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We study pairwise interactions between localized topological structures in chiral magnetic and cholesteric
liquid crystal (CLC) systems confined in the planar geometry. Our calculations for magnetics are based on
the lattice model that takes into account the bulk and surface anisotropies along with the exchange and the
Dzyaloshinskii-Moriya interactions. In CLC cells, these anisotropies describe the energy of interaction with an
external magnetic or electric field and the anchoring energy assuming that the magnetic or electric anisotropy is
negative and the boundary conditions are homeotropic. We have selected the region of the phase diagram, where
various localized solitonlike structures, including skyrmion tubes, torons, and leeches, embedded in the ground
state of the z-cone (conical phase) coexist, and carried out numerical analysis of the distance dependencies of the
effective intersoliton interaction potentials. For skyrmions and torons, the potentials are found to be attractive in
the large separation region. It turned out that for these potentials, the effects of axial asymmetry are negligible.
By contrast, it turned out that for the intermediate structures between the skyrmions and torons known as the
leeches, the leech-leech potentials generally depend on the orientation of the intersoliton separation vector and
their large distance parts may become repulsive at certain directions of the vector. All the potentials have the short
distance repulsive parts and the local minima located at the equilibrium separations. It is found that the skyrmion-
skyrmion potential has an additional metastable configuration shifted towards the short-distance region.
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I. INTRODUCTION

Magnets, liquid crystals (LCs), and colloids are known
as host materials for numerous topological solitons such as
skyrmions, antiskyrmions, torons, bobbers, hopfions, helikno-
tons, and twistions [1–9]. In the zoo of solitons, the skyrmions
represent one of the most studied structures that are promising
for a new generation of racetrack memories and a wealth of
spintronic and photonic applications [10–14]. Under certain
conditions, especially in three-dimensional systems, different
localized topological structures can coexist [15].

There are chiral materials such as chiral magnets and
chiral nematic liquid crystals, also known as cholesteric liq-
uid crystals (CLCs), that have attracted particular interest as
systems providing valuable insights into the above diversity
of localized structures [8,15–18]. The chirality of magnetic
materials is typically due to the Dzyaloshinskii-Moriya in-
teraction (DMI) caused by the spin-orbit coupling, whereas
chiral ordering observed in CLCs is an immediate conse-
quence of the broken mirror symmetry caused by the presence
of anisotropic molecules with no mirror plane. An important
point is that the bulk chirality of CLC materials, which is
typically determined by the concentration of chiral additives,
can be controlled by external stimuli such as temperature,
electromagnetic fields, and the anchoring conditions at bound-
ary surfaces [19–23]. The latter is closely related to the size
and type of the confined geometry, which is another important
factor that may greatly influence localized structures in both
chiral magnetic and CLC systems.

In thin chiral magnetic films, the quasi-two-dimensional
skyrmions can appear either as individual objects or as
skyrmion lattices [24]. In magnetic systems that are a few
atomic monolayers thick, these topological solitons are uni-
form along the normal to the film [3]. By contrast, in
bulk chiral media, one can observe extended skyrmion tubes
with discrete translational symmetry along the tube. Thus,
these structures are not completely homogeneous along these
lines [25].

In the bulk of chiral ferromagnets, at external magnetic
fields in a certain range, the ground state is the cone phase with
the cone axis along the magnetic field [26]. Such systems may
also contain metastable asymmetric skyrmions. In the slab
geometry, the cone ground state and metastable skyrmions
can be realized in LC cells with homeotropic anchoring of
the director at the substrates [15,27]. When the cell thick-
ness compares with the equilibrium pitch of the bulk helical
ground-state structure, additional localized structures such as
torons and leeches can be implemented [15].

Although localized topological structures in chiral me-
dia behave like separate quasiparticles, they interact and
this interaction determines the geometry of many-solitonic
structures, as well as their collective dynamics and
properties.

