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Mpemba effect in driven granular gases: Role of distance measures

Apurba Biswas ,1,2,* V. V. Prasad,3,† and R. Rajesh 1,2,‡

1The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
2Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India

3Department of Physics, Cochin University of Science and Technology, Kochi 682022, India

(Received 20 March 2023; accepted 25 July 2023; published 14 August 2023)

The Mpemba effect refers to the counterintuitive effect where a system which is initially further from the final
steady state equilibrates faster than an identical system that is initially closer. The closeness to the final state
is defined in terms of a distance measure. For driven granular systems, the Mpemba effect has been illustrated
in terms of an ad hoc measure of mean kinetic energy as the distance function. In this paper, by studying four
different distance measures based on the mean kinetic energies as well as velocity distribution, we show that the
Mpemba effect depends on the definition of the measures.
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I. INTRODUCTION

Usual experience tells us that an initially prepared hotter
object takes a longer time to cool than a similar object at
a lower temperature. Such phenomena are well described
using Newtons’s cooling law, where the rate of cooling is
directly proportional to the difference in temperature between
the object and its surroundings. The Mpemba effect refers
to a counterintuitive phenomenon where a system which is
initially at a higher temperature equilibrates faster than a
similar system which is initially at a lower intermediate tem-
perature, when both systems are quenched to the same low
temperature. This effect was first observed in the case of water
where the freezing time was found to be lower for water that
is initially at higher temperature [1–6]. However, the effect
is not limited to water and has been experimentally shown
to exist in many other physical systems such as magnetic
alloys [7], clathrate hydrates [8], polylactides [9], carbon nan-
otube resonators [10], and colloidal systems [11–14], thus
suggesting that the Mpemba effect is a much more general
anomalous relaxation phenomenon that can be studied in nu-
merous physical systems. Theoretical studies on the Mpemba
effect have focused on spin systems [15–20], systems under-
going phase transitions [18,21,22], Markovian systems with
only a few states [23–25], systems of single particles diffusing
in a potential [26–32], active systems [33], spin glasses [34],
molecular gases in contact with a thermal reservoir [35–38],
quantum systems [39], and granular systems [40–46]. A more
recent theoretical investigation employing a geometric ap-
proach to understand such anomalous relaxation is presented
in Ref. [47].

The protocol followed to test for the existence of the
Mpemba effect considers two identical systems which are
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prepared in different initial states. Both systems are then
quenched to a common final state, and the Mpemba effect
is said to be present if the system that is initially further
away from the final state equilibrates faster. To quantify which
initial state is further away as well as crossing of trajectories,
a distance measure for points in the phase space has to be
defined.

For systems relaxing to thermal equilibrium, the distance
to the final equilibrium state is measured in terms of the
probabilities of the different states [23]. It was argued that any
distance measure satisfying the following properties should
result in a unique definition of the Mpemba effect: (1) As
the system relaxes toward thermal equilibrium, the distance
function should decrease with time; (2) for three temper-
atures Th > Tc > Tb, the distance from Tb is larger for Th

compared to Tc, i.e., the distance measure should be a mono-
tonically increasing function of temperature; and (3) the
distance function should be a continuous, convex function of
probability distribution [23]. Let π denote the equilibrium
Boltzmann distribution and pi(t ) the probability of state i
at time t . Then, examples of such distances are entropic
distance De = ∑

i(pi(t ) − πi )Ei/Tb + pi(t ) ln pi(t ) − πi ln πi

[23], total variation distance L1(t ) = ∑
i |pi(t ) − πi| [11],

and Kullback-Leibler (KL) divergence defined as DKL(t ) =∑
i pi(t ) ln(pi(t )/πi ) [48].
The calculation of the above definitions of distance rely

on knowing the probability distribution p(t ) at all times.
Analytical calculation of p(t ) is possible only for exactly
solvable problems which, in the context of the Mpemba ef-
fect, are restricted to simple single-particle systems [11–13]
and to systems with only a few states [23]. For interacting
many-particle systems and more so in the context of out-
of-equilibrium systems, the distance measures defined in the
probability space are, however, inaccessible through direct
measurements in experiments or computationally expensive
to measure in simulations. The more natural choices for the
distance measures that have been used in experiments are mo-
ments of the distribution which are directly observable, such
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as mean energy per spin [18,34], magnetization [7,18], granu-
lar temperature [40–46], etc. In addition, the generalization to
far-from-equilibrium systems, like driven granular systems, is
not clear. There are no conclusive studies about the correspon-
dence or similarity between the directly observable measures
and the distance measures defined in probability space. Thus,
it is not evident whether the Mpemba effect that has been
established using these proxy measures for distances is unique
or if its existence depends on the distance measure used.

To address the above issue, we study the dependence of the
Mpemba effect on the choice of different measures in driven
granular systems, a prototypical interacting, many-particle
far-from-equilibrium system. The advantage of the granular
system is that it allows exact analysis for two-point correlation
functions, at least in the linearized regime. Being an athermal
system, granular temperature or the mean kinetic energy of the
system has been used to track the evolution of the system with
higher granular temperature being considered further away
from the final steady state [40–45]. However, it is not known
a priori whether mean kinetic energy correctly predicts the
distance of the initial states from the final steady states. In
the following, we summarize several results that demonstrate
the existence of the Mpemba effect in granular systems. For
a system of smooth monodispersed particles [40,42,43], the
Mpemba effect is due to the coupling of the translational
granular temperature with the excess kurtosis of the velocity
distribution function or correlations between the velocities
of the different particles. In the case of rough granular gas
[41], the Mpemba effect is due to the coupling of granular
temperatures defined for translational and rotational degrees
of freedom. In these cases, for the Mpemba effect to exist,
however, the initial states need to be different from steady
states. Existence of the Mpemba effect for evolution of sys-
tems from initial steady states could be realized in the context
of binary inelastic gases or when inelastic gases are driven
anisotropically. For the case of binary gas, Mpemba effect
was traced to the energy-exchange between the energies of
the smaller and bigger particles [43], while in anisotropically
driven gas [44,45], the Mpemba effect is due to the coupling
between the granular temperatures along x and y directions.
However, in all the above-mentioned analysis, the time evolu-
tion of the system is projected onto only one of the variables,
which is the total granular temperature defined by the second
moment of velocity distribution of the system.

In this paper, in addition to total energy, we introduce
other measures such as Manhattan measure (L1), Euclidean
measure (L2), and KL divergence, which can describe the
evolution of the system in the phase space of all the relevant
variables. We perform the analysis in the setup of anisotropi-
cally driven granular gas as well as driven inelastic Maxwell
gas [44,45]. We derive the criteria for the existence of the
Mpemba effect with various measures and determine the re-
gion of phase space which shows the Mpemba effect. We
show that these phase diagrams are nonuniversal in the sense
that they depend on the measure used.

The remainder of the paper is organized as follows. We
first define the model of anisotropically driven granular and

Maxwell gases in Sec. II. In Sec. III, we derive the time
evolution of the two-point correlation functions, exactly for
the Maxwell gas and in the linearized regime for the granular
gas. It allows us to exactly calculate their steady-state values
which characterize the steady state. In Sec. IV, we define
the Mpemba effect and the various measures that we use to
characterize the distance between steady states. In Sec. V, we
present the results for the Mpemba effect using the various
measures. We compare the various measures for the Mpemba
effect in terms of their phase diagrams. Section VI contains
the conclusion and its implications.

II. MODELS

In this paper, we analyze two models for the driven granu-
lar gas in two dimensions: the inelastic Maxwell model and
the hard disk granular gas model. Consider a collection of
identical, inelastic particles. The velocities of these particles
change in time due to inelastic binary collisions that are mo-
mentum conserving. The new velocities v′

i and v′
j of the two

colliding particles i (velocity vi) and j (velocity v j) after the
collision are given by

v′
i = vi − α[(vi − v j ).ê]ê,

v′
j = v j + α[(vi − v j ).ê]ê,

(1)

where

α = 1 + r

2
, (2)

and r is the coefficient of restitution and ê is the unit vector
along the line joining the centers of the particles at contact. In
addition, the particles are driven anisotropically at a constant
rate, λd . We describe the driving for each model separately.

