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Surface instabilities generated by a slider pulled across a granular bed
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We report an instability of a slider slowly dragged at the surface of a granular bed in a quasistatic regime.
The boat-shaped slider sits on the granular medium under its own weight and is free to translate vertically and
to rotate around the pitch axis while a constant horizontal speed is imposed. For a wide range of parameters
(mass, length, shape, velocity) a regular pattern of peaks and troughs spontaneously emerges as the slider travels
forward. This instability is studied through experiments using a conveyor belt and by means of two-dimensional
discrete elements method simulations. We show that the wavelength and amplitude of the pattern scale as the
length of the slider. We also observe that the ripples disappear for low and high masses, indicating an optimal
confining pressure. The effect of the shape, more specifically the inclination of the front spatula, is studied and
found to drastically influence both the wavelength and the amplitude. Finally, we show that the mechanical
details (friction, cohesion) of the contact point between the slider and the pulling device is critical and remains
to be fully understood.

DOI: 10.1103/PhysRevE.108.024901

I. INTRODUCTION

Granular materials exhibit a wide variety of complex be-
haviors including the formation of patterns for which the
grains can spontaneously arrange with a typical length scale
much larger than the size of individual grains [1,2]. Such
pattern formation can be triggered by interaction with a fluid
flow, such as aeolian dunes and ripples [3], underwater ripples
[3,4], or shear banding [5]. Another example is the finger-
ing instability which can emerge from surface tension [6],
drying [7], or viscosity [8]. Other pattern formation can also
happen with grains vibrated either vertically or horizontally
[9], placed in a rotating drum [10], in a simple flow down an
inclined plane [11–14], or due to injecting grains through a
matrix of larger grains [15].

Starting from a flat granular bed, a corrugated topography
with a fixed wavelength can be obtained when repeatedly
dragging an inclined plate (whose angle is fixed) or rolling
a wheel on top of the grains [16,17]. This effect, known as
washboard road instability, can also be observed after a single
passage [18] and exists in other materials such as viscoplastic
fluids [18,19]. Importantly, this instability develops only if the
velocity is beyond a threshold [20], and any initial perturba-
tion in the bed is erased below this critical velocity.

Pulling a mass attached to a spring on top of a substrate is
the historical experiment of dry friction and is still used today
[21]. Such a setup has previously been used on a granular bed
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[22], leading to three force regimes depending on the values
of the mass, the spring stiffness, and the pulling speed. Ad-
ditionally, some experiments included transverse mechanical
vibrations which had the effect to kill the stick-slip regime
at a certain vibration speed threshold [21]. Vibrations are
analogous to temperature in granular materials and are known
to play a crucial role in granular flow and properties [23].

In this paper we investigate an instability involving slowly
pulling a slider across a granular bed. It is reminiscent of
the washboard road instability, with several distinct features.
First, the slider has two degrees of freedom (rotation around
the pitch axis and vertical translation, see Fig. 1), and we
monitor the state of the granular bed after a unique passage
of the slider (as opposed to the repeated passages in the case
of the washboard road instability). Doing so may result in the
formation of ripples with a well-defined wavelength. Second,
this instability occurs in the quasistatic regime and shows no
dependence on the pulling speed. These differences suggest
that the instability that we present is original and, to our
knowledge, has never been reported.

The paper is organized as follows. Our experimental setup
is described in Sec. II A, and our simulations methods in
Sec. II B. We then present experimental and numerical results
in Sec. III, mainly focusing on the role of the mass and
geometry of the slider on the amplitude and wavelength of the
pattern. We then discuss these results and mention the forces
involved in the problem.

II. METHODS

Figure 1(a) displays the surface instability (amplitude, a,
and wavelength, λ) generated by a slider of mass m, pulled
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FIG. 1. (a) Sketch of the instabilities generated by a slider over a granular bed (the real wavelength is much larger than the slider length).
The slider (mass m) is pulled at a constant speed v via a rigid metallic plate. Its pitch angle is denoted θ . (b) Sketch of the experimental setup
in the threadmill configuration, with the laser telemeter T measuring the height h in the slider wake. The belt rests on a rigid horizontal plate,
ensuring a flat horizontal bottom. (c) Image of the side view of the experiment displaying the heap size Sh [m = 18 g, l = 30 mm, α = 45◦].
(d) Snapshot of a two-dimensional discrete elements method (2D DEM) simulation [m = 0.15 g, l = 48 mm, α = 45◦]. The figure only
displays a small portion of the total simulation box, which length is of about 3 m. The grains moving faster than 62.5% of v are colored in red
and correspond to the heap surface Sh (see text).

at velocity v, across a granular bed. Here we choose to pull
the slider via a very rigid metal plate, ensuring a displacement
at constant speed (see discussion in Sec. IV). g is the gravita-
tional acceleration, and y is the vertical position of the middle
of the bottom plate on the slider, θ is the slider angle with
respect to the horizontal, and h is the thickness of the granular
layer left after the passage of the slider. In the following,
we consider the difference y − y0, where y0 = y(t = 0) is
the altitude of the slider at the beginning of the experiment,
when it is resting on top of the granular bed. We also refer
to topography as (h − h0), the height difference respect to
the initial granular bed height, h0. Finally, note that the slider
angle is relative to the horizontal axis, with the slider pointing
upwards when θ > 0. No stick-slip motion is observed as the
metal plate pulling the slider has a high stiffness. Therefore,
all quantities can be easily plotted either as a function of time
or instead as a function of the traveled distance, x. The next
subsections present the experimental and numerical methods
used.

