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Symbiotic dynamics in living liquid crystals
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An amalgam of nematic liquid crystals and active matter, referred to as living liquid crystals, is a promising
self-healing material with futuristic applications for targeted delivery of information and microcargo. We provide
a phenomenological model to study the symbiotic pattern dynamics in this contemporary system using the
Toner-Tu model for active matter (AM), the Landau-de Gennes free energy for liquid crystals (LCs), and an
experimentally motivated coupling term that favours coalignment of the active and nematic components. Our
extensive theoretical studies unfold two novel steady states, chimeras and solitons, with sharp regions of distinct
orientational order that sweep through the coupled system in synchrony. The induced dynamics in the passive
nematic is unprecedented. We show that the symbiotic dynamics of the AM and LC components can be exploited
to induce and manipulate order in an otherwise disordered system.
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I. INTRODUCTION

An assembly of interacting particles, ranging from mi-
croscopic to macroscopic sizes, that converts energy from
the environment into mechanical energy for self-propulsion
is termed as active matter (AM). This term encompasses a
wide variety of living and nonliving systems such as bird
flocks, insect swarms, animal herds and fish shoals, suspen-
sions of bacteria, cytoskeletal filaments and protein motors,
synthetic self-phoretic colloids, vibrated granular matter, and
even human crowds [1–14]. The immense diversity in the
constituent particles, lack of time-reversal symmetry, and the
intrinsic out-of-equilibrium behavior has lead to intriguing ex-
perimental and theoretical investigations; see Refs. [10,14,15]
for different perspectives. Most of these works have discussed
AM in isotropic Newtonian fluids. However, recent attention
has also turned to AM in non-Newtonian fluids. The fluid
endows the active system with unique properties, including
improved diffusivity and decreased viscosity. An anisotropic
medium also introduces directional dependence and can help
control the AM’s chaotic motion. In this context, a system of
great topical interest is that of living liquid crystals (LLCs),
where living (active) particles are introduced in nematic liquid
crystals (NLCs) [16–23]. The latter are classic examples of
anisotropic fluids having long-range order (LRO) or quasi-
LRO below a critical temperature Tc, with a special direction
of averaged molecular alignment called the director n [24,25].
Consequently, mechanical, optical, and diffusive properties of
NLCs exhibit strong directional dependence [25].

The definitive works on LLCs considered a low concen-
tration of rodlike bacteria (Bacillus subtilis) swimmers in
nontoxic NLCs confined to a quasi-two-dimensional geom-
etry, and reported spectacular experimental phenomena that
were never observed in Newtonian fluids [16,18,20,26]. The
swimming bacteria (flagella) serve as probes for extracting
information about the NLC properties and their geomet-
ric confinement. They create perturbations in the nematic

medium over nanometer scales and yield emergent textures
over hundreds of micrometers. The topological defects in
NLCs, however, play a critical role in active transport. Ex-
periments reveal that in the defect free regions, the bacteria
always swim parallel to the local director. They accumulate
at the T-shape defects (with topological charge +1/2), but
are deflected from Y-shape defects (with topological charge
−1/2) [20]. Such observations are presumably generic to
other self-propelled particles including synthetic swimmers,
provided the low-concentration limit is respected. It is be-
lieved that LLCs will bridge the properties of active and
passive matter to create new microfluidic devices that can
transport fluids without pumps or pressure, synthetic systems
which resemble cells in motion, and nanotechnologies for
targeted drug deliveries, sensing and other biomedical appli-
cations.

An important direction in this emerging field is to develop
models of LLCs so that joint experimental and theoretical
efforts can be made to unravel potential applications. One of
the first contributions in this direction has been due to Genkin
et al. [20], who introduced continuum models that capture
the experimentally observed pattern formation of rod-shaped
bacteria in NLCs. Guided by experimental observations, the
primary assumptions in the description of Genkin et al. are:
(i) The volume fraction of bacteria is relatively low and does
not perturb the properties of the suspending NLC; (ii) The
suspended bacteria coalign with the local nematic director
on a timescale much smaller than the characteristic time
of collective behavior; (iii) At each point in the quasi-two-
dimensional space, interactions between bacteria are apolar
and allow them to glide past without collisions. To model the
NLC environment, Genkin et al. use the Beris-Edwards model
comprising of equations of motion for the tensor order param-
eter field Q(r, t ) and the velocity field u(r, t ). The transport
of bacteria is governed by two coupled advection-diffusion
equations for the concentrations of bacteria swimming paral-
lel c+ and antiparallel c− to the director n [20,27,28]. This
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model reproduces the experimentally observed accumulation
and expulsion of bacteria at the defect cores. The above work
is of great interest but is restricted to the dilute regime, where
bacteria do not directly interact with each other. Clearly, the
dense limit is significant in many applications of AM. More-
over, the pioneering experiments of Zhou et al. [16] on LLCs
showed a rich and fascinating phenomenology in this limit
also.

