γ̇ γ̇ −1/z ∼ γ̇ u′
,

with the exponent

u′ = 1 − 1/z = 0.74,

which is very close to uv = 0.766 for the peak velocity, vp ∼
γ̇ uv in Eq. (16b). Though this agreement is encouraging as it
suggests a connection between very different quantities, we
note that the reasoning is still very incomplete as the behavior
of ξ is taken as a given starting point without any motivation.

Figure 15(a) shows a direct comparison of vp and v′/c
using ξ ≈ 0.29γ̇ −1/z [23] in Eq. (29), and we note that they
are very similar. The points v′/c are simply the values of v′
when taking the unknown constant to be c = 1.

[As a digression we now return to the behavior of hard
particles below φJ to compare our predictions based on σs

with Eq. (31). From the very similar behaviors of v′ and vp

one could expect an excellent agreement between predictions
from σs and Eq. (31), but there is instead a clear difference.
For this discussion we make use of β2, introduced in Sec. III E,
for the divergence of the secondary term. With q2 = 0.567
and zν = 1/0.26 β2 = (1 − q2)zν ≈ 1.67, is quite different
from β2 = 2 in Eq. (31). Recalling Eq. (18) and q2 = uw

it turns out that one way to get β2 = 2 is if the equalities
uv = 1 − 1/zν (this is uv = u′) and uv + uP = 0 were both
fulfilled, but since they are only approximately fulfilled, the
exponent instead becomes somewhat lower. It is interesting

024904-11



PETER OLSSON PHYSICAL REVIEW E 108, 024904 (2023)

FIG. 15. Attempts to test the rationalization of the shear rate
dependence of the peak velocity in Eq. (29). Panel (a) shows a
comparison between the peak velocity, vp, and the characteristic
velocity, from Eq. (29), shown as v′/c; the data are encouragingly
similar. (The open squares are the values of v′, assuming c = 1.
Taking v′ = vp at γ̇ = 10−7 gives c = 0.45.) Panel (b) shows the
finite-size effect on the peak velocity, vp, by plotting vp vs L. The
linear behavior c′γ̇ L with c′ = 0.16, at small L, shown by the dashed
line, is consistent with predictions in the main text. (The correlation
length at φ ≈ φJ and γ̇ = 10−7 is ξ ≈ 19.)

to note that uv + uP = 0.033 > 0 means that the fraction of
particles with velocities up to the peak increases slowly with
decreasing γ̇ . Such a trend is possible only because of the
existence of two different processes.]

It is also interesting to also examine the dependence on
system size and the starting point is then that a quantity which
is determined from processes in a correlation volume should
have a finite-size dependence unless the linear system size is
L � ξ . For small L one expects L to take the place of ξ , and
the characteristic velocity from Eq. (29) then becomes v′ ∼
γ̇ L. Fig. 15(b), which shows the peak velocity, vp, versus L,
gives evidence for such a behavior as the data below L ≈ 50
follow the dashed line, c′γ̇ L, to a good approximation. This is
thus the explanation of the size-dependence of vp in Fig. 14,
which is vp ∼ L for N � 512.

Even though this picture describes the slow process, only,
it also holds the seed to the fast process that gives particles
with considerably higher velocities. We first recall that the
condition for a wide tail in the velocity distribution is the
presence of large contact forces, i.e., that the typical contact
force is considerably larger than the typical net force kdv

′ that

drives the slow particles. The typical contact force, f ′, may
be determined from the pressure which is given by p′ = σ ′/μ
(where μ is the dimensionless friction). From V/N ≈ d2

0 , p′ ≈
1
4 f ′z/d0 and the approximate expressions for the contribution
to the shear stress from the slow particles,

σ ′ ≈ N

V

kd

γ̇
v′2,

and Eq. (29) one finds

f ′ = N

V

1

μ

kd

γ̇
d0v

′2 ≈ c

μ

ξ

d0
kdv

′, (32)

for the typical contact force. In most cases the contact forces
on a particle almost cancel each other out, but in the case
where the forces fail badly to balance each other out one finds

vfast = cg f ′/kd = cgc

μ

ξ

d0
v′, (33)

and even though the geometrical factor is cg � 1, a big ξ

together with 1/μ ≈ 10 (which holds close to jamming) may
lead to velocities vfast � v′. (That cg � 1, is illustrated in
Fig. 11(a) where the three particles are almost in a line and
therefore give a resultant force that is considerably smaller
than the contact forces.)