A. Experimental setup

The experimental setup is represented in Fig. 1(b). Instead
of dragging a slider on a static granular bed (whose length can
only be limited), we decided to perform experiments on a con-
veyor belt which carries a uniform layer of sand at a constant
speed, v. In all our experiments (and numerical simulations),
the velocity v is chosen to be small enough (v/

√
gdp � 1)

to ensure that the regime is quasistatic. In other words, the
time it takes for a grain to settle down under its own weight is
much shorter than the typical time it takes for a grain to travel
horizontally by a distance dp when pushed forward by the
slider. In this range of velocity (see Table I), the characteristics
of the instability are independent of v. During any experiment,
if the conveyor belt is stopped and started again, then the
evolution of all quantities remain unchanged, confirming the
quasistatic regime. Hence, the traveled distance, x, appears
to be a more relevant variable than time to plot all physical
quantities.

The granular material is washed natural sand made of poly-
disperse grains of density ρ = 2630 ± 100 kg m−3 and mean
diameter dp = 430 ± 100 μm (median 420 μm). A rectangu-
lar slit oriented along z, the direction transverse to the view
in Fig. 1(b), at the bottom of the feeding tank, allows the
grains to flow on a 150-mm-wide conveyor belt. The belt is
held under a slight tension by two cylinders [gray disks in
Fig. 1(b)], one of which is driven by a dc motor and gearbox
(Crouzet 80 807 0Y00250Z) to provide a constant speed, v.
As it is not perfectly rigid, the belt is resting on a 1-cm-thick
horizontal acrylic plate thus ensuring a flat, horizontal bottom.

The sliders are three-dimensionally (3D) printed and de-
signed on SolidWorks, allowing precise control over the
geometry. They are manufactured in polylactic acid (PLA)
using Fused Deposition Modeling (FDM) 3D printing. They
consist in a rectangular horizontal bottom plate and two in-
clined plates on the front and rear [Fig. 1(c)]. Sliders of
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TABLE I. Range of parameters used in experiments and simulations. Since simulations are 2D, the two-dimensional equivalent of
experimental parameters is given when relevant. To do so, a scaling factor dp/w is applied to quantities which scale as the dimension along z,
the direction transverse to the slider horizontal, and vertical motion. The confining pressure is defined as P = mg/(lw).

Parameter Description Experimental 2D equivalent (×dp/w) Numerical

dp Grain diameter 430 ± 100 μm 500 ± 100 μm
ρp Grain density (2.63 ± 0.1)×103 kg m−3 1.27×103 kg m−3a

h0 Initial thickness of the granular bed 10 mm 8.4 mm
v Pulling speed [1–100] mm/s [1–1000] mm/sb

m Mass of slider [10–100] g [0.1–1] g [1.25–25] ×10−2 g
l Slider length [30–100] mm [12–180] mm
w Slider width [40–100] mm dp dp

P Confining pressure [40–830] Pa [3–330] Pa
α Slider spatula front angle [30–60]◦ [5–120]◦

δx Horizontal force positionc [−30 +30] mm [−50 +50] mm
δy Vertical force positionc [5–10] mm [−20 +20] mm

aConsidering that two-dimensional grains are disks of width equal to diameter dp, the mass of one grain divided by its surface is 0.637 kg m−2.
bIn all simulations shown in the following, v = 40 mm/s.
cRelative to the center of the bottom plate of the slider.

various length, l , width, w, and front spatula angle, α, were
printed (Sec. III D). Walls on either side prevent sand from
getting on the slider and changing its mass over time. A
monolayer of grains from the same batch as the granular bed
is glued to the slider bottom surface using double-sided tape to
ensure a grain-grain contact. The slider can be weighed using
evenly distributed steel beads placed on its bottom plate so
that its center of gravity remains vertical to its geometrical
center. By doing so, its mass, m, can be varied between 10 and
100 g (Table I). At the beginning of an experiment, the slider
is carefully placed over the grains surface before the conveyor
belt is started. A fixed rigid metal plate comes in contact with
a horizontal cylinder glued to a vertical pillar [whose location
can vary, see Fig. 1(c)] and pushes the slider forward. Using a
cylinder as the contact surface ensures that the motion remains
planar (in the plane shown in Fig. 1), i.e., with no roll or yaw
of the slider.

A side view of the experiment is recorded using a camera
(Basler acA2040-90um with a Japan Zoom Lens 18-108/2.5).
Six black dots are printed on the side of the slider as seen
in Fig. 1(c) in order to track its vertical position, y, and
inclination, θ . Moreover, the amount of grains plowed in
front of the slider is measured through image processing
(see Appendix A). A telemeter (Micro-epsilon, ILD1302-20)
is placed behind the slider and measures the height, h(x),
of the granular bed left in its wake [Fig. 1(b), left].
Additionally, a temperature and humidity sensor (TE Con-
nectivity, HTM2500LF) is located inside the tank, immersed
in the grains. All experiments were performed in ambient
conditions.

B. Numerical simulations

The discrete elements method (DEM) has been used ex-
tensively to simulate the behavior of deformable (yet stiff)
disks [24–27]. This method relies on the computation of con-
tact forces depending on the relative position and velocity of
grains, and the numerical integration of the equations of mo-
tion. The normal component of the contact force is the sum of

a repulsive term proportional to the overlap with a numerical
stiffness kN = 103 and a viscous damping term. The numer-
ical value of kN is several orders of magnitude lower than
it should be to match the Young modulus of sand particles.
This choice allows one to take a significantly higher value of
the timestep since collision times are directly related to kN

(as well as viscous dissipation and the mass of grains). This
numerical trick has been widely used in similar simulations
and improves greatly the computing time without affecting
the flow properties of the grains [28,29]. This low value of
kN alters the propagation of sound waves in the granular
packing, but this property is not relevant in the present study.
Note that one should expect the value of the viscous damping
coefficient to have no important effect in a dense quasistatic
regime. The tangential component is given by the Cundall
model [24], which models solid friction with a memory effect.
The corresponding solid-friction coefficient is set to 0.8.