A. Inelastic Maxwell gas

In the inelastic Maxwell gas model, the collision rates
of the particles are independent of the relative velocities of
the colliding particles. Thus, the spatial degrees of freedom
are irrelevant. These simplifications lead to the model being
analytically tractable, yet keeping essential characteristics of
more complicated realistic models.

In addition to the collision rules described by Eqs. (1), each
particle is driven with rate λd . When particle i is driven, its
velocity vi is changed to v′

i, given by

v′
ix,y = −rwx,yvix,y + ηix,y, (3)

where rwx,y are scalar parameters associated with the driving
along the x and y directions, and η is a noise taken from a fixed
distribution φ(η) with a finite second moment denoted by

σ 2
k =

∫ ∞

−∞
dηkη

2
kφ(η), k = x, y. (4)

When σ 2
x �= σ 2

y , the driving is anisotropic and leads to parti-
cles having an anisotropic velocity distribution. The physical
motivations for the form of driving in Eq. (3) may be found in
Refs. [49,50].

024902-2



MPEMBA EFFECT IN DRIVEN GRANULAR GASES: ROLE … PHYSICAL REVIEW E 108, 024902 (2023)

Let P(v, t ) denote the probability that a randomly chosen particle has velocity v at time t . Its time evolution is given by

dP(v, t )

dt
= λc

∫∫∫
d êdv1dv2P(v1, t )P(v2, t )δ(v1 − α[(v1 − v2).ê]ê − v) − λcP(v, t )

+ λd

∫∫
dηdv1	(η)P(v1, t )δ[−rwxv1x + ηx − vx]δ[−rwyv1y + ηy − vy] − λd P(v, t ), (5)

where the first and second terms on the right-hand side de-
scribe the gain and loss terms due to collisions while the
third and fourth terms describe the gain and loss terms due
to driving.

B. Hard disk granular gas

In hard disk granular gas, the collision rates are propor-
tional to the relative velocities of the colliding particles, as
expected for ballistic motion. The time evolution of the veloc-
ity distribution function f (v, t ), defined as the number density
of particles having velocity v at time t is described using the
Enskog-Boltzmann equation [51]

∂

∂t
f (v, t ) = χ I ( f , f ) +

(
σ 2

x

2

∂2

∂v2
x

+ σ 2
y

2

∂2

∂v2
y

)
f (v, t ), (6)

where χ is the pair correlation function [52], I ( f , f ) [see
Appendix B, Eq. (B2) for details] is the collision inte-
gral which accounts for the gain and loss terms in Eq. (5)
due to collisions, and σ 2

x and σ 2
y are the variances or

strengths of the white noise along the x and y directions
respectively.

The driving terms in Eq. (6), corresponding to the diffu-
sionlike terms, are related to the driving for the Maxwell gas
given in Eq. (3). By Taylor expanding the terms related to
driving in Eq. (5), and truncating for small noise, it is easily
shown that the driving terms in Eq. (6) correspond to the
special case rwx = rwy = 1 [44,49,50].

Note that we have considered a spatially homogeneous
system to describe the system such that spatial degrees of free-
dom are ignored. Moreover, we have also assumed molecular
chaos hypothesis to use product measures for the joint velocity
distribution function in the collision integral.

III. CHARACTERIZING THE STEADY STATES

In this section, we define the relevant two-point correla-
tion functions for both models. The time evolutions of these
two point correlations were already derived in Refs. [44,45].
However, we summarize the derivations and compute their
steady-state values as they form an integral part of the present
analysis. Sections III A and III B contain the derivations for
the inelastic Maxwell model and the hard disk granular gas
model, respectively. The text closely follows the text in
Refs. [44,45].

A. Inelastic Maxwell model

For the inelastic Maxwell model, we are interested in the
following two-point correlation functions:

Ex(t ) = 1

N

N∑
i=1

〈
v2

ix(t )
〉
,

Ey(t ) = 1

N

N∑
i=1

〈
v2

iy(t )
〉
,

Exy(t ) = 1

N

N∑
i=1

〈vix (t )viy(t )〉,

Cx(t ) = 1

N (N − 1)

N∑
i=1

N∑
j=1
j �=i

〈vix(t )v jx(t )〉, (7)

Cy(t ) = 1

N (N − 1)

N∑
i=1

N∑
j=1
j �=i

〈viy(t )v jy(t )〉,

Cxy(t ) = 1

N (N − 1)

N∑
i=1

N∑
j=1
j �=i

〈vix(t )v jy(t )〉,

where Ex(t ) and Ey(t ) denote the mean kinetic energies of
the particles along x and y directions, respectively. Exy(t )
denote the correlations between vx and vy of the same particle
whereas Cx(t ), Cy(t ), and Cxy(t ) denote the velocity-velocity
correlations between pairs of particles. The time evolution
of these correlation functions is derived using Eq. (5) and is
compactly written in the form

d�̃(t )

dt
= R̃�̃(t ) + D̃, (8)

where the column vectors �̃(t ) and D̃ are given by

�̃(t ) = [Ex(t ), Ey(t ), Exy(t ),Cx(t ),Cy(t ),Cxy(t )]T ,

D̃ = [
λdσ

2
x , λdσ

2
y , 0, 0, 0, 0

]T
. (9)

The components of the matrix R̃ are given in Appendix A.
In the steady state, in the thermodynamic limit, the velocity-
velocity correlations and the correlation between vx and vy

of the same particle, i.e., Exy vanish as shown in Ref. [45].
Moreover, if these correlations are zero for the initial state,
then it remains zero for all times. In that case, we only write
for the time evolution of the nonzero mean kinetic energies,
i.e., Ex and Ey in a compact form as

d�(t )

dt
= R�(t ) + S, (10)
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where

�(t ) = [Ex(t ), Ey(t )]T , (11)

S = [
λdσ

2
x , λdσ

2
y

]T
, (12)

and R is a 2 × 2 matrix, whose entries are given by

R11 = 3

4
λcα

2 − λcα − λd
(
1 − r2

wx

)
, R12 = λc

4
α2,

R22 = 3

4
λcα

2 − λcα − λd
(
1 − r2

wy

)
, R21 = λc

4
α2. (13)

We will be using a different set of variables than Ex and Ey

for the analysis. We define the new set of variables, namely,
the total kinetic energy, Etot, and the difference of energies,
Edif, as

Etot = Ex + Ey, (14)

Edif = Ex − Ey. (15)

The time evolution equations for Etot and Edif can be ex-
pressed, starting from Eq. (10), as

dE(t )

dt
= −χE(t ) + D, (16)

where

E(t ) = [Etot(t ), Edif(t )]T , (17)

D = [
λd

(
σ 2

x + σ 2
y

)
, λd

(
σ 2

x − σ 2
y

)]T
, (18)

and χ is a 2 × 2 matrix with the components of the matrix
given by

χ11 = 2λcα(1 − α) + λd
(
2 − r2

wx − r2
wy

)
2

,

χ22 = λcα(2 − α) + λd
(
2 − r2

wx − r2
wy

)
2

,

χ12 = λd
(
r2
wy − r2

wx

)
2

, χ21 = λd
(
r2
wy − r2

wx

)
2

. (19)

Equation (16) can be solved exactly by linear decomposition
using the eigenvalues λ± of χ:

λ± = 1
4

[
2λd

(
2 − r2

wx − r2
wy

) + αλc(4 − 3α)

±
√

4λ2
d

(
r2
wy − r2

wx

)2 + α4λ2
c

]
. (20)

It is straightforward to show that λ± > 0 with λ+ > λ−.
The solution for Etot(t ) and Edif(t ) is

Etot(t ) − E st
tot = K+e−λ+t + K−e−λ−t ,

Edif(t ) − E st
dif = L+e−λ+t + L−e−λ−t ,

(21)

where E st
tot and E st

dif are steady-state values of Etot(t ) and
Edif(t ), respectively. The coefficients K+, K−, L+, and L−
along with E st

tot and E st
dif are given in Appendix A.