What finally gives the very high velocities, with tails ex-
tending up to v ≈ 100 vp for γ̇ = 10−7, is the fact that the
above mentioned mechanism is self-amplifying since a num-
ber of fast particles have the effect to make 〈v2〉 > v′2, which
then increases σ and the typical force, which in turn has the
effect to increase 〈v2〉 even more.

IV. DISCUSSION

A. Short summary

The study of the velocity distribution in the present paper
suggests the existence of two different processes with differ-
ent scaling properties. We call them the slow process and the
fast process, as they are dominated by the slower particles in
the peak and the faster particles in the tail of the distribution,
respectively. Due to the relation between input power σ γ̇ and
dissipated power kd〈v2〉, Eq. (4), the shear stress is thought of
as being controlled by the dissipation, which makes it possible
to split the shear stress into contributions from the slow pro-
cess and the fast process, σ = σs + σ f . It is then found that the
leading divergence of the shear viscosity is governed by
the fast process, whereas the correction-to-scaling term from
the critical scaling analysis is related to the slow process.
Since it is furthermore found that the long-range velocity
correlations that develop as criticality is approached, are due
to the slow process, it appears that the connection expected in
critical phenomena between the diverging correlation length
and the diverging viscosity, is an indirect one, only. Taken
together this suggests that shear-driven jamming is an unusual
kind of critical phenomenon.

B. Open questions

There remain several open questions and one of them is on
the mechanism behind the algebraic velocity distribution in
the fast process. Since vi = f el

i /kd the velocities, and thereby
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the velocity distribution, are directly given by the sum over the
contact forces, fel

i = ∑
j fel

i j . The contact forces fel
i j are here

from a narrow distribution, whereas the distribution of the
velocities (through the net forces) have a tail, ∼v−r , with dif-
ferent r. An open question is on the mechanism that generates
this distribution.

A related enigmatic finding is that the values of q and
q2 together give q2/q = 1.995 ± 0.021 (three standard devi-
ations) which suggests the simple relation q2/q = 2. Though
q2 may be “understood” from the dependence of the velocity
distribution on γ̇ , there is no simple way to come to grips
with the exponent q since it depends on both the exponent r,
which changes with φ and γ̇ , and other properties of the tail
of the distribution, in an opaque way. We here just speculate
that there is a coupling between the two different processes
that makes the system adjust itself to give this simple relation
between the slow and the fast processes, but we have no clue
to the underlying mechanism.

In critical phenomena the behavior is largely controlled by
the main term, but in view of the present findings, that the
diverging correlations appear to be present in the slow process,
only, it could be that it is rather the slow process that is central
in the critical phenomenon and, in some way, controls the fast
process. If this is so, then it is perhaps more appropriate to call
σ2 in Eq. (12) the “secondary term” rather than the correction-
to-scaling term, as the latter term has the strong connotation
of being small and insignificant.

C. Contact changes

Contact change events have been studied through qua-
sistatic shearing of soft spheres and one has then found that
these contact change events are of two different kinds where
the first is irreversible and dramatic “rearrangements” that
lead to discontinuous change of positions and the second is
reversible and smooth “network events” [34]. The first kind
has also been termed “jump changes,” whereas the continuous
contact change is termed a “point change” [35]. It does indeed
seem that the fast and slow processes of the present work
are respectively related to these different kinds of contact
changes, and beside adding credibility to our picture of two
different process, this connection also suggests new avenues
for further research.

D. Relation to theoretically determined exponent

A further question is the connection between our findings
and the theoretically determined value of the exponent β/uz.
The assumption that the process that governs the divergence of
the shear viscosity is “spatially extended” [8] or “extensive”
[9], is in contrast to our finding that the fast particles are short-
range correlated, only. Our finding could suggest going back
to Ref. [36], which presented a different results when using
θ� = 0.18 from the distribution of weak forces (determined
for all contacts and not only the “extended” ones [7,8]) and
gave the value β/uz = (3 + θ�)/(1 + θ�) = 2.69 in excellent
agreement with the simulations in 2D [11]. In spite of this
agreement in 2D (which could perhaps be just fortuitous) a
remaining question is the reason for the different exponent in

three dimensions, and we conclude that more work is needed
to sort out this question.