In the two-dimensional case, magnetic skyrmions tend to
repel each other, but this interaction decreases exponentially
with the interskyrmion distance [18,28–30]. The repulsion is
determined by the change in DMI, which makes a negative
contribution to the self-energy of a single skyrmion. However,
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in metal films with frustrated exchange interaction, at certain
distances between skyrmions, effective attractive interactions
may occur, leading to the formation of skyrmion clusters [31].

In three-dimensional systems, skyrmion tubes can be at-
tracted to each other and form quite complex topological
structures. In Refs. [32,33], it was found that skyrmion tubes
perturb the surrounding chiral environment, leading to the for-
mation of complex superstructures that contain both parallel
and orthogonal tubes. The tubes can be deformed when they
are separated by the distance of the order of their diameter.

Direct observation of attractive skyrmions and skyrmion
clusters in the conical phase of the cubic Cu2OSeO3 helimag-
net was reported by Loudon et al. in Ref. [34]. In B20-type
FeGe strips, the skyrmion attraction was also observed at
moderate magnetic fields. The attraction is found to change
into repulsion as the field increases [35].

In bulk chiral materials, the structure of the skyrmion
clusters can be rather complex and can be controlled using
an external magnetic field. Skyrmion tubes can be located
either perpendicular or parallel to the external magnetic field,
and such configurations coexist in a specific range of fields
[25,32] A similar complex configuration of skyrmion tubes
has been predicted and observed in chiral LC systems [33].
The crossover between different regimes of skyrmion interac-
tion has been revealed by changing the layer thickness and/or
the surface anchoring.

Interestingly, topological particlelike localized LC struc-
tures bear some resemblance to colloidal particles dispersed in
a LC host (see reviews [6,36,37] for details on liquid crystal
colloids). Colloidal interactions are mediated by elastic dis-
tortions induced by the interacting particles [38–46]. When
the characteristic length of the distortions is larger than the
particles’ size, the elastic interaction can be approximately
described using an analogy with the interaction between elec-
trostatic multipoles [47]. Otherwise, the confined geometry
and the anchoring conditions may have a profound effect on
the colloidal interactions [44–46].

Similar to interparticle interaction in LC colloids, the in-
terskyrmion interaction in CLCs is determined by the elastic
interactions [48]. These interactions can also be tuned by an
external electric field [49].

In magnetic films, the properties of localized magnetic
structures such as skyrmion tubes depend on the film thickness
[50]. In thin films, new localized topological structures can
be stabilized near the surfaces and interfaces of magnetic
and LC-chiral media [15]. These include chiral bobbers ex-
perimentally observed in thin plates of B20-type FeGe [16],
stacked spin spirals in magnetic films [51], torons, twisted
walls, fingers, and their hybrids in chiral nematics [52].

Interaction between such structures is much less studied
as compared to the interskyrmion interaction in the bulk. In
this paper, the intersolitonic interaction between topological
structures formed in the films filled with chiral magnetic and
LC media will be our primary concern.

The paper is organized as follows. In Sec. II, we describe
the model and the soliton structures simultaneously stabilized
in the coexistence region of the phase diagram. The numerical
procedure employed for computing the intersoliton interaction
potentials is outlined in Sec. III, where we also present the
results of our calculations. Three-soliton structures are briefly

discussed in Sec. IV. Finally, in Sec. V, we draw our results
together and make some concluding remarks.

II. MODEL AND LOCALIZED STRUCTURES

Following our previous study [15], we consider a chiral
magnetic and nematic liquid crystal material confined in the
slab geometry and begin with the continuum model of the film
giving the free energy functional of the following form:

F [m] =
∫

V
dV {A(∇m)2 − Dm · [∇ × m]

− Kb(m · z)2} − Ks

∫
S

ds(m · z)2, (1)

where V is the volume of the film and S is the bounding sur-
face represented by two substrates normal to the z axis; m(r)
is the vector field representing either the unit magnetization
vector or the CLC director; and z is the unit vector along
the anisotropy axis assumed to be normal to the bounding
surfaces S.