B. Hard disk granular gas model

For the model of driven hard disk granular gas whose
evolution is described using Eq. (6), the mean kinetic energies

along the x and y directions are defined as

Ei(t ) = 2

n

∫
dv

1

2
mv2

i f (v, t ), i = x, y, (22)

where n = ∫
dv f (v, t ) is the number density and m is the

mass of the particles. To derive the time evolution of the mean
kinetic energies using Eq. (6), we assume an anisotropic form
of the Gaussian for the velocity distribution function (which
is valid when the system is weakly inelastic) as described in
Ref. [44]:

f (v, t ) = mn

2π
√

Ex(t )Ey(t )
exp

[
− mv2

x

2Ex(t )
− mv2

y

2Ey(t )

]
. (23)

With this approximation for f (v, t ), the time evolution of Etot

and Edif [defined as in Eqs. (14) and (15)] form a coupled set
of nonlinear differential equations and is given by

∂

∂t
Etot(t ) = F (Etot, Edif ),

∂

∂t
Edif(t ) = G(Etot, Edif ). (24)

The functional forms for F (Etot, Edif ) and G(Etot, Edif ) are
given in Appendix B. To perform an exact analysis, we
linearize the nonlinear equations by considering only the ini-
tial states that are close to the final steady state. We define
δEtot(t ) = Etot(t ) − E st

tot and δEdif(t ) = Edif(t ) − E st
dif as the

time-dependent deviation of the energies from the stationary
state values. The linearized form for the nonlinear differential
equations [see Eqs. (24)] about the stationary state values obey

d

dt

[
δEtot(t )
δEdif(t )

]
= −χ

[
δEtot(t )
δEdif(t )

]
, (25)

where χ is a 2 × 2 matrix whose coefficients are given in
Appendix B. The validity of the linearized approximation
for the hard disk model is shown in our previous study in
Ref. [44], where we compare the linearized results with the
complete solutions for the time evolutions. The solutions for
δEtot(t ) and δEdif(t ) are then given by

δEtot(t ) = K+e−λ+t + K−e−λ−t ,

δEdif(t ) = L+e−λ+t + L−e−λ−t ,
(26)

where the coefficients K+, K−, L+, and L− are given by

K+ = 1

γ
[χ12δEdif(0) − (λ− − χ11)δEtot(0)],

K− = 1

γ
[−χ12δEdif(0) + (λ+ − χ11)δEtot(0)],

L+ = 1

γ

[
(λ+ − χ11)δEdif(0)

− (λ+ − χ11)(λ− − χ11)

χ12
δEtot(0)

]
,

L− = 1

γ

[
− (λ− − χ11)δEdif(0)

+ (λ+ − χ11)(λ− − χ11)

χ12
δEtot(0)

]
. (27)
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Here, λ± are the eigenvalues of χ and γ = λ+ − λ−. Note
that for the choice of steady states which are far from the
final stationary state, linearization is not enough. In that case,
one needs to use the numerical solution of the complete time
evolution equations.

IV. MPEMBA EFFECT AND DISTANCE MEASURES
IN PHASE SPACE

We first define the protocol that we will follow for il-
lustrating the Mpemba effect. Consider two systems P and
Q which have identical parameters except for the driving
strengths. Both systems, in their respective steady states, are
then quenched to a common steady state. This is achieved
by instantaneously changing the driving strengths of P and
Q to the common driving strength of the final steady state,
keeping all the other parameters of both systems fixed. The
two initial steady states P and Q differ in their initial distance
(to be appropriately defined) from the final steady state. The
evolution of the systems P and Q correspond to two different
trajectories in phase space. Then the Mpemba effect is said to
exist if the trajectory that was initially at a larger distance from
the final steady state approaches the final state faster than the
trajectory that was initially at a shorter distance. For granular
systems, several distance measures have been used to explore
the Mpemba effect. We derive the criterion for the existence
of the Mpemba effect for the different measures and for each
measure, we illustrate the Mpemba effect. We also ask how
much the Mpemba effect depends on the distance measure
being used.

The steady state of the two models for driven granular
systems considered in this paper is completely specified by
the velocity distribution P(v). The distance between two prob-
ability distributions may be defined in terms of an information
theoretic quantity known as KL divergence [53–55]. How-
ever, the velocity distribution cannot be solved exactly and
therefore the KL divergence becomes unwieldy for studying
the Mpemba effect, though we will study this numerically.
Instead, the steady state of the system has been parameterized
by the moments of the velocity. Note that the equations for
the two point correlation functions close among themselves
for both the Maxwell gas as well as the linearized granular
gas. This motivates using the second moments of velocity
distribution to characterize the steady states. For the system of
anisotropically driven granular gas, the mean kinetic energies,
Ex and Ey along x and y directions, respectively, are different.
Thus, the total energy, Etot = Ex + Ey and the difference of
energies, Edif = Ex − Ey serve as the appropriate variable to
describe a state of the system. Thus, a steady state is charac-
terized by (Etot, Edif ).

In this section, we introduce different measures that have
been used to define the distance between two steady states
of the system. When the steady state is defined through
(Etot, Edif ), the distance measures can be defined in terms of
the difference of the total energy of the two states (Sec. IV A),
in terms of two-dimensional Euclidean distance (Sec. IV B) or
two-dimensional Manhattan distance (Sec. IV C) of the phase-
space variables of the two states. In terms of the velocity
distribution, the convergence to the steady state can be char-
acterized through KL divergence (Sec. IV D). The different

measures track the temporal evolution of the system as it
evolves from an initial state to a final state, and we derive the
conditions for the Mpemba effect to exist.

A. Total energy

The most common variable that is used in literature of
driven granular gases to describe its state is the mean ki-
netic energy. The existence of the Mpemba effect in driven
granular systems has been shown in previous studies [43–45]
in terms of these variables. In this section, we briefly dis-
cuss the condition for the existence of the Mpemba effect
in an anisotropically driven granular gas. We consider two
systems P and Q whose initial steady states are denoted by
[EP

tot(0), EP
dif(0)] and [EQ

tot(0), EQ
dif(0)], respectively. Here, the

distance of the initial states compared to the final state is
measured in terms of the total energy. The initial steady states
for the two systems are prepared such that EP

tot(0) > EQ
tot(0).

Both systems are then quenched to a common steady state
having lower total energy than the initial total energies of both
systems.

The Mpemba effect is present if the two trajectories EP
tot(t )

and EQ
tot(t ) cross each other at some finite time t = τ at which

EP
tot(τ ) = EQ

tot(τ ). (28)

To obtain the value of τ , we equate the total energies of
P and Q using either Eqs. (21) or Eq. (26), depending on the
inelastic Maxwell gas or hard disk granular gas, respectively,
to obtain

KP
+e−λ+τ + KP

−e−λ−τ = KQ
+ e−λ+τ + KQ

− e−λ−τ , (29)

whose solution is

τ = 1

λ+ − λ−
ln

[
KP

+ − KQ
+

KQ
− − KP−

]
. (30)

In terms of the parameters of the initial steady states, τ

reduces to

τ = 1

λ+ − λ−
ln

[
χ12�Edif − (λ− − χ11)�Etot

χ12�Edif − (λ+ − χ11)�Etot

]
, (31)

where

�Etot = EP
tot(0) − EQ

tot(0),

�Edif = EP
dif(0) − EQ

dif(0). (32)

For the Mpemba effect to be present, we require that τ > 0.
Since λ+ > λ−, the argument of the logarithm in Eq. (31)
should be greater than one.

Figure 1 illustrates the existence of the Mpemba effect
where the trajectories of the initial states leading to the final
steady state are defined in terms of the total energy and their
crossing time given by Eq. (31).