The scope of AM is vast. It studies the collective behav-
ior of self-propelled particles of varying sizes in a plethora
of environments. The interaction of active particles amongst
themselves, and with the medium, can be expected to yield ex-
otic dynamical patterns with novel applications. An important
direction of research therefore is to construct generic models
of LLCs that capture pattern formation for the case when all
three interactions are significant: AM-AM, LC-LC, and AM-
LC. In this situation, we expect a symbiotic dynamics with
complex interplay of AM and LCs. We embark on this path by
considering two well-established coarse-grained descriptions,
the Toner-Tu (TT) model for AM and the Landau-de Gennes
(LdG) free energy for NLCs, along with a coupling term
motivated by experimental observations [20]. The LdG for-
mulation does not incorporate hydrodynamics, so there is no
inherent director dynamics. The latter is usually imparted by
the coarse-grained time-dependent Ginzburg-Landau (TDGL)
equations and is purely relaxational [29,30].

Our extensive simulations reveal two novel steady states
in the LLCs: (i) Sharp bands of large orientational order
(in AM and NLCs) coexisting with a background of disori-
ented AM and isotropic NLCs. We refer to this coexistence
of order and disorder as a chimera state, a term which has
found usage in the nonlinear dynamics literature [31,32]. The
bands sweep through the system with the speed of the active
particles (say v0). The bandwidth � exhibits a power-law de-
pendence on the AM-NLC coupling: � ∼ (c∗

0 − c0)θ , where
θ is a universal exponent. (ii) Localized regions with large
orientational order (in AM as well as NLCs) or solitons that
propagate with speed v0. There are several one-dimensional
equations [33–35] which are known to exhibit soliton solu-
tions, i.e., solitary waves which maintain their integrity under
collision with other solitary waves. These are ubiquitous in
diverse physical systems, ranging from plasmas to fluids and
nerve conduction. However, there are very few examples of
solitons in dimensions higher than 1. The simulations of our
model for LLCs show four kinds of steady states: chimera,
soliton, ordered, and disordered. We have evaluated the phase
boundaries analytically from the fixed points of the dynamical
equations and their linear stability analysis.

II. MODEL AND THEORETICAL FRAMEWORK

Deep insights on NLCs have emerged from mean-field
approaches based on the minimization of the LdG free en-
ergy [24,36]. This is obtained as a Landau expansion in terms
of a mesoscopic order parameter Q, and is characterized by
a few phenomenological constants. The Q-tensor is symmet-
ric and traceless, with elements Qi j = S (nin j − δi j/2). The
eigenvector corresponding to the largest eigenvalue is the di-
rector n, and S measures the orientational order about n. The
isotropic phase (T > Tc) corresponds to S = 0, and S = 1

describes the fully aligned nematic phase (T < Tc). A defect
corresponds to regions of low order or S � 0. It is easy to
check that, in d = 2,

Tr(Q) = 0; Tr(Q2)=2
(
Q2

11 + Q2
12

)=S2/2; Tr(Q3) = 0.

(1)
The LdG free energy for NLCs has been modeled

as [24,36]

FQ[Q] =
∫

dr
{

A

2
Tr(Q2) + B

3
Tr(Q3) + C

4
[Tr(Q2)]2

+L

2
|∇Q|2

}
. (2)

The Landau coefficients A, B,C, and L are phenomenological
parameters which are related to experimentally determined
quantities like critical temperature, latent heat of transition,
magnitude of the order parameter, etc. [37,38]. For example,
A = A0(T − Tc), where A0 is a material dependent coefficient
and Tc is the critical temperature. At the coarse-grained level,
the appropriate framework to study the dissipative dynamics
that drives the system to the free-energy minimum is the
TDGL equation [29,30]:

∂Q
∂t

= −�Q
δFQ[Q]

δQ
. (3)

The parameter �Q is the damping factor for the nematic com-
ponent and sets the relaxation timescale for the system. The
terms on the right-hand side of Eq. (3) are the functional
derivatives of the free-energy functional.