Figure 1(d) displays a snapshot of the simulation zoomed
around the slider, the full simulation box length being of about
3 m. The slider is made out of grains with diameter 1.2dp.
The force on each grain is computed in the same way as any
other grain, but instead of solving the equations of motion of
every individual grain, the motion of the slider as a whole
is integrated instead using the sum of all forces, the pulling
force, and its weight. To apply the pulling force, a numerical
spring is introduced between a virtual point moving forward
at a constant speed and the point of application of the force.
The stiffness of this spring does not have any influence on the
results as long as it is taken high enough so that the global
displacement is imposed at constant speed, as in experiments,
and all fluctuations are negligible. All the numerical results
presented here were obtained with k = 10 N m−1.

In a typical simulation run, 100 000 grains are initially
left to settle under their own weight on top of a mono-
layer of large grains fixed at the base corresponding to the
bottom boundary condition. In order to avoid crystallization
of a monodisperse medium, a uniform distribution of size
(between [0.8dp; 1.2dp]) was used. For each set of parameters,
six initial states were generated (using six values of the seed in
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FIG. 2. Examples of surface periodic instabilities measured on the different signals. From top to bottom: slider altitude (y − y0 ), topography
(h − h0) in its wake, slider pitch angle θ and heap size Sh (see text). The topography signal has been shifted to correspond to the rear corner
of the slider. (a) Experimental data [m = 27 g, l = 30 mm, w = 40 mm, P = 220 Pa, α = 45◦]. (b) Numerical simulation [m = 0.15 g,
l = 48 mm, P = 61 Pa, α = 45◦].

the random generator), leading to six macroscopically identi-
cal granular beds whose local arrangement differ. This allows
one to check the sensitivity to the initial packing configu-
ration and gives an estimate of the statistical spread of the
results.

The values used in the simulation are chosen to typically
match experimental values (see Table I). Yet, only a quali-
tative comparison should be expected since major differences
still exist (among which a purely 2D system and ideally spher-
ical grains in the simulation).

III. RESULTS

A. Observations

Figure 2 shows two typical examples (experimental and
numerical) of the instability which occurs under a range of
parameters which is in part investigated in Secs. III B, III C,
and III D. From top to bottom, the panels display the slider
altitude (y − y0), the topography in its wake (h − h0), its pitch
angle θ , and the size of the heap in front of the slider Sh (see
Appendix A). All data sets show the instability from its initial
state, where the slider simply rests horizontally on the granu-
lar layer, under its own weight. The topography (h − h0), i.e.,
the pattern imprinted into the sand bed, is obviously measured
after the slider has passed. The signal is thus shifted so that the
x position matches that of the rear angle of the slider and the
topography starts at zero when x = 0.

In spite of the fundamental differences between our exper-
imental setup and numerical simulations (3D vs. 2D, rough
grains vs. ideal disks, grain stiffness etc) both data sets qual-
itatively display the same behavior. Indeed, in both cases,
the instability is triggered as soon as the slider is dragged
along the granular surface with no noticeable transient. The
periodicity of all signals is very clear and fluctuations in
their amplitudes are visible, with a strong correlation between

the various physical quantities. Note that most signals show
significant deviation from a harmonic function, possibly most
evidently on the pitch angle θ . This anharmonicity depends on
the mechanical parameters of the system.

Let us denote 〈.〉 the average of the signal over the total
distance traveled by the slider. Experimentally, the average
〈y − y0〉 is always positive. This is due to the fact that 〈θ〉>0
[Fig. 2(a)]. On the contrary, 〈h〉 < 0 [Fig. 2(a), second panel]
as the slider pushed grains aside when going forward (3D
experiment). This is not true in the 2D simulations, for
which 〈h〉 � 0 [Fig. 2(b), second panel]. Note that in sim-
ulations, 〈y − y0〉 � 0 as the pitch angle θ always remains
small [Fig. 2(b), first and third panels]. Moreover, one can
see that the average pitch angle 〈θ〉 is positive, meaning that
the slider points upwards more than downwards. This remains
true over the entire range of explored parameters, both in
our simulations and our experiments. In the numerical ex-
ample [Fig. 2(b), bottom panel], the heap formed in front of
the slider has completely emptied at the end of each cycle
(Sh vanishes to zero), while on the other hand, the correspond-
ing experimental data shows oscillations between two finite
values. However, both behaviors can be observed either in our
experiments or in our simulations depending notably of the
mass or length of the slider.

The phase lag between the quantities at play is not trivial
and may vary as the mechanical and geometrical properties
are changed. However, the topography left behind the slider
matches the trajectory of the rear corner, when the latter
constantly remains in contact with the granular bed, which
implies a geometrical relationship between the altitude, y, the
pitch angle, θ , the length, l , and the topography, h:

h − h0 = (y − y0) − l

2
sin θ. (1)
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FIG. 3. Topography (h − h0) as a function of the distance traveled x displaying the role of the contact point horizontal coordinate δx in
the appearance of the instability. (a) Experiments [m = 18.3 g, l = 30 mm, w = 40 mm, P = 150 Pa, α = 45◦, δy = 10 mm]. (b) Numerical
simulations [m = 0.08 g, l = 48 mm, P = 32 Pa, α = 45◦, δy = 12 mm]. The effect of δx is stronger in experiments than in simulations.