For magnetic systems, the first term describes the exchange
interaction determined by the exchange stiffness A, which
is assumed to be homogeneous in the bulk of the film. The
second term corresponds to chiral Dzyaloshinskii-Moriya in-
teraction (DMI) with the interaction constant D. The third
contribution is the density of magnetic anisotropy described
by the parameter K, whose values inside the film, K = Kb,
and at its boundaries may differ, Ks �= Kb.

For LC systems, the value of A and the chiral interaction
constant D are expressed in terms of the Oseen-Frank moduli
in the one-constant approximation where all the elastic con-
stants are assumed to be equal, K1 = K2 = K3 = K : A = K/2
and D = Kq0, where q0 is the free twisting wave number.
In this case, the bulk value of the anisotropy constant, Kb,
plays the role of the coupling constant for interaction with
the external magnetic field, whereas its value at the substrates
corresponds to the anchoring energy strength (the anchoring
conditions are assumed to be homeotropic).

As in Ref. [15], our overall computational strategy in-
volves two basic steps: (a) we introduce a properly discretized
version of the free energy (1) as the lattice model of the
Heisenberg-like form on the rectangular three-dimensional
(3D) grid of the size Nx × Ny × Nz, and (b) we employ the
direct energy minimization by the nonlinear conjugate gradi-
ent method in Cartesian coordinates with constraints that fix
the unit length of the magnetization or director at the sites of
the lattice.

For the lattice model with magnetic moments or CLC
directors localized at the sites of a simple cubic lattice, the
energy of the system reads [15]

E [S] = −
∑
〈i, j〉

(JSi · S j + Di, j · [Si × S j]) −
∑

i

Ki
(
Sz

i

)2
,

(2)

where summation 〈i, j〉 is performed over the nearest neigh-
bors, J = 2aA is the exchange parameter, Di j is the DMI
vector of the length |Di j | ≡ D = a2D, and Kb,s = a2Kb,s is
the anisotropy parameter; a is the lattice constant and Si ≡ mi

is the unit vector along the magnetic moment or CLC director
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FIG. 1. Orientational structures in the xz plane for a skyrmion (top) and a toron (bottom) embedded into the film filled with chiral magnetic
or LC material. The film thickness is p0 and horizontal gray lines indicate planar confining surfaces with homeotropic anchoring conditions.
The magnetization or LC director field, S, is shown using rods colored according to the color palette in the inset at the center that describes the
x and y projections of S. This color wheel represents the northern hemisphere of magnetization or director orientations where Sz is non-negative
and the white color represents the direction along the z axis with Sz = 1. In the southern hemisphere, the colors become darker as Sz decreases,
approaching the southern pole with Sz = −1 indicated by black color. The surfaces on the left are isosurfaces of the z projection of S computed
at Sz = 0 for the skyrmion (top) and the toron (bottom) structures, whose orientational fields are depicted on the right side of the figure. Circles
indicate two point defects (hedgehogs) in the toron structure.

at the site i. For the sake of brevity, the vectors Si representing
the unit magnetization vector or CLC director are sometimes
loosely called the spins.

Similar to the continuum model (1), the first term on the
right-hand side of Eq. (2) describes the exchange interaction,
whereas the second term is DMI. Both the exchange param-
eter J and the length of the DMI vector, Di j , |Di j | = D, are
assumed to be constant. The direction of the DMI vector Di j is
along the vector connecting the nodes i and j, thus stabilizing
the Bloch-type skyrmion structures.

The last term in the energy (2) represents the magnetic
anisotropy with the anisotropy axis normal to the substrates
(the z axis). For the easy-plane anisotropy, the bulk value of
Ki is negative, Ki = Kb � 0, and is fixed for all layers of the
film. In magnetic systems, such anisotropy can be induced, for
example, by magnetostatic interactions due to the flat shape
of the sample [53]. We assume that owing to the additional
surface anisotropy Ks > 0, the anisotropy parameter at the
interfacial layers, Ki = Kb + Ks, is positive.