The minimal microscopic description for the collective
motion of AM is the Vicsek model [39]. The corresponding
coarse-grained formulation, provided by the elegant hydrody-
namic theory of Toner and Tu (TT), yields the equation of
motion for (i) the local density of the active particles ρ(r, t ),
and (ii) the local polarization P(r, t ) that describes their av-
erage orientation [10,14,40–42]. Although the original model
is formulated phenomenologically using symmetry consider-
ations, it is instructive to rewrite the equations of motion in
terms of a free-energy functional Fa[ρ, P] [10,14]:

∂ρ

∂t
= −v0∇ · (Pρ) − ∇ ·

(
−�ρ∇ δFa

δρ

)
, (4)

∂P
∂t

= λ1(P · ∇)P − �P
δFa

δP
. (5)

Here, v0 is the speed of the active particles, and �ρ and �P

set the relaxation timescales for the density and polarization
fields. The first term in Eq. (4) quantifies the change in the
density due to the polarization field. In the TT model, the
P-field acts both as the current and the orientational order pa-
rameter. Hence, it evolves in time [Eq. (5)] via both advection
and flow alignment. Further, λ1 has the dimension of the speed
and Galilean invariance would require λ1 = v0. Since this is
a nonequilibrium system, λ1 is generally a phenomenological
parameter different from v0.
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The free-energy functional in Eqs. (4) and (5) is given
by [10,14]

Fa[ρ, P] =
∫

dr
[
α(ρ)

2
|P|2 + β

4
|P|4 + κ

2
|∇P|2 + w

2
|P|2∇

·P − v1

2
(∇ · P)

δρ

ρ0
+ Dρ

2
(δρ )2

]
, (6)

where α, β, κ,w, v1, Dρ are material-dependent parameters
whose precise values can be related to the microscopic prop-
erties of the active particles [43,44]. The parameter α(ρ) =
α0(1 − ρ/ρc), where ρc is the critical density that is required
to observe order in the active system. The gradient term |∇P|2
models the energy cost for a deformation of the order param-
eter. The next two terms in the equation provide the |P|2 and
density contributions to the spontaneous splay ∇ · P. These
terms can be interpreted as the local aligning field due to the
density and orientational order |P|2. The last term in Eq. (6)
penalizes the variation in the density about its mean value:
δρ = ρ − ρ0. A detailed discussion of these terms and their
applicability can be found in Refs. [10,14].

Some remarks about the states seen in the TT model are
in order. The order-disorder transition takes place as the pa-
rameter α(ρ) goes through zero. An average density ρ0 < ρc

results in a disordered phase with P = 0. For ρ0 > ρc, the
system shows a state of uniform orientational order with
|P|2 ∼ (ρ0/ρc − 1). This ordered phase is characterized by
the movement of active particles with velocity v = v0P. Near
the transition point (ρ0 = ρ+

c ), the ordered phase is unstable,
and the system relaxes to a banded phase that sweeps through
the system with speed v0 [10,42]. Additionally, solitons have
also been observed in the quasi-one-dimensional case, but not
in higher dimensions [44–46].

The above coarse-grained models are the ingredients of our
phenomenological model for LLCs. We write the free energy

of this composite system as the sum of (a) free energies of the
nematic and active components, and (b) a suitably designed
coupling term. Keeping in mind the experimental observations
of Genkin et al. [20], we define the coupling between the
nematic and active component as the dyadic product of the Q-
tensor and the polarization vector P. This is the lowest order
term that ensures P ‖ n [47–51]. With these considerations,
the free energy for the LLC can be written as

F [Q, ρ, P] = Fa + FQ − c0

∑
i, j

Qi jPiPj, (7)

where c0 quantifies the strength of the AM-nematic interac-
tion. Note that, when stated in terms of n, the coupling term
takes the form −(n · P)2, which makes it easy to see that the
two components prefer coalignment [47–51].

In our potential-based modeling, the two components have
a reciprocal interaction. This should be contrasted with the
nonreciprocal and nonpotential model of Zhou et al. [16]. In
the latter model, the nematic aligns the active matter parallel
to it, whereas the active matter pushes the nematic away from
alignment. We expect our model to be more appropriate in
a high-density environment, where hydrodynamic fields are
rapidly dissipated and free-energetic considerations are pri-
mary. However, the model of Zhou et al. is more appropriate
in a low-density environment.

We now substitute the free energy defined in Eq. (7) in
Eqs. (3)–(5) and retain gradient terms up to second order to
obtain the dynamical equations for LLCs in d = 2. These are
provided in Eqs. (A1)–(A5) of Appendix A. Note that our
model does not include the velocity field of the nematic. The
evolution dynamics is governed by the free energy rather than
the fluid flow in NLCs. Our model is applicable when the
velocity field of the nematic relaxes rapidly to a configuration
dictated by the slow variables.