B. Euclidean distance

Mean kinetic energy as a measure of distance has the
possible issue that the trajectories may appear to cross in this
one-dimensional projection, though in the two-dimensional
phase they do not cross. More natural definitions are to use
Euclidean or Manhattan distances. As the initial and the final
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(a) (b)

FIG. 1. The time evolution of anisotropically driven (a) inelastic
Maxwell and (b) hard disk granular gas is illustrated in terms of
the mean kinetic energy, Etot for two systems P and Q. The ini-
tial conditions for the inelastic Maxwell gas in (a) are EP

tot(0) =
1.148, EQ

tot(0) = 0.92, EP
dif(0) = −0.595, and EQ

dif(0) = 0.455, cor-
responding to the choice of the driving strengths σ P

x = 0.25, σ P
y =

1.0, σ Q
x = 0.6, and σ Q

y = 0.45. The choice of the other parameters
defining the system are r = 0.3, rwx = 0.88, rwy = 0.39, σx = 0.1,
and σy = 0.05. The initial conditions for the hard disk granular
gas in (b) are EP

tot(0) = 10.05, EQ
tot(0) = 10.04, EP

dif(0) = 2.797, and
EQ

dif(0) = 1.979, corresponding to the choice of the driving strengths
σ P

x = 0.476, σ P
y = 0.003, and σ Q

x = 0.405, σ Q
y = 0.070. The final

steady state is characterized by E st
tot = 10.0 and E st

dif = 2.82, corre-
sponding to the driving strengths σx = 0.476 and σy = 7.351 × 10−5.
The choice of the other parameters defining the system are r = 0.65,
m = 1, n = 0.02. P relaxes to the steady state faster than Q, though
it is initially at a larger distance compared to the final steady state.

states are defined by the pair of variables {Etot(t ), Edif(t )}, we
can define a Euclidean measure for the trajectory connecting
the two states as

L2(t ) =
√(

Etot(t ) − E st
tot

)2 + (
Edif(t ) − E st

dif

)2
. (33)

Here, the initially hotter system or, equivalently, the system
which is initially farther from the final steady state, has an
initially larger L2 compared to the colder system. For this
measure, we define the Mpemba effect as follows. Let us
consider two systems P and Q such that P is initially at a
larger distance from the final steady state compared to Q, i.e.,
LP

2 (0) > LQ
2 (0). Here, the systems P and Q are identical in

all respects except for the pair of driving strengths (σx, σy)
that are required to prepare the systems in their initial steady
states. Then, both systems are quenched to a common steady
state by applying the same pair of driving strengths. In this
case, the Mpemba effect is said to exist if the two trajectories
for systems P and Q quantified in terms of LP

2 (t ) and LQ
2 (t )

cross each other at some finite time t = τ at which

LP
2 (τ ) = LQ

2 (τ ). (34)

To obtain the value of τ , we equate the Euclidean measures
for systems P and Q at t = τ as√(

EP
tot(τ ) − E st

tot

)2 + (
EP

dif(τ ) − E st
dif

)2

=
√(

EQ
tot(τ ) − E st

tot

)2 + (
EQ

dif(τ ) − E st
dif

)2
. (35)

For the inelastic Maxwell gas, using Eqs. (21), we obtain
the crossing times as

τ± = 1

(λ+ − λ−)
ln

[
2a

d ± √
d2 − 4ab

]
, (36)

P
Q

P

Q

P

Q

Q

P

(a)

(b)

FIG. 2. The time evolution of the anisotropically driven inelas-
tic Maxwell gas in terms of the Euclidean measure L2(t ) for two
systems P and Q with initial conditions LP

2 (0) = 6.34 and LQ
2 (0) =

6.15 shows two crossings as illustrated in (a) and (b) for different
times. The initial conditions correspond to the choice of the driving
strengths σ P

x = 1.982, σ P
y = 1.976, σ Q

x = 0.708, and σ Q
y = 0.657.

The multiple crossing times are obtained using Eq. (36). The driving
strengths corresponding to the final steady state are σx = 1.6 and
σy = 1.1, whereas the choice of the other parameters defining the
system are r = 0.1, rwx = 0.95, and rwy = 0.39.

where

a = [(KP
+)2 + (LP

+)2 − (KQ
+ )2 − (LQ

+)2],

b = [(KP
−)2 + (LP

−)2 − (KQ
− )2 − (LQ

−)2],

d = 2[KQ
+ KQ

− + LQ
+LQ

− − KP
+KP

− − LP
+LP

−]. (37)

A similar expression for the crossing time [see Eq. (36)] is
also obtained for the case of hard disk granular gas for which
the constants λ±, a, b, and d are computed using Eqs. (27).

Note that there are two possibilities for the crossing time in
Eq. (36). Figure 2 illustrates such a scenario where both cross-
ings are present. However, the presence of two crossings will
eventually lead to no Mpemba effect. Thus, we are interested
in only those cases or the initial conditions where there exists
only one crossing of the trajectories of the initial states leading
to the final steady state. For the Mpemba effect to be present,
we require that τ+ > 0 or τ− > 0, but not both positive. Since
λ+ > λ−, the argument of the logarithm in Eq. (36) should
be greater than one for +(−) and less than one for −(+).
Figure 3 illustrates the existence of the Mpemba effect where
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(a) (b)

FIG. 3. The time evolution of anisotropically driven (a) inelas-
tic Maxwell and (b) hard disk granular gas is illustrated in terms
of Euclidean measure L2(t ) for two systems P and Q. The initial
conditions for the inelastic Maxwell gas in (a) are LP

2 (0) = 3.13
and LQ

2 (0) = 2.79, corresponding to the choice of driving strengths
σ P

x = 1.9, σ P
y = 1.2, σ Q

x = 1.55, and σ Q
y = 2.0. The driving strengths

corresponding to the final steady state are σx = 1.6 and σy = 1.1,
whereas the choice of the other parameters defining the system
are r = 0.3, rwx = 0.95, rwy = 0.39. The initial conditions for the
hard disk granular gas in (b) are LP

2 (0) = 0.432 and LQ
2 (0) = 0.208,

corresponding to the choice of the driving strengths σ P
x = 0.491

and σ P
y = 7.572 × 10−5 and σ Q

x = 0.444, σ Q
y = 0.037. The driving

strengths corresponding to the final steady state are σx = 0.476 and
σy = 7.351 × 10−5 whereas the choice of the other parameters defin-
ing the system are r = 0.65, m = 1, and n = 0.02. P relaxes to the
steady state faster than Q, though its initial Euclidean distance from
the final steady state is larger.

the trajectories of the initial states leading to the final steady
state are defined in terms of the Euclidean measure and their
crossing time is given by Eq. (36).

C. Manhattan distance

Similar to the Euclidean measure, we can define another
measure for the time evolution of the trajectory connecting the
initial and final states in terms of Manhattan distance. In the
plane of {Etot(t ), Edif(t )}, the Manhattan measure is defined as

L1(t ) = ∣∣Etot(t ) − E st
tot

∣∣ + ∣∣Edif(t ) − E st
dif

∣∣. (38)

Here, the system having larger L1(0) at time t = 0 is
termed the hotter system while compared to the initially colder
system having a comparatively smaller L1(0). For this mea-
sure, we define the Mpemba effect as follows. Let us consider
two systems P and Q such that P is initially at a larger distance
from the final steady state compared to Q in terms of Manhat-
tan measure, i.e., LP

1 (0) > LQ
1 (0). Here, the systems P and Q

are identical except for the pair of driving strengths (σx, σy).
Both systems are then subjected to the same pair of driving
strengths. As a result, both systems are driven to a common
steady state. Then the Mpemba effect is said to exist if the
two trajectories for systems P and Q quantified in terms of
LP

1 (t ) and LQ
1 (t ) cross each other at some finite time t = τ at

which

LP
1 (τ ) = LQ

1 (τ ), (39)

or, equivalently,∣∣(EP
tot(τ ) − E st

tot

)∣∣ + ∣∣(EP
dif(τ ) − E st

dif

)∣∣
= ∣∣(EQ

tot(τ ) − E st
tot

)∣∣ + ∣∣(EQ
dif(τ ) − E st

dif

)∣∣. (40)

(a) (b)

FIG. 4. The time evolution of anisotropically driven (a) inelastic
Maxwell and (b) hard disk granular gas is illustrated in terms of
Manhattan measure, L1(t ) for two systems P and Q. The initial
conditions for the inelastic Maxwell gas in (a) are LP

1 (0) = 7.54 and
LQ

1 (0) = 7.06, corresponding to the choice of the driving strengths
σ P

x = 2.2, σ P
y = 1.2, σ Q

x = 0.1, and σ Q
y = 1.2. The driving strengths

corresponding to the final steady state are σx = 1.6 and σy = 1.1
whereas the choice of the other parameters defining the system are
r = 0.9, rwx = 0.88 and rwy = 0.3. The initial conditions for the
hard disk granular gas in (b) are LP

1 (0) = 0.52 and LQ
1 (0) = 0.42,

corresponding to the choice of the driving strengths σ P
x = 0.466

and σ P
y = 0.023 and σ Q

x = 0.444, σ Q
y = 0.037. The driving strengths

corresponding to final steady state are σx = 0.476 and σy = 7.351 ×
10−5 whereas the choice of the other parameters defining the system
are r = 0.65, m = 1 and n = 0.02. P relaxes to the steady state faster
than Q, though its initial Manhattan distance from the final steady
state is larger.