For LC systems, the spin Si gives vectorization of the
CLC director field at the ith site and the exchange constant
J is proportional to the Frank elastic constant: J = aK . The
easy-plane anisotropy in the bulk corresponds to the energy
of interaction between a LC with negative magnetic suscep-
tibility, �χ < 0, and a magnetic field applied across the cell,
whereas the surface anisotropy with the positive anisotropy
parameter describes the surface energy for the CLC with the
homeotropic anchoring conditions at bounding surfaces. The
CLC chirality is characterized by the equilibrium twist wave
number q0 = 2π/p0 = arctan(D/J ), where p0 is the pitch
of the helical structure representing the ground state in an
unbounded sample.

It is convenient to introduce dimensionless parameters:
κb = KbJ/D2 and κs = KsJ/D2. For states homogeneous
along the y axis, the phase diagram in the κb-κs plane was
calculated in Ref. [15]. According to this diagram, the ground

state can be represented by various types of delocalized struc-
tures, such as the z-helix, the z-cone, the x-helicoid, and the
oblique helicoid depending on the dimensionless parameters
of bulk and surface anisotropy, κb and κs.

It was shown that for sufficiently large values of the surface
anisotropy κs, the ground state of the chiral film is the conical
phase which is invariant with respect to in-plane translations
and is described by the z-cone structure. Several localized
topological structures can be embedded into the z-cone far-
field background in the form of metastable excitations [15].
Figures 1 and 2 present some of these states, which can be
regarded as topological solitons.

Orientational structures for the skyrmion tube and the toron
in the cell geometry are depicted in Fig. 1. The skyrmion
tube shown in Fig. 1 (top) resembles skyrmion tubes in bulk
chiral magnets in a vertically aligned magnetic field [25,32].
In moderate magnetic field, the magnetically induced conical
phase is found to impose a twisting effect on the tube, leading
to the crankshaft structure.

Figure 1 (bottom) presents the solitonic structure that,
following notations of Refs. [8,52], can be identified as the
toron. This structure is essentially a skyrmion tube termi-
nated on two point defects (hedgehogs of opposite charge)
near the substrates, whereas the remaining part of the toron
is localized in the bulk of the film. Although the toron in
Fig. 1 (bottom) bears a general resemblance to those de-
scribed in [8,52], in our case, it is surrounded by the conical
phase that, similar to the skyrmion tube, induces twists of the
toron.

The solitonic structure shown in Fig. 2 can be viewed as
the intermediate case between the skyrmion tube and the toron
and will be called the leech [15]. In asymmetric LC cells, the
leechlike structures were previously described as skyrmion
or toron hybrids [5,52]. By contrast to the hybrids, the leech
structures under consideration are embedded into the twisted
conical background of symmetric cells.
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FIG. 2. Orientational structures in the xz plane for the leech up (top) and the leech down (bottom) representing the leeches that terminate
on the point defects located near the upper and lower bounding surfaces, respectively (parameters and colors are described in the caption of
Fig. 1).

From Fig. 2, these structures are attached to one of the
substrates and terminate on a singular point near the other sub-
strate. When the terminating point defect is located close to
the upper (lower) bounding surface, the leech will be referred
to as the leech up (leech down).

The regions of stability for these states are generally dif-
ferent. As the bulk anisotropy (external field) increases, the
skyrmion tube decays into a pair of bobbers, whereas the
leech and the toron will transform into a single bobber and
the z-cone, respectively.

An important point is that there is the range of anisotropy
parameters where all the above structures can coexist simul-
taneously. In this coexistence range of the phase diagram (see
Fig. 14 in Ref. [15]), we shall study the intersoliton interaction
between different topological structures.

In Figs. 1 and 2 and in our subsequent calculations, the
values of the surface and bulk anisotropies are taken to be
κs = 24 and κb = −0.25, respectively. These values corre-
spond to the point in the coexistence domain of the phase
diagram. We shall also assume that the film thickness equals
the equilibrium pitch p0 = Nza, where a is the lattice constant
and Nz = 20, and thus the DMI parameter (the length of the
DMI vector) is D = J tan(π/10). The in-plane (lateral) size of
the film with the boundary surfaces (substrates) parallel to the
x-y plane is Nx × Ny = 400 × 400 and the in-plane boundary
conditions are periodic.