The dimensionless form of Eqs. (A1)–(A5) can be obtained
by introducing the rescaled variables

Q = cQQ′, P = cPP′, r = crr′, t = ct t
′. (8)

The appropriate scale factors are

cQ =
√

|A|
2C

; cP =
√

α0

β
; ct = β

α0�Q

√
|A|
2C

; cr =
√

L

|A| . (9)

Dropping the primes on the variables, we obtain

∂Q11

∂t
= ξ1

[ ± Q11 − (
Q2

11 + Q2
12

)
Q11 + ∇2Q11

] + c0
(
P2

1 − P2
2

)
, (10)

∂Q12

∂t
= ξ1

[ ± Q12 − (
Q2

11 + Q2
12

)
Q12 + ∇2Q12

] + 2c0P1P2, (11)

1

�

∂P1

∂t
= ξ2

[(
ρ

ρc
− 1 − P · P

)
P1 − v′

1

2ρ0
∇xρ + λ′

1(P · ∇)P1 + λ′
2∇x(|P|2) + λ′

3P1(∇ · P) + κ ′∇2P1

]
+ c0(Q11P1 + Q12P2),

(12)

1

�

∂P2

∂t
= ξ2

[(
ρ

ρc
− 1 − P · P

)
P2 − v′

1

2ρ0
∇yρ + λ′

1(P · ∇)P2 + λ′
2∇y(|P|2) + λ′

3P2(∇ · P) + κ ′∇2P2

]
+ c0(Q12P1 − Q11P2),

(13)

1

�′
∂ρ

∂t
= −v′

0∇ · (Pρ) + D′
ρ∇2ρ. (14)
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The dimensionless parameters in Eqs. (10)–(14) are

ξ1 = 2|A|β
α0

√
|A|
2C

, ξ2 = α0

2

√
2C

|A| ,

v′
1 = v1

α0

√
β|A|
α0L

, v′
0 = v0

�ρ

√
α0|A|
βL

,

� = β|A|�P

α0�QC
, �′ = β�ρ

α0�Q

√
|A|
2C

,

κ ′ = κ|A|
α0L

, D′
ρ = Dρ |A|

L
, λ′

1 = λ1

�P

√
|A|

α0βL
,

λ′
2 = λ2

√
|A|

α0βL
, λ′

3 = λ3

√
|A|

α0βL
. (15)

The ± sign in Eqs. (10) and (11) determines whether the
nematic component (in the absence of AM) is above (−)
or below (+) its critical temperature Tc. Before presenting
results, let us discuss the choice of parameters. The quantities
ξ1 and ξ2 depend on the relative magnitudes of Q and P, and
are set to 1 in our simulations. In dimensional units, v0 > 0 is
the speed of the active particle. Further, the stable state exists
only if v1 > 0 [44]. We assign the corresponding rescaled
parameters the values v′

0 = 0.5, v′
1 = 0.25. Our simulation

results do not change significantly if v′
0, v

′
1 are varied. The

dimensional parameters �P, �Q, and �ρ are the inverse relax-
ation scales of P, Q and ρ, respectively. The dimensionless
quantities � and �′ measure the relative timescales, and we set
them to 1. Similarly, κ ′ and D′

ρ set the relative values of elastic
scales, and we assign them the value 1. Finally, the λi are the
strengths of the convective nonlinearities present due to the
absence of Galilean invariance. As remarked in Appendix A,
the terms with λ2 and λ3 arise from the same term in the
free energy Fa and obey λ2 = −λ3/2. However, both these
terms are allowed under symmetry considerations, and we
treat λ2 and λ3 as independent parameters. In dimensional
terms, the linear stability analysis of the TT equations shows
that nontrivial states arise under the conditions λ1/�P + λ2 +
λ3 < 0 and λ2 = −λ3 [10,14]. These conditions are invariant
under the above rescaling, and we consider the case with
λ′

1 = −0.5, λ′
2 = −0.5, λ′

3 = 0.5. There is clearly a degree of
freedom involved in the above choice of parameters. However,
we emphasize that our numerical results do not change quali-
tatively on changing the above values as long as the specified
signs are preserved. The coupling constant c0 will be allowed
to vary in our simulations.