Let us mention that when approaching the stable or unstable
transition intermittency can occur. Oscillations can appear on
and off irregularly during the course of an experimental or
numerical run, and the system shows great sensitivity to small
fluctuations in the initial state of the granular bed.

B. Role of the contact point

Let δx and δy be the relative coordinates of the contact point
where the force is applied to the slider, the origin being located
at the center of the bottom plate of the slider. For instance on
Fig. 1(c), δx = −20 mm and δy = 10 mm. Figure 3 shows the
role of δx both in the experiments and simulations (for a given
value of δy). Experimentally, of the four examples shown,
only the experiment with δx = −20 mm leads to sustained
oscillations in the topography [Fig. 3(a)]. In the three other
examples, the oscillations are damped and quickly die out. In
other words, experimentally the instability is only triggered
when the slider is pushed from a point which is near its rear
end. Numerically, the role of δx appears less important, and we
report sustained oscillations in all cases, with little difference

FIG. 4. Amplitude of the surface instability a as a function of
the horizontal location of the contact point δx , for different vertical
position of this contact point δy [m = 0.08 g, l = 48 mm, P = 33 Pa,
α = 45◦].

in amplitude in the range considered [Fig. 3(b)]. The origin of
the major discrepancy between numerical and experimental
results remains unclear and is briefly discussed in Sec. IV.

Figure 4 shows the evolution of the amplitude a of the
topography as a function of δx for various vertical position δy

of the contact point. Only numerical results are presented here,
as the simulations make possible to widely extend the range of
δx and δy. Indeed, the force can virtually be applied anywhere
in simulations, including on a point located inside the granular
bed (δy < 0), which is impossible in experiments. Negative
values of δy (for instance δy = −10 mm, Fig. 4) always lead
to a stable motion (the resulting amplitude corresponding to
fluctuations). In that case, whichever δx, the positive torque
exerted by the force tilts the slider counterclockwise, i.e.,
upwards. As a result, the front corner of the slider loses
contact with the granular bed, which prevents the formation
of a heap in front of the slider. Only partially resting on its
bottom plate, the slider glides above the grains with only small
fluctuations in θ . A similar behavior also happens for high
positive values of δy (not shown on Fig. 4), for which the slider
is tilted clockwise, sliding on its front spatula. The instability
is therefore observed for intermediate, null, or positive values
of δy only, for which the topography resembles the periodic
signals shown in Fig. 3(b).

One may expect that pushing the slider from behind (δx<0)
should be unstable while pulling it from the front (δx > 0)
should stabilize it. Indeed, when pushed from behind, if the
slider points upwards (which a positive pitch angle), then
the applied external force creates a positive torque, which
should increase the pitch further. Similarly, a negative pitch
angle should be amplified. On the other hand, when pulled
from the front, an upward-pointing slider should experience a
negative torque and should pitch down. This is only somewhat
true experimentally, δx = −20 mm is indeed unstable but δx =
−10 mm is surprisingly stable. Numerically, for all positive
values of δy, the amplitude decreases slightly with increasing
δx. But even more importantly, even in the case where δy = 0,
the system is always unstable for all values of δx.

The torque applied by the pushing force can easily be
computed and varies over time as both the pulling force and
the pitch angle vary. However, averaged over an entire wave-
length, the torque is positive for δy > 0. Moreover, for a given
value of δy the average torque is expected to be identical for
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FIG. 5. Normalized wavelength λ/l (top panels) and amplitude a/l (bottom panel) of the surface instability as a function of the confining
pressure. (a) Experiments. The top axis indicates the slider mass m. The red points for the wavelength in the stable regime (gray region)
are obtained from damped oscillations (see text). Vertical bars indicate the error bars (when not visible, they are smaller than the dot size)
[l = 30 mm w = 40 mm, α = 45◦, δx = −20 mm, δy = 10 mm]. (b) Simulations [α = 45◦, δx = 0 mm, δy = 0 mm].

a value of δx and −δx (since in the simulations the center
of mass of the slider is located in the middle of the bottom
plate). Yet, as can be seen in Fig. 4 (see δy = 20 mm and
δx = ±50 mm for a clear example), equal values of the av-
eraged applied torque can lead to very different amplitudes
in the oscillations. A way to bias the torque is to choose a
nonuniform mass distribution of the slider. We have tested
this idea in our experimental setup and found that, indeed,
an asymmetrical mass distribution has a strong effect on the
instability. Shifting the weight forward (closer to the front
spatula) has a clear tendency to hinder the oscillations, while
shifting it back only seems to favor large oscillations.

C. Effect of the slider mass and length

Figure 5 presents the evolution of the wavelength and am-
plitude normalized by the slider length, λ/l (top panels) and
a/l (bottom panels), as a function of the confining pressure
P = mg/lw for both the experiments and numerical simu-
lations. Experimentally, increasing the confining pressure P
leads to an increase in wavelength and a decrease in am-
plitude. When the confining pressure P is high enough, the
periodic instability disappears and the slider motion becomes
stable [Fig. 5(a), gray region]. In that case, the amplitude
drops to zero. Interestingly, even in the stable regime, one
can extract a wavelength by forcing the slider out of equi-
librium by briefly applying a vertical downward force on its
front spatula. One can then observe a few damped oscillations
before the slider reaches a stable motion. The wavelengths
mesured in this damped regime is shown as red dots in
the stable regions [Fig. 5(a), top panel]. They nicely follow the
tendency found in the unstable zone, and display a possible

plateau, although more data would be needed to conclude
confidently.