Now, using Eqs. (21) for the case of inelastic Maxwell gas
and solving Eq. (40), we obtain eight different solutions for
the crossing time as

τc,1 = 1

γ
ln

(−KP
+ + KQ

+ + LP
+ + LQ

+
KP− − KQ

− − LP− − LQ
−

)
,

τc,2 = 1

γ
ln

(−KP
+ − KQ

+ − LP
+ + LQ

+
KP− + KQ

− + LP− − LQ
−

)
,

τc,3 = 1

γ
ln

(−KP
+ − KQ

+ + LP
+ − LQ

+
KP− + KQ

− − LP− + LQ
−

)
,

τc,4 = 1

γ
ln

(−KP
+ + KQ

+ − LP
+ − LQ

+
KP− − KQ

− + LP− + LQ
−

)
,

τc,5 = 1

γ
ln

(−KP
+ − KQ

+ + LP
+ + LQ

+
KP− + KQ

− − LP− − LQ
−

)
,

τc,6 = 1

γ
ln

(−KP
+ + KQ

+ − LP
+ + LQ

+
KP− − KQ

− + LP− − LQ
−

)
,

τc,7 = 1

γ
ln

(−KP
+ + KQ

+ + LP
+ − LQ

+
KP− − KQ

− − LP− + LQ
−

)
,

τc,8 = 1

γ
ln

(−(KP
+ + KQ

+ + LP
+ + LQ

+)

KP− + KQ
− + LP− + LQ

−

)
. (41)

For the Mpemba effect to be present, there should be odd
number of crossings. Thus, we look for those initial conditions
in the phase space that lead to odd number of solutions to
Eq. (40). Figure 4 illustrates the existence of the Mpemba
effect where the trajectories of the initial states leading to
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the final steady state are defined in terms of the Manhattan
measure.

D. KL Divergence

In this section, we define the Mpemba effect in terms of an
information theoretic quantity known as KL divergence. The
measure is defined as

DKL(t ) =
∫

dvP(v, t ) ln

(
P(v, t )

Pst(v)

)
, (42)

where P(v, t ) is the instantaneous velocity distribution of the
particles at any time t and Pst(v) is the final steady state
velocity distribution function. The above quantity is not a
true measure of geometric distance as it is not symmetric
between two given distribution functions. But it is a good
candidate for the study of relaxation dynamics of an arbitrary
initial state to a given reference steady state for the following
reasons: (a) it is a monotonically nonincreasing function of
time as has been shown in earlier studies [53–55] and (b) it
provides information regarding the measure of deviation and
its temporal evolution of any two initial states from the final
reference state.

Although being a good candidate for the study of relaxation
dynamics, the above measure is not very fruitful in the con-
text of granular gases. It is because Eq. (42) requires having
information regarding the time evolution of the velocity distri-
bution function at any time t which is not analytically feasible
in the case of granular gases. The previous theoretical studies
on velocity distribution of driven granular gases attempts to
find the velocity distribution of the steady state for different
contexts [49,50,56–58]. But in all cases, it was not possible
to derive the form of instantaneous velocity distribution at
an instant of time t even for the simplest model of inelastic
Maxwell gas.

As a result, we use numerical methods to compute the KL
divergence. We briefly discuss the procedure for the numer-
ical computation of KL divergence for the case of inelastic
Maxwell gas. Starting from a random configuration of veloc-
ities for N particles, the system is evolved to an initial steady
state corresponding to an initial pair of driving strengths
(σx, σy). The pair of driving strengths acting on the particles
is then changed to those of the desired final steady state.
The system evolves in time as follows. At each time step,
either two particles collide or a particle is driven, based on the
corresponding rates. At each time step, we measure the time
evolution of the velocity distribution, P(v, t ) of the N parti-
cles. The distributions are averaged over 104 realizations. The
final steady-state velocity distribution is measured separately
and is averaged over 105 different realizations. Thus, having
information about P(v, t ) and Pst(v), we can then numerically
determine the time evolution of KL divergence using Eq. (42).

We now discuss the notion of hotter and colder systems
using the measure of KL divergence when two systems are
quenched to a final steady state. The system having larger
divergence at t = 0 is referred to as the hotter system as it
is farther off from the final steady state whereas the system
having comparatively smaller divergence is referred to as the
colder system. Similar to previous definitions of the Mpemba
effect for the other measures, if the hotter system equilibrates

(a) (b)

FIG. 5. The time evolution of anisotropically driven (a) inelastic
Maxwell and (b) hard disk granular gas is illustrated in terms of
KL divergence measures, DKL(t ) for two systems P and Q. The
initial conditions for the inelastic Maxwell gas in (a) are DP

KL(0) =
0.82 and DQ

KL(0) = 0.64, corresponding to the choice of the driv-
ing strengths σ P

x = 1.4, σ P
y = 4.0, σ Q

x = 2.45, and σ Q
y = 2.3. The

driving strengths corresponding to the final steady state are σx = 1.5
and σy = 0.9 whereas the choice of the other parameters defining
the system are r = 0.3, rwx = 0.88, and rwy = 0.39. The initial
conditions for the hard disk granular gas in (b) are DP

KL(0) = 0.01
and DQ

KL(0) = 0.0078, corresponding to the choice of the driving
strengths σ P

x = 7.148, σ P
y = 0.026, σ Q

x = 1.144, and σ Q
y = 5.609.

The driving strengths corresponding to the final steady state are
σx = 6.62 and σy = 0.026, whereas the choice of the other param-
eters defining the system are r = 0.65, m = 1, n = 0.02. P relaxes to
the steady state faster than Q, though its initial KL divergence with
respect to the final steady state is larger.

faster than the colder system to the final steady state, the
Mpemba effect is said to exist.

Figure 5 illustrates the existence of the Mpemba effect
where the trajectories of the initial states leading to final
steady state are defined in terms of the KL divergence.

V. COMPARISON BETWEEN VARIOUS MEASURES

We now compare the effect of different distance measures
on the Mpemba effect. For a given initial condition in terms of
intrinsic system parameters and the pair of driving strengths,
we look for the existence of the Mpemba effect using different
distance measures.

We first show that for the same initial condition, different
measures can give different results, as illustrated in Fig. 6 for
the inelastic Maxwell gas. In the example shown, the Mpemba
effect is absent for distance measures corresponding to the
total energy distance [see Fig. 6(a)] whereas it is present for
the other three measures [see Fig. 6(b)–6(d)]. In addition to
the nonuniqueness of the Mpemba effect, even the notion of
hot and cold systems in terms of distance from the final steady
state for a pair of initial conditions is not unique among the
various definitions. What is initially hotter (shown in red) in
Fig. 6(a)–6(c) is initially colder (shown in blue) in Fig. 6(d)

Given that there is nonuniqueness among the definitions,
we now check whether all definitions show the Mpemba effect
as well as whether there is any overlap in the phase-space
regions that corresponds to the Mpemba effect for the different
measures. The phase space is labeled by the free parameters:
final steady states in terms of (E st

tot, E st
dif), initial steady states

of P and Q, i.e., (EP
tot, EP

dif) and (EQ
tot, EQ

dif) for a fixed value
of other intrinsic parameters such as r, rwx, and rwy. However,
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2(
t)

1(
t)

(a) (b)

(c) (d)

FIG. 6. The time evolution of the two systems P and Q for
an anisotropically driven inelastic Maxwell gas is illustrated for
the following measures: (a) total energy, (b) Euclidean measure,
(c) Manhattan measure, and for (d) KL divergence. The initial condi-
tions for the various measures are identical and are given in terms of
the driving strengths for systems P and Q as (σ P

x = 1.9, σ P
y = 1.2)

and (σ Q
x = 1.55, σ Q

y = 2.0). The choice of the other parameters
defining the system are r = 0.3, rwx = 0.95, rwy = 0.39, σx = 1.6,
and σy = 1.1. The existence of the Mpemba effect and the notion of
hot and cold systems in terms of distance from the final steady state
for a given pair of initial conditions is not unique among the various
measures.

we notice that the equations for the correlation functions [see
Eqs. (21) and (25)] are linear equations in the differences in
energies δEtot = Etot − E st

tot, δEdif = Edif − E st
dif for both P and

Q, giving four variables. We also note that the equations for
the correlation function, and hence the crossing times, are
invariant if all the δEs are scaled by the same factor, thus
reducing the number of factors by one. To make it a two-
dimensional phase diagram, we fix the initial values of δEP

tot
and δEP

dif for P, and determine the phase diagram in terms of
(δEQ

dif/δEP
tot) and (δEQ

tot/δEP
tot ).