III. PAIRWISE INTERSOLITON INTERACTIONS

In this section, we study the interactions between the local-
ized topological (soliton) structures depicted in Figs. 1 and
2. Orientational distributions for these structures computed
using the parameters listed at the end of the preceding sec-
tion can now be used to produce the initial seed states for
two-soliton configurations spaced at a given intersoliton dis-
tance. More specifically, the initial configurations are obtained
by placing two cutouts from single-soliton textures in the
nonoverlapping cylinder-shaped domains of the radius equal
to 7.5a into the background structure without topological
solitons.

Each seed state is subjected to the three-step minimization
procedure. During the first step, orientation of two magnetic
moments or CLC directors (spins) located at the centers of
interacting solitons are kept intact and the initial structure is
optimized to achieve a local energy minimum under the above
constraint that fixes the intersoliton separation. At the second
step, in order to reduce the error in estimated energy arising
due to the presence of frozen (pinned) spins, a minimization
procedure is applied so as to correct the orientation of the
magnetic moments or CLC directors (spins) in close vicinity
of the pinned spins, including themselves (the radius of the
neighborhood is 5a). This step ensures that the spins outside
the neighborhood remain unchanged. Finally, the minimiza-
tion procedure used at the first step is repeated. This procedure
can be continued iteratively, but calculations show that the
difference between the energies evaluated at the last two steps
is negligibly small. So, changes in energy are mainly pro-
duced by minimization performed at the second step. Note
that our approach can be employed to improve the accuracy
of the calculations of the skyrmion-skyrmion and skyrmion-
defect interactions performed in Refs. [29,54,55], where the
distances are fixed using the fixed center-spin method corre-
sponding to the first step of our procedure.

Note that at sufficiently large distances, additional un-
constrained minimization of the optimized structure will not
produce noticeable changes in the loci of the solitons. This
is the lattice (discretization) effect that manifests itself in the
presence of numerous nearly degenerate metastable configu-
rations on the energy surface.

The above numerical procedure is applied to compute
the energy of the two-soliton structures as a function of the
distance between the solitons. The difference between this
energy and the sum of single-soliton energies gives the in-
teraction energy. In order to reduce numerical error caused by
subtraction of large energies resulting from a huge number of
spins, the energies were counted from the cone ground state.

Note that the intersoliton separation is determined by the
vector connecting the centers of the solitons evaluated using
the procedure that bears close similarity to evaluating the
center of mass. In this procedure, the weight of the ith point is
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FIG. 3. Dependence of effective potentials of pairwise interactions between skyrmions and torons on dimensionless intersoliton separation,
d/a. The inset enlarges the long-separation tails of the potentials fitted assuming that their large-distance asymptotic behavior is described
by formula (3). Solid lines are the fitting curves computed at the values of the decay rate fitting parameter: c2 = 0.0282 (the toron-toron
interaction), c2 = 0.0847 (the skyrmion-skyrmion interaction), and c2 = 0.0249 (the toron-skyrmion interaction).

the length of difference between the local spin (magnetization,
LC director) Si and the corresponding vector S(cone)

i specify-
ing the orientation of the unperturbed background structure:
|Si − S(cone)

i |.
Figure 3 shows the results for the dependence of the in-

teraction energy on the separation d computed for different
pairs: a pair of skyrmion tubes (S-S), a pair of torons (T-T),
and a toron-skyrmion tube pair (T-S). It can be seen that at
large separations, skyrmions and torons are attracted to each
other.