III. RESULTS

At the core of the current theoretical modeling is to un-
derstand the interplay of the AM-NLC coupling in LLCs. We
now focus on understanding the effect of the coupling strength
c0 on the dynamical evolution of the active and nematic
fields. The three cases which provide interesting outcomes are
Case 1: T > Tc, ρ0 = ρ+

c ; Case 2: T < Tc, ρ0 = ρ−
c ; Case

3: T < Tc, ρ0 = ρ+
c . Here, ρ+

c (ρ−
c ) corresponds to density

slightly above (below) the critical density ρc. Without loss of
generality, we choose ρc = 0.5. For each of the three cases,

we numerically solve Eqs. (10)–(14) via Euler discretization
with an isotropic Laplacian on an N2 lattice (N = 128). We
impose periodic boundary conditions in both directions [52],
so as to remove the edge effects and mimic the bulk system.
The discretization mesh sizes are chosen to be �t = 0.01 and
�x = 1.0. The initial conditions for Q and P are chosen as
small fluctuations about zero, which mimics the disordered
state. The corresponding initial state for ρ is small fluctuations
around the mean density ρ0. All statistical quantities have
been averaged over 10 independent initial conditions, unless
otherwise stated.

First, let us discuss the consequences of AM-LC coupling
for Case 1. The linear stability analysis for the uncoupled
system (c0 = 0) yields a disordered state for the nematic
component with S � 0, and a banded state for the active com-
ponent. Figure 1 shows the evolution of the active and nematic
components with ρ0 = ρ+

c = 0.52 for different values of c0.
Figures 1(a) and 1(b) show the density (see color bar) of the
active field at t = 102 and 104 for c0 = 0.5. The white arrows
point along the P-field with the length proportional to the
magnitude. Clearly, the AM shows a banded state analogous
to the uncoupled limit. In the banded state, there is coexistence
of order (large P) and disorder (small P) in the P-field. In the
nonlinear dynamics literature, this has often been referred to
as a chimera state [31,32]. In Figs. 1(a) and 1(b), the evolution
to the chimera state is evident. The chimera sweeps through
the system with velocity v0. The corresponding developments
in the nematic field are shown in Figs. 1(d) and 1(e). The color
bar indicates the value of the orientational order parameter S ,
which has been normalized by its maximum value: Sm � 0.67
in Fig. 1(d), Sm � 0.61 in Fig. 1(e). The coupling imprints the
chimera state on the nematic component, which also travels
with speed v0. Note that the nematogens continue to remain
passive, it is only the orientational order (and disorder) that is
dynamical. A visualization of this novel LLC steady state is
provided by Movie 1 of Supplemental Material (SM) [53]. In
Fig. 1(g), we have plotted the variation of ρ̄, P̄ and S̄ with y
in the steady state. The bar indicates an average along the x
direction. The homologous variation of all the quantities con-
firms their spatial coalignment. These solutions correspond to
traveling waves of Eqs. (10)–(14) with speed v0. The resultant
ordinary differential equations have to be solved numerically
to obtain the inhomogeneous profiles in Fig. 1(g).

To examine the consequence of increasing coupling
strength, we show the active and nematic fields for c0 = 1.0 at
t = 104 in Figs. 1(c) and 1(f). The bandwidth (�) broadens,
and the orientational order increases (Sm � 1.79). Figure 1(h)
shows the dependence of �−1 versus c0. The system settles to
a homogeneous state (�−1 = 0) at a critical value c∗

0 � 2.1.
The dashed line corresponds to �−1 = c∗

0 − c0, and is a good
fit to the data for higher values of c0. (We attribute the dis-
crepancy in the value of c∗

0 to finite system sizes used in our
simulations.) In Fig. 1(i), we provide the phase diagram in
the (c0, ρ0) plane depicting regions where the chimera and
ordered states are stable solutions. We have obtained the phase
boundary (dashed line) analytically using linear stability anal-
ysis, the details of which are provided in Appendix B. The
smear indicates the region where the numerically obtained
phase boundary lies. In this region, the final state obtained in
our simulations is dependent on the initial condition and may
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(a) (b)

(d) (e)

ρ,
P

S
(c)

(f)

(i)

c0=0.5

(g) (h)

x

y

c0=0.5, t=102

c0=0.5, t=102 c0=0.5, t=104 c0=1.0, t=104

c0=0.5, t=104 c0=1.0, t=104

FIG. 1. Morphology snapshots for the active field (first row) and nematic field (second row) in Case 1 (T > Tc, ρ0 = ρ+
c = 0.52) for

specified values of (t, c0). The color bar in the top row indicates the density (ρ) of the active field; the white arrows represent the direction and
magnitude of the polarization field (P). The color bar in the second row shows the orientational order S in the nematic, see text for details.
Subfigure (g) shows the variation of ρ̄, P̄ and S̄ with y for morphologies (b) and (e), where the bar indicates an average along the x-direction.
Subfigure (h) shows the dependence of the inverse bandwidth �−1 on the coupling c0. The dashed line corresponds to �−1 = c∗