The phase diagrams for the measures: total energy, Man-
hattan, and Euclidean distance, are obtained using the exact
criteria derived for the existence of the Mpemba effect, both
for the inelastic Maxwell gas and hard disk granular gas
(linearized analysis). However, for the case of KL divergence,
the phase diagram is obtained using a discrete set of points
sampled from the phase space and checked individually for
the existence of the Mpemba effect through the analysis of
evolution of the trajectories of systems P and Q. The KL
divergence is used only for the Maxwell gas as in the case
of granular gas; it is not possible to make a direct comparison
with the linearized theories. However, one can use first Sonine
approximation for the granular gas model instead of using lin-
earized theories for a possible comparison of phase diagrams
of all the measures. Figures 7 and 8 show the phase diagram
of the Mpemba effect in terms of various measures for the
case of inelastic Maxwell gas and hard disk granular gas,
respectively. The colored region corresponds to the allowed

(a) (b)

(c) (d)

FIG. 7. The phase diagram in the (δEQ
dif/δEP

tot)-(δEQ
tot/δEP

tot ) plane
shows the existence of the Mpemba effect in the driven inelastic
Maxwell gas for the use of different distance measures: (a) total
energy, (b) Manhattan, (c) Euclidean, and (d) KL divergence. The
red (green) region corresponds to absence (presence) of the Mpemba
effect, while the regions outside the triangular shape are not valid
steady states. The white regions inside the triangle in (d) is due to
discrete sampling of phase space. The choice of the parameters defin-
ing the system are r = 0.4, rwx = 0.44, rwy = 0.95, δEP

tot = 1.00, and
δEP

dif/δEP
tot = 0.53, which are kept constant across all the various

measures.

(a) (b)

(c)

FIG. 8. The phase diagram in the (δEQ
dif/δEP

tot)-(δEQ
tot/δEP

tot ) plane
shows the existence of the Mpemba effect in the driven hard disk
granular gas for the use of different distance measures: (a) total
energy, (b) Manhattan, and (c) Euclidean. The red (green) region
corresponds to absence (presence) of Mpemba effect, while the white
regions are not accessible. The choice of the parameters defining
the system are n = 0.02, σ = 1, m = 1, r = 0.1, δEP

tot = 1.00, and
δEP

dif/δEP
tot = 0.11, which are kept constant across all the various

measures.
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parameter space, while the green (red) regions correspond
to the Mpemba effect being present (absent). It is clear that
all the different distance measures show the Mpemba effect.
However, the phase boundary of the initial conditions that
show the Mpemba effect is very different for the various
measures. We conclude that the usual measures used for
driven granular gases lead to a nonuniversal definition of the
Mpemba effect.

VI. SUMMARY AND CONCLUSION

To summarize, we studied the Mpemba effect in the driven
inelastic Maxwell and the driven granular gases using differ-
ent definitions of distances between points in phase space.
These definitions were motivated by the choices that have
been used earlier in the literature for establishing the pres-
ence of the Mpemba effect in granular systems. We studied
the Mpemba effect in terms of the following measures: total
kinetic energy (as has been used earlier), Euclidean measure
(L2), Manhattan measure (L1), and KL divergence. While
the first three are based on average kinetic energy in dif-
ferent directions, KL divergence is based on the probability
distribution of velocity. The analysis was performed for the
anisotropically driven gases [44,45].

We derived the criteria for the existence of the Mpemba
effect with various measures and showed the existence of the
Mpemba effect for all different choices of distance measures.
However, the phase diagrams for the different measures are
not the same with the presence or absence of the Mpemba
effect for a particular phase space point, depending on the
measure, resulting in a nonunique definition of the Mpemba
effect. Moreover, the notion of hot and cold initial states is
different for the different choices of distance measures from
the final steady state.

In a Markov process, the relaxation to the steady state at
large times is dominated by the first excited state of the transi-
tion matrix, i.e., P(C, t ) = P1(C) + a2 exp(−t/τ )P2(C) + . . .,
where P(C, t ) is the probability distribution at time t , P1 is the
steady state, and P2 is the first excited state. The quantities
τ , P1, and P2 depend only on the transition matrix and are
independent of the initial states, while the prefactor a2 is
determined by the overlap of the initial steady state with the
first excited state. Given the above expansion, it is clear that
the system with a smaller value of |a2| will equilibrate faster
[23]. The same observation will be true for the time evolution

of an arbitrary observable f (C, t ) such as total energy, as it
also follows a similar structure as P(C, t ). Also it has been
shown that the order property of a2 is captured by the KL
divergence [23]. Therefore, if system P approaches the steady
state faster according to KL divergence, then by the above
argument we should find a similar relaxation behavior when
total energy is the distance measure and the phase diagrams
should be identical. But this is not what we find in this paper.
This discrepancy is due to the fact that what is cold and what
is hot may not be the same for the two distance measures
[see Figs. 6(a) and 6(d) for an example, where the higher
energy state corresponds to one with a lower distance in terms
of KL divergence and vice versa], thus giving contradictory
results for the Mpemba effect. Since it is difficult to come up
with an observable f (C, t ) that has the same characteristics
as KL divergence, we generalized the total variation distance∑

C |P(C, t ) − P1(C)| (which also follows a similar structure
as P(C, t )) to the distances L1 and L2 used in this paper, based
on the mean energies.

The ambiguity of characterizing the Mpemba effect in
granular systems is in contrast to the unique identification
of the Mpemba effect for the case of single-particle Markov
systems, irrespective of the choice of distance measure. This is
due to the existence of a common criteria across all measures,
which is given in terms of the coefficient a2 [23] associated
with the second eigenfunction in the eigenspectrum analysis
of the probability distribution function. However, it is very
challenging to calculate a2 for an interacting many-particle
system like the granular system considered in this paper. The
natural choices are observables like kinetic energy, rather than
probability distributions, which are easier to track both in
experiments and calculations. However, these choices for dis-
tance measures may not necessarily decrease monotonically
with time, a requirement that was put forward in Ref. [23].
Based on the results in this paper, the characterization of the
Mpemba effect with such ad hoc distance measures should be
done with caution. Another interesting direction to explore the
role of distance measures would be to look at other memory
effects in relaxation processes such as Kovacs effect [59].
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APPENDIX A: TIME EVOLUTION OF TWO POINT CORRELATIONS FOR INELASTIC MAXWELL GAS

In this Appendix, we solve for the time evolution of the various two-point correlations for the inelastic Maxwell gas. The
two-point correlations that we are interested in are discussed in Eqs. (7) whose time evolution is given by d�̃(t )

dt = R̃�̃(t ) + D̃
where the matrices �̃ and D̃ are given in Eqs. (9). The form of the matrix R̃ is given by

R̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1(N−1)
N + Axx

4
A2(N−1)

N 0 −A1(N−1)
N

−A2(N−1)
N 0

A2(N−1)
N

A1(N−1)
N + Ayy

4 0 −A2(N−1)
N

−A1(N−1)
N 0

0 0 −A3(N−1)
N + Axy

4 0 0 A3(N−1)
N

−A1
N −A2

N 0 A1
N + 2Ax

5
A2
N 0

−A2
N −A1

N 0 A2
N

A1
N + 2Ay

5 0

0 0 A3
N 0 0 −A3

N + Ax
5 + Ay

5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A1)
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where the constants A1, A2, A3, Ai j
4 , Ai

5, where i, j ∈ (x, y) are given by

A1 = 3

4
λcα

2 − λcα, A2 = λcα
2

4
,

A3 = λcα

(
1 − α

2

)
, Ai j

4 = −λd (1 − rwirw j ),

Ai
5 = −λd (1 + rwi ), where i, j ∈ (x, y). (A2)

In the thermodynamic limit N → ∞, the matrix R̃ simplifies to

R̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1 + Axx
4 A2 0 −A1 −A2 0

A2 A1 + Ayy
4 0 −A2 −A1 0

0 0 −A3 + Axy
4 0 0 A3

0 0 0 2Ax
5 0 0

0 0 0 0 2Ay
5 0

0 0 0 0 0 Ax
5 + Ay

5

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A3)

In that case, the nonzero two-point correlations that exist are Ex and Ey whose time evolution is given by Eq. (10). In the new
set of variables Etot = Ex + Ey and Edif = Ex − Ey, the time evolutions reduces to Eq. (16) whose solution is given by Eqs. (21)
where the coefficients K+, K−, L+, and L− along with E st

tot and E st
dif are given by

K+ = 1

γ

[
− (λ− − χ11)Etot(0) + χ12Edif(0) − λd

λ+

[
(χ12 − (λ− − χ11))σ 2

x − (χ12 + (λ− − χ11))σ 2
y

]]
,

K− = 1

γ

[
(λ+ − χ11)Etot(0) − χ12Edif(0) + λd

λ−

[
(χ12 − (λ+ − χ11))σ 2

x − (χ12 + (λ+ − χ11))σ 2
y

]]
,

E st
tot = λd

γ

[
(χ12 − (λ− − χ11))σ 2

x − (χ12 + (λ− − χ11))σ 2
y

λ+
− (χ12 − (λ+ − χ11))σ 2

x − (χ12 + (λ+ − χ11))σ 2
y

λ−

]
,

L+ = 1

γ

[
− (λ+ − χ11)(λ− − χ11)

χ12
Etot(0) + (λ+ − χ11)Edif(0) − λd

λ+χ12

[
(λ+ − χ11)(λ− − χ11)

(
σ 2

x − σ 2
y

)]]
,

L− = 1

γ

[
(λ+ − χ11)(λ− − χ11)

χ12
Etot(0) − (λ+ − χ11)Edif(0) + λd

λ−χ12

[
(λ+ − χ11)(λ− − χ11)

(
σ 2

x − σ 2
y

)]]
,

E st
dif = λd

χ12γ

[
(λ+ − χ11)(λ− − χ11)

(
σ 2

x − σ 2
y

)( 1

λ+
− 1

λ−

)]
,

γ = λ+ − λ−. (A4)

APPENDIX B: HARD DISK GRANULAR GAS

1. Form of the collision integral

The time evolution of the velocity distribution function f (v, t ) for an anisotropically driven hard disk granular is described
using the Enskog-Boltzmann equation [51]

∂

∂t
f (v, t ) = χ I ( f , f ) +

(
σ 2

x

2

∂2

∂v2
x

+ σ 2
y

2

∂2

∂v2
y

)
f (v, t ), (B1)

where χ [52] is the pair correlation function, I ( f , f ) is the collision integral which is given by

I ( f , f ) = σ

∫
dv2

∫
de�(−v12.e)|v12.e|

[
1

r2
f (v′′

1, t ) f (v′′
2, t ) − f (v1, t ) f (v2, t )

]
, (B2)

where (v′′
1, v

′′
2 ) are the precollision velocities that give (v1, v2) upon collision.

024902-11



APURBA BISWAS, V. V. PRASAD, AND R. RAJESH PHYSICAL REVIEW E 108, 024902 (2023)

2. Time evolution of Etot and Edif

In this Appendix, we write the explicit expressions for the time evolution of Etot and Edif for the hard disk granular gas.
The time evolutions of Etot(t ) and Edif(t ) are written in a compact as given in Eqs. (24) where the functions F (Etot, Edif ) and
G(Etot, Edif ) are given by

F
(
E st

tot, E st
dif

) = m
(
ξ 2

0x + ξ 2
0y

)
ν0

+ nχσ (1 + r)
√

E st
tot − E st

dif

15ν0

√
2πmE st

dif

×
[(

(3r − 7)T 2
tot + 4(7r − 3)E st

totE
st
dif + 3(3r − 7)T 2

dif

)

E

( −2E st
dif

E st
tot − E st

dif

)
− (3r − 7)

(
E st

tot − 3E st
dif

)√
T 2

tot − T 2
difE

(
2E st

dif

E st
tot + E st

dif

)
− (

E st
tot + E st

dif

)(
(3r − 7)E st

tot + (7r − 3)Est
dif

)

K

( −2E st
dif

E st
tot − E st

dif

)
+ (3r − 7)

√
E st

tot + E st
dif

(
E st

tot − E st
dif

)3/2
K

(
2E st

dif

E st
tot + E st

dif

)]
, (B3)

G
(
E st

tot, E st
dif

) = m
(
ξ 2

0x − ξ 2
0y

)
ν0

+ nχσ (1 + r)(3r − 7)
√

E st
tot − E st

dif

15ν0

√
2πmE st

dif

×
[(

E st
tot + 3E st

dif

)(
E st

tot + E st
dif

)
E

( −2E st
dif

E st
tot − E st

dif

)

+ (
E st

tot − 3E st
dif

)√
T 2

tot − T 2
difE

(
2E st

dif

E st
tot + E st

dif

)
− (

E st
tot + E st

dif

)2
K

( −2E st
dif

E st
tot − E st

dif

)

−
√

E st
tot + E st

dif

(
E st

tot − E st
dif

)3/2
K

(
2E st

dif

E st
tot + E st

dif

)]
, (B4)

where K (x) and E (x) are elliptic integrals of the first and second kind, respectively. Here, time t is measured in terms of 1/ν0

such that it is dimensionless, where ν0 is the frequency of interparticle collisions given by

ν0 = χσn

√
2
(
E st

tot + E st
dif

)
πm

E

(
2E st

dif

E st
tot + E st

dif

)
. (B5)

However, to make the analysis analytically tractable, we linearize the nonlinear time evolution equations in Eqs. (24) by
considering initial states that are close to the final stationary state denoted by E st

tot and E st
dif. In that case, the linearized time

evolutions are written in a compact form as given in Eq. (25) where the elements of the matrix χ are given by

χ11 = − nχσ (1 + r)

30ν0

√
2πmE st

dif

√
E st

tot − E st
dif

×
[(

(3 − 47r)
(
E st

dif

)2 + 8(9r − 1)E st
difE

st
tot + 5(3r − 7)

(
E st

tot

)2)
E

( −2E st
dif

E st
tot − E st

dif

)

+ 7 − 3r√(
E st

tot

)2 − (
E st

dif

)2

(
5
(
E st

dif

)3 + 3
(
E st

dif

)2
E st

tot − 13E st
dif

(
E st

tot

)2 + 5
(
E st

tot

)3)
E

(
2E st

dif

E st
tot + E st

dif

)

+ (7 − 3r)
(
E st

tot − E st
dif

)3/2√
E st

tot + E st
dif

(
E st

dif

(−4
√

E st
tot + E st

dif + 1
) − E st

tot

(
2
√

E st
tot + E st

dif + 3
))

K

(
2E st

dif

E st
tot + E st

dif

)

+ (
(13r − 17)

(
E st

dif

)2 + 2(1 − 9r)E st
difE

st
tot + 5(7 − 3r)

(
E st

tot

)2)
K

( −2E st
dif

E st
tot − E st

dif

)
(B6)

+ πE st
dif

2
(
E st

tot − E st
dif

)(
3(3r − 7)