According to theoretical studies on the pair interaction
between 2D skyrmions [18,28–30], the asymptotic behavior
of interskyrmion potentials is described by the relation

U (d ) ≈ c1√
d

exp (−c2d ). (3)

Note that for 3D skyrmions, this result also follows from the
theoretical considerations of Ref. [48], where the skyrmions
were viewed as colloidal particles and the interskyrmion inter-
action was treated as an elastic interaction between colloidal
particles. According to Ref. [43], formula (3) also governs the
long-distance regime of the interparticle potential for colloidal
particles in a nematic cell with rigid homeotropic anchoring
conditions.

We have used Eq. (3) to fit large-distance tails of the
potentials using coefficients c1 and c2 as the fitting param-
eters. The results presented in the inset of Fig. 3 show that
in the large-separation range, the asymptotics given by for-
mula (3) provide a good approximation for intersolitonic
interactions involving skyrmions and torons. Specifically, the
toron-toron interaction potential with c2 = 0.0282 is found to
decay slower than both the interskyrmion (c2 = 0.0847) and
the skyrmion-toron (c2 = 0.0249) potentials. The coefficients
in the asymptotics are computed for the parameters specified
above.

Referring to Fig. 3, at small distances of the order of
the size of topological solitons, the particlelike structures
repel each other and, for each interaction potential, there is
a minimum intersoliton distance dmin giving the equilibrium
separation of the most energetically favorable two-solitonic
configuration. Clearly, our considerations are not applicable to
the region of intersoliton separations that are smaller than the
soliton size, where orientational structures are significantly
disturbed, forming new complex states.

As can be seen from Fig. 3, the minimum distances are or-
dered as follows: d (T −T )

min < d (T −S)
min < d (S−S)

min . Thus, the largest
minimum distance corresponds to the two-skyrmion structure,
whereas the pair of torons possess the shortest equilibrium
separation. The potential well for the bounded pair is deeper
for solitons with larger separations, so the two-skyrmion pair
is the most stable configuration, whereas the pair of torons
is the least stable one. Interestingly, the two-skyrmion poten-
tial exhibits two local minima at the distances d = 18a and
d = 26a, where the latter represents the equilibrium structure
with the lowest energy (Fig. 3).

In the vicinity of the minimum, the distance dependence
of the interaction energy is parabolic and can be described
in terms of the stiffness of the effective interaction k. From
Fig. 3, it is clear that as opposed to the case of the minimum
distances, the largest stiffness kT −T corresponds to the pair of
torons, whereas a couple of skyrmion tubes has the smallest
stiffness, kS−S . So, we have kT −T > kT −S > kS−S .

The existence of the minima for the pair interaction po-
tentials would result in the formation of spatially ordered
structures such as two-dimensional clusters, similar to the
schools of skyrmions observed in CLC films [49]. The
above three equilibrium two-soliton structures are shown in
Fig. 4. The values of the effective potential at local minima
corresponding to these structures give two-soliton binding
(bonding) energies. For skyrmions and torons, these energies
are listed in the first column of Table I.
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FIG. 4. Equilibrium two-soliton configurations for a pair of interacting skyrmion tubes (top), skyrmion-toron structure (middle), and toron-
toron structure (bottom) in the chiral magnetic film or CLC cell (parameters and elements of visualization are explained in the caption of Fig. 1).

Although topological solitons are, in general, cylindrically
(axially) asymmetric, the interaction potentials are found to
be nearly insensitive to rotations of the intersoliton vector
about the normal to the bounding surfaces (substrates). It
agrees with the theoretical results of Refs. [18,48] and an
important consequence of this is that both the skyrmion and
toron lattices will be triangular.

Now we pass on to the interaction of the so-called leech
states. As is shown in Fig. 2 (see, also, discussion in Sec. II),
this structure is attached to one of the bounding surfaces of the
film and looks like an intermediate state between the skyrmion
tube and the toron. Since the film thickness only slightly
exceeds the length of the leeches, the interaction between
leeches located at different surfaces is strong enough to form
two-leech structures. Therefore, for leeches, the diversity of
interacting structures that depend on leech alignment is wider
as compared to the skyrmion tubes and the torons.