E. Future and ongoing work

There are quite a few interesting directions for the further
research. As already mentioned a finite-size scaling study of
shear-driven jamming, by means of the splitting into σs and
σ f , is under way. We then also plan to examine models with
elliptical and ellipsoidal particles, and/or with different mod-
els for dissipation, with the key question what properties of the
model that determine the universality class of the transition.
It would also be interesting to examine how the introduction
of inertia—which is known to give an altogether different
behavior [37]—is reflected in the properties of the velocity
distribution.
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APPENDIX A: DETERMINATION OF φJ

AND THE EXPONENTS q AND q2

To determine the exponents with the highest possible preci-
sion we simultaneously fit shear stress to Eq. (12) and pressure
to Eq. (31). We are then inspired by Ref. [23] who use the
same exponents q for both quantities and q(p)

2 = q2. That q
should be the same for both quantities follows from the un-
derstanding that μ ≡ σ/p approaches a constant at jamming,
whereas the same value of the exponent for the second term
for both quantities follows from the correction-to-scaling ex-
ponent being the same for different quantities. Just to examine
all possibilities we have however also examined the possibility
that the secondary exponents could be different, and in Table I
we therefore show results from a few different kinds of fits.

TABLE I. Four different determinations of the exponents q and
q2. Method A which is from using σ (φ = 0.8434, γ̇ ) only gives
rather poor precision in the exponents. In method B we make use of
p(φ = 0.8434, γ̇ ) to give higher precision in q, but keeping q(p)

2 as a
separate fitting parameter from q2. In method C we demand q(p)

2 =
q2, but still assume φJ = 0.8434. The last line is from a fit with
method C but assuming different jamming densities φJ = 0.843 40
through 0.843 48. From the quality of the fit, shown in Fig. 16,
we then determine φJ = 0.843 43 which is our value of φJ . In this
determination the σ (φ, γ̇ ) are obtained by interpolating σ (φ, γ̇ )
measured at φ = 0.8434 and 0.8435.

Method φJ q q2 Remark

A 0.8434 0.29(2) 0.58(5) Fitting σ , only,
B 0.8434 0.290(2) 0.58(1) q(p)

2 = 1.1(5)
C 0.8434 0.284(2) 0.567(7) Demanding q(p)

2 = q2

C 0.84343 0.281(3) 0.567(8) At φJ from Fig. 16
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FIG. 16. Determination of the jamming density. The fig-
ure shows the quality of the fits in terms of χ 2/dof when assuming
different values of φJ and using method C, i.e., demanding that both
q and q2 should be the same in the fit of σ (φ, γ̇ ) to Eq. (12) and
in the fit of p(φ, γ̇ ) to Eq. (13). The value φJ ≈ 0.843 43 obtained
here was used in the determination of I2 shown in Fig. 5, since that
determination is very sensitive to the value of φJ ; we have otherwise
used φJ ≈ 0.8434 throughout the paper.

Method (A) is from fitting σ only, method (B) is from a
simultaneous fit of σ and p where we take q to be the same for
both σ and p but let q2 and q(p)

2 be different fitting parameters.
Since the correction term is considerably smaller for p than
for σ , the main effect of including data for p is to get better
precision in q which in turn gives a smaller error in q2. In

method (C) we demand q(p)
2 = q2 which gives slightly lower

values of both q and q2. The simultaneous fitting of σ and
p gives a very sensitive method and Fig. 16 shows how the
quality of the fit depends on the assumed φJ . The optimal
fit is obtained with φJ = 0.843 43, just slightly higher than
φJ ≈ 0.8434 used throughout this paper. We also note that
the values are in good agreement with Ref. (16) that gave
φJ = 0.843 47, q = 0.28(2), and that our q2 − q = 0.285(5)
is in good agreement with ω/ν = 0.29(3) [16]. Just as in
Ref. (31) it is the combination of two sets of data that narrows
down the possible values of φJ to a very small interval in φ.

APPENDIX B: VELOCITY DISTRIBUTION ON LINEAR
AND LOGARITHMIC SCALES

As jamming is approached the velocity distribution de-
velops a wide tail and it then becomes convenient to plot
data on a double-log scale. The obvious drawback is that
the figures then become difficult to interpret and we there-
fore show a typical example of P (v)—here obtained at φ =
0.8434 ≈ φJ and γ̇ = 10−7—in Figs. 17(a) and 17(b) plot-
ted in two different ways with linear and logarithmic scales.
Figure 17(a) shows that P (v) has a peak at the low velocity
vp ≈ 8.6 × 10−7 and from Fig. 17(b), which is the same data
(though extending to higher v) on a double-log scale, it is
clear that the distribution extends up to much larger velocities,
even above 100 vp. Figures 19(c) and 17(d) show 1 − C(v),
which is the fraction of particles with velocity >v. Here
C(v) = ∫ v