0 − c0, with
c∗

0 = 2.1. Subfigure (i) shows the phase diagram demarcating the ordered (�) and chimera (�) states. The dashed line indicates the analytical
phase boundary obtained in Appendix B, while the smeared region indicates the approximate numerical counterpart. The smeared region will
reduce to the analytical results for infinite system size and �x, �t → 0.

be either chimera or ordered. This ambiguity is a consequence
of the Euler discretization on finite lattices, and will go away
for infinite system size and �x,�t → 0. In the latter limit,
we will recover the analytical phase boundary. It should be
noted that there is a re-entrant phase transition for a range of
ρ0-values, where the LLC makes a transition from ordered →
chimera → ordered on increasing c0.

Next, we present the results for Case 2 with T < Tc,
ρ0 = ρ−

c = 0.48. In the uncoupled limit (c0 = 0), the Q-field
settles to an ordered nematic state with a nonzero value of
S , and the ρ and P fields are isotropic. The introduction of
the coupling shows dramatic consequences. The active field
evolves into a chimera which has so far been observed only

when ρ0 = ρ+
c . The naturally ordered nematic state is also

driven into a chimera. A prototypical evolution can be seen
in Movie 2 of SM [53]. Additionally, we also observe elusive
two-dimensional soliton structures for some choices of c0 and
ρ−

c . (The probability of occurrence of solitons is around 0.1 in
our simulations.) As mentioned earlier, there is a long history
of soliton solutions in completely integrable partial differen-
tial equations [33–35]. Most known soliton equations (e.g.,
Korteweg-de Vries equation, nonlinear Schrodinger equation,
etc.) are one-dimensional, and there are very few examples
of higher-dimensional solitons. We observe these in our pro-
posed model of LLCs. In Fig. 2, we have plotted the evolution
of the ρ field (top row) and nematic field (bottom row) for
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(f)

(a) (b) (c)

(d) (e)
x

y

t=800 t=1000 t=1200

FIG. 2. Morphology snapshots of the active field (top row) and nematic field (bottom row) for Case 2 with T < Tc, ρ0 = ρ−
c = 0.48, and

c0 = 0.1. The arrows in the active morphologies correspond to the polarization field in the high density regions (ρ > 0.6), and denote the
direction of motion of the active field. The S-field is normalized by (d) Sm = 2.104, (e) Sm = 2.066, (f) Sm = 2.0737, respectively.

c0 = 0.1 at t = 800, 1000, 1200. The white arrows in the ac-
tive morphologies correspond to the polarization field in the
high density regions (ρ > 0.6). A localized lump (L1) moves
to the right (t = 800), and undergoes a complicated nonlinear
collision with lumps moving toward the right (t = 1000). Af-
ter this collision, L1 emerges and recovers its original profile.
Thus, the solitons maintain their self-confined shapes while
propagating and survive the collisions. This scenario can be
seen clearly in Movie 3 of SM [53]. The LLC model proposed
here is a dissipative system and not Hamiltonian, as far as
the nonactive terms are concerned. So the conventional ex-
planation of soliton behavior via “complete integrability and
infinite constants of motion” does not apply here. Clearly, the
origin of this solitonlike behavior requires further analytical
investigation, and is beyond the scope of this paper.

Finally, we present the phase diagrams for Case 2 and Case
3 in Figs. 3(a) and 3(b), respectively. For Case 2 [Fig. 3(a)],
the LLC coupling drives the active system from a disor-
dered state to structured steady states even though ρ0 = ρ−

c .
From our linear stability analysis provided in Appendix B,
the transition from the disordered to ordered state occurs
when c0 + ρ/ρc − 1 > 0, shown by the dotted line. For in-
termediate values of c0, there is a small region exhibiting
both one-dimensional chimera and higher-dimensional soliton
states, and another where only the chimera state is observed.
For larger c0-values, the ordering nematic drives AM and both
subsystems transit to an ordered state. For Case 3 [Fig. 3(b)],
the nematic and active fields are both in the ordered state with
T < Tc and ρ0 = ρ+

c . The region corresponding to chimera
states diminishes as (ρ0 − ρc) increases. For large c0 >

c∗
0(ρ0), the system transits to an ordered state. In both subfig-

ures, the dashed line is the analytical phase boundary obtained

from the linear stability analysis provided in Appendix B.
The smear, as mentioned earlier, indicates the location of the
approximate phase boundaries from our numerics.