We begin with the case of identically aligned leeches where
the states are localized at the same film surface. The depen-
dence of the interaction energy on the separation for a pair
of leeches up is presented at the top of Fig. 5. It turns out
that in contrast to the interaction of torons and skyrmions
shown in Fig. 3, for leeches, the interaction is anisotropic
and the interaction energy depends on the orientation of the

TABLE I. Binding energies of two-soliton and triple-soliton
structures. Percents in brackets indicate the relative difference
between the triple-soliton binding energy and the sum of pair in-
teraction (two-soliton) energies associated with three (two) links of
triangular (linear) configuration.

Two-soliton Triangular Linear
structure structure chain

Skyrmion −11.46 −32.33 (6%) −22.46 (2%)
Toron −7.14 −17.34 (19%) −14.28 (<1%)

intersolitonic separation vector. In Fig. 5, this orientation is
specified by the angle α between the lateral component of
the separation vector and the vector that defines the spin or
director far-field orientation of the background spiral structure
in the middle of the film. Insets in Fig. 5 illustrate orientations
of the interleech vector at α ∈ {0,±π/4,±3π/4, π}. It can
be seen that whatever the orientation of the interleech vector
is, there is a local minimum of the interaction energy repre-
senting a locally stable structure. The corresponding spatial
two-leech configuration is illustrated in Fig. 6 (top). The depth
of the minimum typically depends on the orientation of the
intersoliton vector and is less pronounced than that for both
the skyrmion tubes and the torons.

Referring to Fig. 5 (top), variations of the results for the
two-leech-up structures with �α = π are within the accu-
racy of the computations, whereas the cases of the interleech
vector orientations with α ∈ {0,±π/4} reveal noticeable dif-
ferences. At α = −π/4 (the separation vector is along the y
axis), the local minimum is deeper than in other directions.
Therefore, it might be expected that a square lattice will be
formed as the stable state at certain temperatures.

In this case, in addition to the local energy minimum,
the interaction potential reaches the maximum located at
about 40a. This maximum appears to be suppressed at α = 0,
whereas it is shifted to the region of longer distances and
located at about 150a when α = π/4 (the separation vector is
along the x axis). Note that in the presence of the maximum,
the long-distance tail corresponds to the repulsive part of the
potential.

When the intersoliton vector is along the y axis and the
distance exceeds the leech transverse size, the interaction is
stronger than both the interskyrmion and the intertoron in-
teractions. In addition, a comparison between Figs. 4 and 6
shows that in the region where, for skyrmions and torons,
the far-field spiral structure is undisturbed (see Fig. 4), the
interleech interaction produces noticeable distortions of the
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FIG. 5. Effective potential for pairwise interaction for identically aligned leeches (a pair of leeches up) (top) and for a leech up interacting
with a leech down (bottom) at different values of the angle α between the intersoliton separation vector connecting the centers of the leeches
and the spin or director of the background structure in the middle of the sample. Insets illustrate how the interleech vector is aligned depending
on the value of α.

FIG. 6. Equilibrium states for two leeches up (top) and differently aligned leeches (bottom).
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FIG. 7. Two three-skyrmion equilibrium configurations: the triangular structure (left) and the linear chain (right) in the chiral magnetic
film or CLC cell (parameters and elements of visualization are explained in the caption of Fig. 1).

conical phase. Thus, we get the conclusion that the effective
range of the interleech interaction is longer than the corre-
sponding range of intersoliton interactions between skyrmions
and torons.

For differently aligned leeches, the interleech interaction
potentials of the the two-leech up-down structure computed
at α ∈ {0,±π/4,±3π/4, π} are depicted in Fig. 5 (bottom).
The two-leech configuration at the distance corresponding to
the interaction energy minimum is shown in Fig. 6 (bottom).

At α = 0 and α = π/4, the separation dependence of the
interaction energy exhibits a bit less pronounced maximum as
compared to the case of identically aligned leeches with α =
−π/4. When the lateral component of the interleech vector is
along the y axis (α = −π/4), the maximum is suppressed and
the long-distance part of the interaction is attractive.