(
E st

dif

)2 + 4(7r − 3)E st
difE

st
tot + (3r − 7)

(
E st

tot

)2)
2F

1

(
1

2
,

3

2
; 2;

−2E st
dif

E st
tot − Est

dif

)

− π (3r − 7)E st
dif

√
E st

tot − E st
dif

2
(
E st

tot + E st
dif

)3/2

(
3
(
E st

dif

)2 − 4E st
difE

st
tot + (

E st
tot

)2)
2F

1

(
1

2
,

3

2
; 2;

2E st
dif

E st
tot + E st

dif

)

− πE st
dif

(
E st

tot + E st
dif

)
2
(
E st

tot − E st
dif

) (
(7r − 3)E st

dif + (3r − 7)E st
tot

)
2F

1

(
3

2
,

3

2
; 2;

−2E st
dif

E st
tot − E st

dif

)

− π (3r − 7)E st
dif

(
E st

tot − E st
dif

)5/2

2
(
E st

tot + E st
dif

)3/2 2F
1

(
3

2
,

3

2
; 2;

2E st
dif

E st
tot + E st

dif

)]
,
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χ12 = − nχσ (1 + r)

30ν0

√
2πm

(
E st

dif

)2√
E st

tot − E st
dif

×
[(

9(7 − 3r)
(
E st

dif

)3 − 10(r + 3)
(
E st

dif

)2
E st

tot − (7 − 3r)E st
dif

(
E st

tot

)2 + 2(7 − 3r)
(
E st

tot

)3)
E

( −2E st
dif

E st
tot − E st

dif

)

− (7 − 3r)

(
E st

tot − E st
dif

)3/2√
E st

tot + E st
dif

(
15

(
E st

dif

)2 + 9E st
difE

st
tot − 2

(
E st

tot

)2)
E

(
2E st

dif

E st
tot + E st

dif

)

− (7 − 3r)
√

E st
tot − E st

dif√
E st

tot + E st
dif

(
5
(
E st

dif

)3 − 4
(
E st

dif

)2
E st

tot − 3
(
E st

tot

)2
E st

dif + 2
(
E st

tot

)3)
K

(
2E st

dif

E st
tot + E st

dif

)

+ (−(3 − 7r)
(
E st

dif

)3 + 4(1 + r)
(
E st

dif

)2
E st

tot + 5(1 − 5r)
(
E st

tot

)2
E st

dif + 2(7 − 3r)
(
E st

tot

)3
)

K

( −2E st
dif

E st
tot − E st

dif

)
(B7)

− πE st
difE

st
tot

2
(
E st

tot − E st
dif

)(
3(7 − 3r)

(
E st

dif

)2 + 4(3 − 7r)E st
difE

st
tot + (7 − 3r)

(
E st

tot

)2)
2F

1

(
1

2
,

3

2
; 2;

−2E st
dif

E st
tot − E st

dif

)

− π (7 − 3r)E st
difE

st
tot

√
E st

tot − E st
dif

2
(
E st

tot + E st
dif

)3/2

(
3
(
E st

dif

)2 − 4E st
difE

st
tot + (

E st
tot

)2)
2F

1

(
1

2
,

3

2
; 2;

2E st
dif

E st
tot + E st

dif

)

− πE st
difE

st
tot

(
E st

tot + E st
dif

)
2
(
E st

tot − E st
dif

) (
(3 − 7r)E st

dif + (7 − 3r)E st
tot

)
2F

1

(
3

2
,

3

2
; 2;

−2E st
dif

E st
tot − E st

dif

)

− π (7 − 3r)E st
difE

st
tot

(
E st

tot − E st
dif

)5/2

2
(
E st

tot + E st
dif

)3/2 2F
1

(
3

2
,

3

2
; 2;

2E st
dif

E st
tot + E st

dif

)]
,

χ21 = nχσ (1 + r)(7 − 3r)

30ν0

√
2πmE st

dif

√
E st

tot − E st
dif

×
[( − 5

(
E st

dif

)2 + 8E st
difE

st
tot + 5

(
E st

tot

)2)
E

( −2E st
dif

E st
tot − E st

dif

)

+
((

E st
tot + E st

dif

)2

2
+ (

3E st
tot − E st

dif

)(
E st

tot − 3E st
dif

)√
E st

tot − E st
dif√

E st
tot + E st

dif

)
E

(
2E st

dif

E st
tot + E st

dif

)

−
(

4√
(E st

tot )2 − (
E st

dif

)(
4
(
E st

dif

)2 − E st
difE

st
tot − (

E st
tot

)2))
E

(
2E st

dif

E st
tot + E st

dif

)

−
(
E st

tot − E st
dif

)3/2√
E st

tot + E st
dif

(
3E st

dif + 5E st
tot

)
K

(
2E st

dif

E st
tot + E st

dif

)
− ((

5E st
tot − 3E st

dif

)(
E st

tot + E st
dif

))
K

( −2E st
dif

E st
tot − E st

dif

)
(B8)

− πE st
dif

(
E st

tot + 3E st
dif

)(
E st

tot + E st
dif

)
2
(
E st

tot − E st
dif

) 2F
1

(
1

2
,

3

2
; 2;

−2E st
dif

E st
tot − E st

dif

)
− πE st

dif

(
E st

tot + E st
dif

)2

2
(
E st

tot − E st
dif

) 2F
1

(
3

2
,

3

2
; 2;

−2E st
dif

E st
tot − E st

dif

)

+ πE st
dif

(
E st

tot − 3E st
dif

)(
E st

tot − E st
dif

)3/2

2
(
E st

tot + E st
dif

)3/2 2F
1

(
1

2
,

3

2
; 2;

2E st
dif

E st
tot + E st

dif

)
+ πE st

dif

(
E st

tot − E st
dif

)5/2

2
(
E st

tot + E st
dif

)3/2 2F
1

(
3

2
,

3

2
; 2;

2E st
dif

E st
tot + E st

dif

)]
,

and

χ22 = nχσ (1 + r)(7 − 3r)

30ν0

√
2πm

(
E st

dif

)2√
E st

tot − E st
dif

×
[(−9

(
E st

dif

)3 + 2
(
E st

dif

)2
E st

tot + E st
dif

(
E st

tot

)2 − 2
(
E st

tot

)3)
E

( −2E st
dif

E st
tot − E st

dif

)

+
√

E st
tot − E st

dif√
E st

tot + E st
dif

(
9
(
E st

dif

)3 + 2
(
E st

dif

)2
E st

tot − E st
dif

(
E st

tot

)2 − 2
(
E st

tot

)3)
E

(
2E st

dif

E st
tot + E st

dif

)

+
(
E st

tot − E st
dif

)3/2√
E st

tot + E st
dif

(
3
(
E st

dif

)2 + 3E st
difE

st
tot + 2

(
E st

tot

)2)
K

(
2E st

dif

E st
tot + E st

dif

)

+ (
3
(
E st

dif

)2 − 3E st
difE

st
tot + 2

(
E st

tot

)2)
K

( −2E st
dif

E st
tot − E st

dif

)
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+ πE st
difE

st
tot

(
E st

tot + E st
dif

)(
E st

tot + 3E st
dif

)
2
(
E st

tot − E st
dif

) 2F
1

(
1

2
,

3

2
; 2;

−2E st
dif

E st
tot − E st

dif

)
(B9)

− πE st
difE

st
tot

(
E st

tot − 3E st
dif

)(
E st

tot − E st
dif

)3/2

2
(
E st

tot + E st
dif

)3/2 2F
1

(
1

2
,

3

2
; 2;

2E st
dif

E st
tot + E st

dif

)

+ πE st
difE

st
tot

(
E st

tot + E st
dif

)2

2
(
E st

tot − E st
dif

) 2F
1

(
3

2
,

3

2
; 2;

−2E st
dif

E st
tot − E st

dif

)
− πE st

difE
st
tot

(
E st

tot − E st
dif

)5/2

2
(
E st

tot + E st
dif

)3/2 2F
1

(
3

2
,

3

2
; 2;

2E st
dif

E st
tot + E st

dif

)]
,

where 2F1(a, b; c; z)′s are the hypergeometric functions.
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