In the experiments, the lightest slider weighs m = 11 g
(size l = 30 mm, w = 40 mm). Lowering the confining pres-
sure even further is difficult, as the slider must have a proper
mechanical rigidity, a layer of grains glued under it, and a
metal cylinder on top for contact with the metal plate. For
this slider, we were not able to probe confining pressures
P below 90 Pa [Fig. 5(a)]. Numerical simulations, however,
allow one to explore an extended range of confining pressure,
in particular towards the lower values. Figure 5(b) displays
the normalized wavelength λ/l and amplitude a/l of the in-
stability as a function of the confining pressure P, for different
slider length l . All data collapse on a master curve, indicating
that the resulting pattern scales as the slider length l . The
smallest values of the confining pressure lead to oscillations
with λ � 5l and a very small amplitude (about 1% of l). The
wavelength increases with increasing pressure and seems to
reach a plateau. The amplitude reaches a maximum (around
P = 25 Pa) before decreasing towards a plateau at higher
pressure. Although the experimental pressure range is sig-
nificantly different from the numerical one, experiments and
simulations are in good qualitative agreement, both displaying
(1) the instability amplitude decrease for an increase confining
pressure (heavier or shorter slider) and (2) an increase in
the wavelength until reaching a plateau. In both cases, there
seems to be an optimal value of the confining pressure for
the instability. We can propose the following interpretation.
On the one hand, when the confining pressure is too small, the
slider is too light to scrape the grains and slips over the surface
without forming a heap. On the other hand, for large pressure
the slider accumulates a large heap but seems too heavy to
rise above the pile and remains in a sunken state. In both cases
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FIG. 6. Normalized wavelength λ/l and amplitude a/l as a func-
tion of the slider spatula front angle α in simulations [l = 48 mm,
δx = 0 mm, δy = 0 mm].

the instability vanishes. The existence of an optimal value for
the confining pressure is reminiscent of antlion traps which
exhibit an optimum of the probability of an ant’s capture as
a function of its mass [30], interpreted as the existence of a
minimum in the friction coefficient as a function of the applied
pressure [31].

D. Effect of the spatula front angle

Another important parameter is the slider spatula front
angle, denoted α (see Sec. II A). Indeed, varying α directly
affects the scraping of the granular bed, as well as the di-
rection of the forces exerted by the grains on the spatula.
Increasing the spatula front angle, α, leads to a more efficient
scraping (bulldozer-like effect) and the formation of a larger
heap. Consequently, the pattern wavelength and amplitude
both increase (Fig. 6). This remains true for a wide range
of confining pressures: three values corresponding approxi-
mately to the growth, peak, and decrease in amplitude for
α = 45◦ in Fig. 5(b) are shown.

Interestingly, both the amplitude and wavelength keep in-
creasing when α is increased for α > 60◦. However, when
performing numerical scraping tests at fixed θ = 0◦, y = y0

where y0 is taken slightly lower than the surface level of the
granular bed, we noticed that the rate of collection of grains in
the heap, or scraping efficiency (the proportion of the scraped
surface that ends up in the heap instead of going under the
slider), increases from α = 10◦ to α = 60◦ where it reaches a
plateau—the growth rate did not differ significantly between
60◦ and 90◦. In the free simulation, scraping is not only
affected by the depth of the slider and α but also by its vertical
speed, pitch, and rotation rate. However, the heap growth
rate also seems to saturate for α � 60◦ while the wavelength
and amplitude keep increasing. Understanding the dynamic
scraping requires further investigation and might explain why
the amplitude and wavelength keep increasing for α � 60◦.

For high values of the amplitude, the effect of the fi-
nite thickness of the granular bed cannot be neglected.
Indeed, the thickness of the granular bed is 8.4 mm and
the amplitude of the pattern reaches half this value when
a/l = 0.087, indicating that the data points for α � 60◦ for
P � 30 Pa on Fig. 6 may be affected by boundary effects.
One has therefore to keep in mind that an interaction with
the bottom boundary condition in the numerical simulations,
corresponding to a monolayer of fixed grains, can exist, at
least for high values of α. Comparison with simulations using
a thicker granular bed could help quantifying this effect.

IV. DISCUSSION

Similarly to numerical simulations, the stiffness of the
plate used to pull the slider in the experiment does not play
any role neither in the formation of the pattern nor on its
amplitude and wavelength, as long as it is high enough to
keep its deflection small (typically of the order of a grain
size) and ensure a horizontal traction force. Varying the metal
plate stiffness down to 500 N m−1 did not change the results
neither qualitatively nor quantitatively. However, having both
the translational and rotational degrees of freedom is critical to
obtain this instability. Blocking one degree of freedom leads
to the disappearance of the instability.

As discussed in Sec. III B, the position of the contact
point has a fundamentally different effect in simulations and
experiments. As explained, the torque exerted by the trac-
tion force—computed relative to the center of gravity of the
slider (which is located at δx = 0)—has a stabilizing effect
on θ when δx > 0, and a destabilizing effect when δx < 0,
analogous to the stability (respectively instability) of a trailer
when the car is going forward (respectively backward). While
this stabilizing or destabilizing effect can partly explain the
decrease in amplitude when δx is increased [see Fig. 3(b)],
it is not enough to understand the instability since sustained
oscillations are observed both in the push and pull positions
(in simulations). As a reminder, on the other hand, in our
experimental setup the instability entirely disappear if the
slider is pulled (i.e., δx > 0) rather that pushed.