IV. SUMMARY AND CONCLUSION

To summarize, we have explored pattern dynamics in living
liquid crystals (LLCs)—an amalgamate of active matter (AM)
and nematic liquid crystals (NLCs). The latter are classic
examples of anisotropic materials with a special direction
of average molecular alignment. We model the LLCs using
the Toner-Tu (TT) model, the Landau-de Gennes (LdG) free
energy and an experimentally motivated coupling term that
favours coalignment of the local polarization in the active
field and the nematic director. The early theoretical models for
this contemporary system are restricted to the dilute regime
where the active particles do not interact with one another. Our
generic model, however, includes AM-AM, NLC-NLC, as
well as AM-NLC interactions, which unfold novel symbiotic
dynamics of the active and nematic components.

We focus on understanding this symbiotic dynamics in
two-dimensional (d = 2) LLCs. Such geometries have been
realised experimentally in the context of pure NLCs confined
to shallow wells by ensuring that the top and bottom sur-
faces enforce planar boundary conditions. Consequently, the
nematic molecules are primarily confined in a plane and the
variations along the height of the sample are negligible. Our
comprehensive work yields a range of analytical and numeri-
cal results for d = 2 LLCs. From a fixed point analysis of the
dynamical equations, we have obtained phase diagrams for a
range of parameters. Our extensive theoretical studies unfold
two steady states hitherto unobserved in LLCs: (i) Chimeras
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(a) (b)

FIG. 3. Phase diagram for (a) Case 2: T < Tc, ρ0 = ρ−
c ; and (b) Case 3: T < Tc, ρ0 = ρ+

c showing different phases: disordered (�),
chimera (�), soliton plus chimera (�), and ordered (�). The phase boundaries shown by the dotted and dashed lines are obtained analytically
in Appendix B. The smear indicates the corresponding numerical phase boundary for the chimera → ordered transition.

corresponding to bands of large orientational order (in AM
and NLCs) coexisting with disorder. The ordered regions in
the two components are coaligned, and sweep through the
system in synchrony with the speed v0 of the active parti-
cles. (ii) Solitons corresponding to localized regions of order
(in AM and NLCs) which are robust under locomotion and
collisions. While their presence in d = 1 is well known, the
existence of solitons in higher dimensions is rare. The induced
dynamics in the passive nematic is unprecedented. The d = 3
counterpart of our study will be equally rewarding. One im-
portant difference in d = 3 is a first order phase transition in
the nematic component instead of second order [24,25,50,54].
Although the active system characteristics are robust in differ-
ent dimensions [55,56], the change in the nature of transition
of the nematic component can have intriguing effects on the
coupled dynamics. One expectation is the presence of novel
phases with directional dependence and more complicated
defect structures.

Our theoretical framework demonstrates that the AM-LC
coupling can discipline AM by inducing orientational order
and heal NLCs by erasing topological defects. Such obser-
vations suggest the design and synthesis of new self-healing

materials, which can also provide targeted delivery of infor-
mation and microcargo without channels. Our work provides
many ideas for manipulating AM and LCs for exciting futuris-
tic applications. We hope that it will initiate joint experimental
and theoretical investigations in the contemporary LLCs.
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APPENDIX A: DYNAMICAL MODEL FOR LLCS

We substitute the free energy defined in Eq. (7) in Eqs. (3)–
(5) and keep gradient terms up to second order to obtain the
following model for LLCs in d = 2:

1

�Q

∂Q11

∂t
= ±2|A|Q11 − 4C

(
Q2

11 + Q2
12

)
Q11 + 2L∇2Q11 + c0

(
P2

1 − P2
2

)
, (A1)

1

�Q

∂Q12

∂t
= ±2|A|Q12 − 4C

(
Q2

11 + Q2
12

)
Q12 + 2L∇2Q12 + 2c0P1P2, (A2)

1

�P

∂P1

∂t
= [−α(ρ) − βP · P]P1 − v1

2ρ0
∇xρ + λ1

�P
(P · ∇)P1 + λ2∇x(|P|2) + λ3P1(∇ · P) + κ∇2P1 + 2c0(Q11P1 + Q12P2),

(A3)

1

�P

∂P2

∂t
= [−α(ρ) − βP · P]P2 − v1

2ρ0
∇yρ + λ1

�P
(P · ∇)P2 + λ2∇y(|P|2) + λ3P2(∇ · P) + κ∇2P2 + 2c0(Q12P1 − Q11P2),

(A4)

1

�ρ

∂ρ

∂t
= − v0

�ρ

∇ · (Pρ) + Dρ∇2ρ. (A5)
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The ± signs in Eqs. (A1) and (A2) refer to T > Tc (−)
and T < Tc (+), where Tc is the ordering temperature of the
pure nematic. Notice that the free energy yields λ2 = w/2
and λ3 = −w in these equations. However, both of these
dynamical terms are permitted by symmetry considerations.
Therefore, we treat λ2 and λ3 as unrelated phenomenological
parameters.