0 P (v′)dv′ is the cumulative velocity distribution.

FIG. 17. Velocity distribution and relative dissipation at φ ≈ φJ and γ̇ = 10−7. Panel (a) shows P (v) on linear scales (which simplifies the
understanding of the distributions), whereas panel (b) shows the same data (though extending to higher v) on a double-log scale. Panels (c) and
(d) are 1 − C(v) which is the fraction of particles with velocity >v. Panels (e) and (f) show S(v) from the cumulative dissipation with the
vertical dashed line marking v50 which is at 50% of the dissipation. It is clear that a fair part of the dissipation is from particles with velocities
far out in the tail of the distribution.
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Figures 17(e) and 17(f) show the relative contribution to
the shear viscosity for particles with nonaffine velocity <v,
obtained as S(v)/σ , and it is clear that a fair part of the
dissipation is from velocities far out in the tail of the distri-
bution. From the figure it follows that more than 25% of the
dissipation is for v > 10−5 even though it could seem from
Fig. 17(a) that P (v) is negligible in that region and the same
figure gives at hand that 50% of the energy is dissipated by
only about 3.6% of the fastest particles. This is, furthermore,
a fraction that keeps decreasing as γ̇ → 0.

APPENDIX C: ON THE ORIGIN OF THE WIDE
VELOCITY DISTRIBUTION

A possible view on the anomalously large velocities that
make up the tail of the velocity distribution is that they occur
when, due to a fluctuation, the critical volume fraction for a
particular configuration is anomalously small, so that the large
velocities actually reflect the elastoplastic type behavior of a
jammed configuration, rather than the behavior of a packing
of hard particles at constant pressure, below jamming.

That kind of picture is a natural one when approaching the
subject from the analysis of static packings. Quite a few things
are however different in shear-driven simulations close to φJ

and one of these is that it is not obvious that p may be used to
tell about the “true distance to jamming,” when the shearing
systems are very far from equilibrium.

In shear-driven jamming at low shear strain rates and well
below the jamming density φJ ≈ 0.8434, say γ̇ = 10−7 and
φ = 0.83, things are simple. When stopping the shearing and
relaxing a configuration to a zero-energy state, the contact
number z of the zero-energy state, is strongly correlated to
p of the initial configuration. If one then tried to determine
φc by compressing the relaxed configuration further, then one
would presumably also find this φc to be strongly correlated
to p of the initial configuration.

Closer to φJ—which is the region for most of our
simulations—the correlation between p and z, however, be-
comes much smaller and the obvious reason is that the
relaxations often require substantial reorganizations and dur-
ing these reorganizations the system loses memory of it
original state. A consequence is that we can no longer expect
p to determine φc.

It should also be noted that the fluctuations of p are quite
small. For N = 65 536 particles at φ = 0.8434 ≈ φJ , and
shear strain rate γ̇ = 10−7 the standard deviation of p is, in
relative terms, std(p)/p ≈ 0.05 and this is by itself evidence
that the fluctuations in p cannot be the reason for the wide
velocity distribution.

APPENDIX D: DISSIPATION AND CONTACT NUMBER z

Figure 11(a) shows a configuration with only two contact-
ing particles, z = 2, which is the kind of configuration which
gives the fastest particles. (In this Appendix z denotes the
number of contacts for a given particle and not the average
over the whole system.) Though particles from such config-
urations with z = 2 are the fastest, they do not dominate the
dissipation. We here show that the dissipation is actually dom-
inated by particles with z = 3 and z = 4. We also show some

FIG. 18. Velocity distribution and dissipation for different con-
tacting neighbors, z. Panel (a) shows that the fastest particles
have only two contacting neighbors. The data are for φ = 0.8434
and γ̇ = 10−7. The panel also suggests that each of these func-
tions for different z decays exponentially. Panel (b) shows Sz/σ

vs z for the same parameters. Panel (c) is the same quantity,
again for φ = 0.8434, but now plotted vs γ̇ . The small changes
in Sz/σ are mainly caused by the small decrease of 〈z〉 with
decreasing γ̇ .

analysis that suggest that the same squeezing mechanism that
gives the fast particles with z = 2 are also behind the fast
particles with z = 3 and 4.

Figure 18(a) shows a splitting of the velocity distribu-
tion P (v) based on the number of contacting neighbors,
Pz(v) for z = 2 through 6. The figure, which gives data at
φ = 0.8434 ≈ φJ and shear strain rate γ̇ = 10−7, shows that
the fastest particles are the ones with only two contacting
neighbors, but also that particles with three contacts, z = 3,
dominate at somewhat lower velocities.