The origin of this major discrepancy between experiments
and simulations remains to be identified. There are several
inherent differences between our numerical simulations and
experimental setup, for instance 2D vs 3D, ideal vs real
grains, or a large difference in particle rigidity. Moreover,
numerically a purely horizontal force is applied to push the
slider. Experimentally, a stiff plate pushes onto a horizontal
cylinder, but as the slider moves up or down, friction at the
contact point induces a vertical component to the pushing or
pulling force. We have tried to minimize friction at the contact
point by polishing and lubricating the cylinder and metal plate
surfaces, or instead to increase the friction by gluing a piece
of fine sandpaper on one or both surfaces. Clearly, this can
affect the onset of the instability but no general trends were
found. Increasing the friction can sometimes kill an otherwise
unstable pattern but oscillations can still be found using the
sand paper contact for other parameters.

We can also reduce the mobility of the contact point by
adding a small amount of water, whose high surface ten-
sion causes the surfaces to adhere to one another through a
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capillary bridge. Translating the cylinder vertically along the
metal plate then requires exceeding a force threshold needed
to make the contact lines recede and/or progress. Again, this
is sufficient to kill the instability in some cases, while oscilla-
tions can still be observed using other parameters.

The mechanism by which the instability can be hindered
is not clear yet, but it appears that introducing a vertical
component to the traction force while impeding the motion
of this contact point can have a strong effect on the stability
of the system. In an attempt to reduce the effect of friction,
we tried pulling the slider using a string. One end of the
string is glued to the cylinder, and the other far from the
slider (forward). The string is kept under tension and remains
horizontal, which imposes a purely horizontal pulling force.
Surprisingly, using this pulling method, we were unable to
observe sustained oscillations. For a set of parameters which
leads to a well-defined instability, replacing the cylinder-plate
contact by a string instantly kills the instability.

V. CONCLUSION

We report a surface instability leading to pattern forma-
tion reminiscent of similar processes in hydrodynamics or
grains [18]. However, unlike the washboard instability or
other inertia-driven phenomena such as the speed wobble
[32–34], snaking of a car-trailer [35,36], or porpoising of
boats [37–40], the instability reported is not sensitive to the
value of v in the range considered (Table I) as it occurs in the
quasistatic regime. For this reason, it seems more promising
to attempt to model this instability based on geometrical con-
siderations rather than a force-based model relying on time
derivatives. However, previous works [41,42] have used force
measurements to describe the quasistatic motion of an intruder
(cylinder or plow) in a granular bed. Their results could pro-
vide inspiration to model our instability. This deserves further
investigation and will be the focus of a future paper. Indeed,
our DEM simulations easily allow one to quantify the forces
and velocities distributions, which could provide additional
insights in the origin of the instability (see Appendix B).

Finally, it appears that experimentally, the details of the
mechanics of the contact point between the slider and the
object that pushes it are crucial. The exact nature of the
contact forces which annihilates the instability remains to be
understood and deserves further work.
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APPENDIX A: IMAGE ANALYSIS AND DATA PROCESSING

The altitude y of the slider center of mass and its pitch
angle θ are computed from both the experimental records
and numerical simulations. Images from the experiments are
analyzed by a homemade Matlab software which detects the
pattern (dots) printed on the slide of the slider (Sec. II A).
Based on this detection, the program computes the slider
altitude, y, and its pitch angle, θ . We also quantify the

FIG. 7. Snapshot of a numerical simulation showing the forces
between grains and on the slider. Instantaneous contact forces are
shown in black while an averaged force profile is represented by
the blue arrows on the slider bottom and front spatula [l = 36 mm,
δx = 0 mm, δy = 0 mm].

heap of grains carried in front of the slider. In numerical
simulations, the heap size is estimated by counting the number
of grains moving with a velocity above an arbitrary threshold
of 25 mm/s, corresponding to 62.5% of the traction speed
(v = 40 mm/s, see Table I). Any other choice of that threshold
between 50% and 75% yields an equally satisfactory detec-
tion and the velocity threshold value was chosen to best fit
the expected geometry of the heap. In experiments, the heap
is quantified as the surface encompassed between the slider
front, the prolongation of the slider bottom and the heap
front edge, this latter being found by simple edge detection
[Fig. 1(c)]. In spite of the difference in quantification and unit
(number of grains in simulations vs. surface in mm2 in exper-
iments), both quantities are representative of the variation of
the same variable which is named afterwards Sh, as the heap
size, and indicated in arbitrary units.

APPENDIX B: FORCES AND VELOCITIES

1. Force distribution

Since numerical simulations give access to all the contact
forces, one can easily investigate their distribution both within
the granular bed, and between the grains and the slider, as
represented on Fig. 7. These results might help shed light on
the origin of the instability.

For each pair of grains in contact, a black line whose thick-
ness scales as the contact force is drawn between their centers,
thus showing the global instantaneous configuration of force
chains (Fig. 7). One can notice that far away from the slider a
typical hydrostatic-like configuration with no preferred angle
is observed. In the vicinity of the slider, and particularly near
its front spatula, strong force chains span the entire gap be-
tween the slider surface and the bottom of the granular layer
and show a preferential direction. A proper statistical analysis
of the direction of these forces depending on the conditions
is outside the scope of this paper but would deserve further
attention.

Figure 7 also displays the local average force (blue ar-
rows) experienced by the slider (made of individual grains
held together as a solid body). On the front spatula, the
force decreases roughly linearly from the front corner towards
the free surface. On the contrary, on the bottom plate, the force
increases when scanning from the front to the rear corner.
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While it increases rapidly, the force tends to saturate to reach
a plateau over a large part of the bottom plate.