It turns out that when the leeches are attached to differ-
ent substrates, the interaction energy is no longer symmetric
with respect to rotations about the z axis by π when the
lateral component of the intersoliton vector changes its sign.
In particular, from Fig. 5 (bottom), the difference between
the energy maxima located on different sides of the reference
structure is clearly seen.

IV. THREE-PARTICLE INTERACTION

As we have discussed in the previous section, the inter-
action between localized structures such as skyrmions and
torons is attractive at sufficiently large separations. Therefore,
it can be expected that these solitons will form ordered stable
clusters determined by the pair interaction.

We have found that there are stable triple-soliton struc-
tures forming regularly shaped clusters of three solitons
located at distances close to pairwise equilibrium. For
skyrmions, Fig. 7 illustrates triangular and linearly ordered
structures. The binding energies of skyrmion and toron
structures, computed as the difference between the energy

of the three-soliton configuration and the sum of single-
soliton energies, are listed in Table I. It is seen that the
skyrmion clusters are energetically favorable over the toron
ones.

From Table I, a comparison between the sum of pair in-
teraction energies and the three-soliton binding energy shows
that pairwise interactions are the determining factors for linear
chains of skyrmions and torons. For the solitons arranged in
a regular triangle, the accuracy of the pairwise approximation
is not good and breaks down in the case of torons, indicating
the presence of the noticeable contribution coming from the
three-body interaction.

V. CONCLUSIONS

In this paper, we have used the lattice model describing chi-
ral magnetics and CLC systems confined in the slab geometry
to study intersoliton interactions between a variety of topolog-
ical structures coexisting at certain values of the surface and
bulk anisotropies (the homeotropic anchoring energy strength
and external magnetic field in the case of CLC cells). These
structures include the skyrmion tubes, torons, and leeches (see
Figs. 1 and 2).

The three-step minimization procedure detailed in Sec. III
is employed to perform numerical analysis of the intersoli-
ton interaction potentials that are plotted in relation to the
separation (the intersoliton distance) in Figs. 3 and 5. For
skyrmions and torons, all the potentials are found to be nearly
cylindrically (axially) symmetric whose asymptotic behav-
ior is determined by the attractive long-distance tails that
can be fitted using the relation (3) previously derived for
the skyrmion-skyrmion interaction potentials in Refs. [18,28–
30,48]. Note that in reality, cylindrical symmetry is bro-
ken by the Dzyaloshinskii-Moriya interaction and the energy
functional (2) is not invariant with respect to global rota-
tions of the spins about the normal to the bounding surfaces.
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Nevertheless, by contrast to the interleech potentials, the
intersoliton potentials for skyrmions and torons appear to
be symmetric, with the accuracy limited by the errors of
discretization.

A feature shared by all the intersoliton interaction poten-
tials is that there is a local minimum located at the equilibrium
distance corresponding to the lowest-energy (equilibrium)
two-soliton configuration (these structures are illustrated in
Figs. 4 and 6). It is also found that in the case of the
skyrmion-skyrmion interaction, there is an additional mini-
mum representing a metastable state of the short-separated
pair of skyrmion tubes.

For identically and differently aligned leeches, the results
presented in Fig. 5 suggest sensitivity of the potential to
orientation of the interleech separation vector. It is shown
that at certain orientations of the vector, in contrast to the
case of skyrmions and torons, the large-distance part of the

potential may become repulsive owing to the presence a local
maximum.

When several localized topological solitons can exist si-
multaneously, they may form ordered structures depending on
the pairwise interaction between them. According to Fig. 7,
the three-skyrmion locally stable structures are arranged ei-
ther in a regular triangle or in a linear chain. Similar results
hold for the three-toron structures. From Table I, the bind-
ing energies of linearly ordered structures are determined by
the contributions coming from the two-soliton interaction,
whereas, for the triangular structure of torons, the contribution
of the three-soliton interaction cannot be neglected.
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