From the velocity distributions Pz(v) the contributions to
the shear stress due the dissipation for particles with different
z are calculated through

Sz = N

V

kd

γ̇

∫ ∞

0
Pz(v)v2dv. (D1)

From power balance, Eq. (4), which is a relation between
shear stress and dissipation, together with a comparison with
Eq. (5) one finds σ = ∑

z Sz. Figure 18(b) now shows Sz/σ—
the relative contribution to the shear stress—versus z. The
figure shows that it is the particles with z = 3 and z = 4
that dominate the dissipation; the particles with z = 2 only
contribute about 7% to the total dissipation.

To examine also the dependence on the shear strain rate
Fig. 18(c) shows the same quantities versus γ̇ . The fig-
ure shows that Sz/σ changes only slowly with γ̇ . It turns
out that both the small increase of the relative dissipation
for z = 2, 3 and the decrease for z � 4 are effects of a slow
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FIG. 19. The contribution to the dissipation split onto particles
with different z. The dashed line shows the contribution to the dis-
sipation from all particles with velocity >v; the different symbols
show the same quantity split onto different z. The data are for φ =
0.8434 ≈ φJ and γ̇ = 10−7. Both panels show the same data but with
different scales on the y axis. At the highest v it is the particles with
only two contacts that dominate the dissipation followed by particles
with three contacts at somewhat lower velocities.

decrease in the average z with decreasing γ̇ (not shown):
〈z(γ̇ = 10−5)〉 = 4.05 and 〈z(γ̇ = 5 × 10−9〉 ≈ 3.97.

For a closer look at the contribution to the dissipation from
the fast particles with different z we introduce the function
S>(v) which is the contribution to σ from all particles with
velocity >v,

S>(v) = N

V

kd

γ̇

∫ ∞

v

P (v′)v′2dv′, (D2)

and S>
z (v) which is the same quantity for all particles with

z contacts. Figure 19, which is S>
z (v) for z = 1 through 6 at

φ = 0.8434 and γ̇ = 10−7, again illustrates that it is z = 2
that dominates the dissipation at the highest velocities and that
z = 3 takes over at somewhat lower velocities.

An interesting feature of Fig. 18(a) is that each of the
functions Pz(v) decays exponentially, but with different char-
acteristic velocities (decay rates) and we now develop an
heuristic argument to explain this finding. For this argument
we assume that the fastest particles with z = 2, 3, or 4 contacts
are due to chains, as in Fig. 11(b), with, respectively, 1, 2,
or 3, i.e., z − 1, particles. If one then assumes the driving
force on a chain of particles to be from the same distribution
independent of z, then the driving force f acting on z − 1
particles would give the velocity v = f /[(z − 1)kd ], which

FIG. 20. Analyses of Pz(v) for z = 2, 3, and 4 contacting neigh-
bors with a focus on the fastest particles. In Fig. 18(a) is was shown
that each of the Pz(v) decays exponentially but with different char-
acteristic velocities. Panel (a) shows Pz(v) with the x axis rescaled.
The similar slope of the different curves gives the conclusion that the
characteristic velocity that describes the distributions is ∼1/(z − 1).
Panel (b) shows Pz(v)/nz for z = 2, 3, and 4, where nz is the fraction
of particles with z contacts. The nice collapse of the different data
suggests a common mechanism behind the fast particles for z = 2, 3,
and 4.

implies v ∼ 1/(z − 1). To check this reasoning Fig. 20(a)
shows Pz(v) versus v × (z − 1) and it is then found that the
three curves decay in the same way. To take this one step
further Fig. 20(b) shows Pz(v)/nz, where nz is the fraction of
particles with z contacts. The collapse of these data for z = 2,
3, and 4 onto a single curve then suggests that Pz(v) ∝ nz. The
further conclusion is that the squeezing mechanism which is
behind the fast particles with z = 2, is responsible also for
other high velocity particles with z > 2.

The fast particles in Fig. 11(a) are similar to the bucklers
described in Ref. [7] which are found to be related to local-
ized excitations. From that work it is also known that the
population of bucklers decreases with higher dimensions and
from the belief that it is the fastest particles—i.e., the bucklers
with z = d—that also dominate the dissipation (and thereby
the fast process) one could expect that the separation into
two different processes would no longer be relevant in higher
dimensions. However, as shown in Fig. 18(b) the bucklers
give only a minor contribution to the dissipation even though
they turn out to be responsible for the fastest particles. The
decrease in the number of bucklers in higher dimensions is
therefore not a reason to question the possibility of two differ-
ent processes in dimensions d > 2.
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