The front corner grain, which belongs both to the bottom
and front plates, seems to play a singular role. Yet, it is worth
noting that as the pitch angle of the slider are not fixed in this
simulation, the forces acting on the slider may vary in time,
which might explain the averaged high value for the front
corner grain.

2. Velocity distribution

Using our simulation, we have also investigated the flow
within the granular heap formed in front of the slider, as
illustrated by Fig. 8. In order to obtain smooth data, we chose
to simulate a situation in which the tilt angle was set to zero.
Yet the overall behavior remains similar when the angle is
free to vary. Figure 8 shows the streamlines (black lines),
and the colormap indicates the direction of the flow, in the
frame of reference of the slider. A clear forward motion (in
red) is visible near the free surface of the dragged pile, and a
recirculating vortex can be observed within the dragged pile.

FIG. 8. Granular flow in the moving frame of reference on the
slider, in a rotation-locked simulation. The black lines are stream-
lines, showing a vortex close to the free surface. The colormap
indicates the local direction of the flow.

The figure reveals the structure of the granular flow which
clearly deserves further investigation.

[1] I. S. Aranson and L. S. Tsimring, Patterns and collective behav-
ior in granular media: Theoretical concepts, Rev. Mod. Phys.
78, 641 (2006).

[2] G. H. Ristow, Pattern Formation in Granular Materials
(Springer Science & Business Media, New York, 2000),
Vol. 164.

[3] F. Charru, B. Andreotti, and P. Claudin, Sand ripples and dunes,
Annu. Rev. Fluid Mech. 45, 469 (2013).

[4] J. F. Kennedy, The formation of sediment ripples, dunes, and
antidunes, Annu. Rev. Fluid Mech. 1, 147 (1969).

[5] Z. Varga, V. Grenard, S. Pecorario, N. Taberlet, V. Dolique,
S. Manneville, T. Divoux, G. H. McKinley, and J. W. Swan,
Hydrodynamics control shear-induced pattern formation in at-
tractive suspensions, Proc. Natl. Acad. Sci. USA 116, 12193
(2019).

[6] B. Sandnes, E. Flekkøy, H. Knudsen, K. Måløy, and H. See,
Patterns and flow in frictional fluid dynamics, Nat. Commun. 2,
288 (2011).

[7] Y. Yamazaki and T. Mizuguchi, Front aggregation and
labyrinthine pattern in the drying process of two-dimensional
wet granular systems, J. Phys. Soc. Jpn. 69, 2387 (2000).

[8] G. M. Homsy, Viscous fingering in porous media, Annu. Rev.
Fluid Mech. 19, 271 (1987).

[9] P. B. Umbanhowar, F. Melo, and H. L. Swinney, Localized exci-
tations in a vertically vibrated granular layer, Nature (London)
382, 793 (1996).

[10] G. Seiden and P. J. Thomas, Complexity, segregation, and pat-
tern formation in rotating-drum flows, Rev. Mod. Phys. 83,
1323 (2011).

[11] O. Pouliquen, M. Nicolas, and P. D. Weidman, Crystalliza-
tion of Non-Brownian Spheres Under Horizontal Shaking,
Phys. Rev. Lett. 79, 3640 (1997).

[12] Y. Forterre and O. Pouliquen, Long-surface-wave instability in
dense granular flows, J. Fluid Mech. 486, 21 (2003).

[13] O. Pouliquen, J. Delour, and S. B. Savage, Fingering in granular
flows, Nature (London) 386, 816 (1997).

[14] D. J. Goldfarb, B. J. Glasser, and T. Shinbrot, Shear instabilities
in granular flows, Nature (London) 415, 302 (2002).

[15] S. F. Pinto, M. S. Couto, A. P. F. Atman, S. G. Alves, A. T.
Bernardes, H. F. V. de Resende, and E. C. Souza, Granular
Fingers on Jammed Systems: New Fluidlike Patterns Arising in
Grain-Grain Invasion Experiments, Phys. Rev. Lett. 99, 068001
(2007).

[16] A.-F. Bitbol, N. Taberlet, S. W. Morris, and J. N. McElwaine,
Scaling and dynamics of washboard roads, Phys. Rev. E 79,
061308 (2009).

[17] B. Percier, S. Manneville, and N. Taberlet, Modeling a wash-
board road: From experimental measurements to linear stability
analysis, Phys. Rev. E 87, 012203 (2013).

[18] I. J. Hewitt, N. J. Balmforth, and J. N. McElwaine, Granular and
fluid washboards, J. Fluid Mech. 692, 446 (2012).

[19] I. Hewitt and N. Balmforth, Viscoplastic lubrication theory with
application to bearings and the washboard instability of a plan-
ing plate, J. Non-Newtonian Fluid Mech. 169-170, 74 (2012).

[20] J. A. Both, D. C. Hong, and D. A. Kurtze, Corrugation of roads,
Physica A 301, 545 (2001).

[21] V. Vidal, C. Oliver, H. Lastakowski, G. Varas, and J. C.
Géminard, Friction weakening by mechanical vibrations: A
velocity-controlled process, Eur. Phys. J. E 42, 91 (2019).

[22] S. Nasuno, A. Kudrolli, A. Bak, and J. P. Gollub, Time-
resolved studies of stick-slip friction in sheared granular layers,
Phys. Rev. E 58, 2161 (1998).

[23] R. Capozza, A. Vanossi, A. Vezzani, and S. Zapperi, Suppres-
sion of Friction by Mechanical Vibrations, Phys. Rev. Lett. 103,
085502 (2009).

[24] P. A. Cundall and O. D. Strack, A discrete numerical model for
granular assemblies, Géotechnique 29, 47 (1979).

[25] B. Percier, S. Manneville, J. N. McElwaine, S. W. Morris, and
N. Taberlet, Lift and drag forces on an inclined plow moving
over a granular surface, Phys. Rev. E 84, 051302 (2011).

[26] J. Sautel, Ségrégation granulaire dans les astéroïdes lâchement
agglomérés, Ph.D. thesis, ENS de Lyon, 2021.

024901-9

https://doi.org/10.1103/RevModPhys.78.641
https://doi.org/10.1146/annurev-fluid-011212-140806
https://doi.org/10.1146/annurev.fl.01.010169.001051
https://doi.org/10.1073/pnas.1901370116
https://doi.org/10.1038/ncomms1289
https://doi.org/10.1143/JPSJ.69.2387
https://doi.org/10.1146/annurev.fl.19.010187.001415
https://doi.org/10.1038/382793a0
https://doi.org/10.1103/RevModPhys.83.1323
https://doi.org/10.1103/PhysRevLett.79.3640
https://doi.org/10.1017/S0022112003004555
https://doi.org/10.1038/386816a0
https://doi.org/10.1038/415302a
https://doi.org/10.1103/PhysRevLett.99.068001
https://doi.org/10.1103/PhysRevE.79.061308
https://doi.org/10.1103/PhysRevE.87.012203
https://doi.org/10.1017/jfm.2011.523
https://doi.org/10.1016/j.jnnfm.2011.11.008
https://doi.org/10.1016/S0378-4371(01)00425-3
https://doi.org/10.1140/epje/i2019-11855-2
https://doi.org/10.1103/PhysRevE.58.2161
https://doi.org/10.1103/PhysRevLett.103.085502
https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.1103/PhysRevE.84.051302


DOP, VIDAL, AND TABERLET PHYSICAL REVIEW E 108, 024901 (2023)

[27] Y. Guo and J. S. Curtis, Discrete element method simulations
for complex granular flows, Annu. Rev. Fluid Mech. 47, 21
(2015).

[28] GDR MiDi, On dense granular flows, Eur. Phys. J. E 14, 341
(2004).

[29] S. Lommen, D. Schott, and G. Lodewijks, DEM speedup: Stiff-
ness effects on behavior of bulk material, Particuology 12, 107
(2014).

[30] A. Humeau, J. Rougé, and J. Casas, Optimal range of prey size
for antlions, Ecol. Entomol. 40, 776 (2015).

[31] J. Crassous, A. Humeau, S. Boury, and J. Casas, Pressure-
Dependent Friction on Granular Slopes Close to Avalanche,
Phys. Rev. Lett. 119, 058003 (2017).

[32] R. S. Sharp and D. J. N. Limebeer, On steering wobble oscilla-
tions of motorcycles, Proc. Inst. Mech. Eng. Part C 218, 1449
(2004).

[33] M. Plöchl, J. Edelmann, B. Angrosch, and C. Ott, On the
wobble mode of a bicycle, Vehicle Syst. Dynam. 50, 415
(2012).

[34] M. Rosatello, J.-L. Dion, F. Renaud, and L. Garibaldi, The
skateboard speed wobble, in Proceedings of the 11th Interna-
tional Conference on Multibody Systems, Nonlinear Dynamics,
and Control (ASME Press, New York, 2015), Vol. 6.

[35] A. H. Korayem, A. Khajepour, and B. Fidan, A review on
vehicle-trailer state and parameter estimation, IEEE Trans.
Intell. Trans. Syst. 23, 5993 (2022).

[36] J. Darling, D. Tilley, and B. Gao, An experimental investigation
of car—Trailer high-speed stability, Proc. Inst. Mech. Eng. Part
D 223, 471 (2009).

[37] E. Thornhill, B. Veitch, and N. Bose, Dynamic instability of a
high-speed planing boat model, Mar. Technol. SNAME News
37, 146 (2000).

[38] Y. Masumi and A. H. Nikseresht, Comparison of numerical
solution and semi-empirical formulas to predict the effects of
important design parameters on porpoising region of a planing
vessel, Appl. Ocean Res. 68, 228 (2017).

[39] Y. Ikeda and T. Katayama, Porpoising oscillations of very-high-
speed marine craft, Philos. Trans. Roy. Soc. Lond. Ser. A 358,
1905 (2000).

[40] H. Sun and O. M. Faltinsen, Predictions of porpoising inception
for planing vessels, J. Mar. Sci. Technol. 16, 270 (2011).

[41] F. Guillard, Y. Forterre, and O. Pouliquen, Lift forces in granu-
lar media, Phys. Fluids 26, 043301 (2014).

[42] N. Gravish, P. B. Umbanhowar, and D. I. Goldman, Force and
Flow Transition in Plowed Granular Media, Phys. Rev. Lett.
105, 128301 (2010).

024901-10

https://doi.org/10.1146/annurev-fluid-010814-014644
https://doi.org/10.1140/epje/i2003-10153-0
https://doi.org/10.1016/j.partic.2013.03.006
https://doi.org/10.1111/een.12254
https://doi.org/10.1103/PhysRevLett.119.058003
https://doi.org/10.1243/0954406042690434
https://doi.org/10.1080/00423114.2011.594164
https://doi.org/10.1109/TITS.2021.3074457
https://doi.org/10.1243/09544070JAUTO981
https://doi.org/10.5957/mt1.2000.37.3.146
https://doi.org/10.1016/j.apor.2017.09.002
https://doi.org/10.1098/rsta.2000.0620
https://doi.org/10.1007/s00773-011-0125-2
https://doi.org/10.1063/1.4869859
https://doi.org/10.1103/PhysRevLett.105.128301