APPENDIX B: FIXED-POINT SOLUTIONS AND LINEAR
STABILITY ANALYSIS

The dimensionless Eqs. (10)–(14) govern the evolution of
the LLC to its steady state. It is useful to study the fixed
point (FP) solutions (Q∗, P∗), as these dictate the nature of
the domains and steady states formed during the evolution.
To determine the FP solutions for the coupled system, we set
∂/∂t = ∇ = 0 in Eqs. (10)–(14) with ξ1 = ξ2 = 1:

±Q∗
11 − (

Q∗
11

2 + Q∗
12

2)Q∗
11 + c0

(
P∗

1
2 − P∗

2
2) = 0, (B1)

±Q∗
12 − (

Q∗
11

2 + Q∗
12

2)Q∗
12 + 2c0P∗

1 P∗
2 = 0, (B2)

(g0 − |P∗|2)P∗
1 + c0(Q∗

11P∗
1 + Q∗

12P∗
2 ) = 0, (B3)

(g0 − |P∗|2)P∗
2 + c0(Q∗

12P∗
1 − Q∗

11P∗
2 ) = 0, (B4)

where g0 = ρ0/ρc − 1. The conservation law dictates that the
homogeneous FP solution of Eq. (14) is ρ = ρ0. A trivial solu-
tion for Eqs. (B1)–(B4) is Q∗

11 = 0, Q∗
12 = 0, P∗

1 = 0, P∗
2 = 0,

which corresponds to a disordered state for both components.

The nontrivial FPs are rotationally invariant and can be
expressed as

Q∗
11 = rQ cos 2θ, Q∗

12 = rQ sin 2θ ;

P∗
1 = rP cos θ, P∗

2 = rP sin θ. (B5)

Here, θ is the arbitrary angle between P∗ ‖ n∗ and the x axis.
We can choose θ = 0 without loss of generality. This choice
of θ corresponds to Q∗

11 = rQ, P∗
1 = rP and Q∗

12 = P∗
2 = 0.

The substitution of these values in Eqs. (B1)–(B4) simplifies
them to

−r3
Q + ( ± 1 + c2

0

)
rQ ± c0|g0| = 0, (B6)

r2
P = c0rQ ± |g0|. (B7)

Here, the first ± sign in Eq. (B6) signifies T < Tc (+) or
T > Tc (−). The ± sign with |g0| is dictated by whether
ρ0 > ρc (+) or ρ0 < ρc (−). We solved these equations for
arbitrary values of c0. The FPs thus obtained are given in
Table I for all cases.
Next, we determine the stability of the FP solutions
(ρ0, P∗, Q∗). The evolution of small fluctuations around these
solutions (ρ0 + �ρ, P∗ + �P, Q∗ + �Q) can be obtained
using Eqs. (10)–(14). It is convenient to work with Fourier-
transformed fluctuations [�ρ(k, t ),�P(k, t ),�Q(k, t )]. The
corresponding linearized equations can be written in vector
notation:

∂(k, t )

∂t
= W (k) · (k, t ), (B8)

where (k, t )= [�ρ(k, t ),�P1(k, t ),�P2(k, t ),�Q11(k, t ),
�Q12(k, t )]. The quantity W (k) is a 5 × 5 matrix:

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iv′
0(kxP∗

1 + kyP∗
2 )

−D′
ρ

(
k2

x + k2
y

) ikxv
′
0ρ0 ikyv

′
0ρ0 0 0

P∗
1

ρc
+ ikxv

′
1

2ρ0

ρ0

ρc
− 1 − 3P∗

1
2 − P∗

2
2

−ikx(λ′
1 + 2λ′

2 + λ′
3)P∗

1
−ikyλ

′
1P∗

2 − κ ′(k2
x + k2

y

)
+c0Q∗

11

−2P∗
1 P∗

2 − 2ikxλ
′
2P∗

2−ikyλ
′
3P∗

1 + c0Q∗
12

c0P∗
1 c0P∗

2

P∗
2

ρc
+ ikyv

′
1

2ρ0

−2P∗
1 P∗

2 − 2ikyλ
′
2P∗

1−ikxλ
′
3P∗

2 + c0Q∗
12

ρ0

ρc
− 1 − 3P∗

2
2 − P∗

1
2

−iky(λ′
1 + 2λ′

2 + λ′
3)P∗

2
−ikxλ

′
1P∗

1 − κ ′(k2
x + k2

y

)
−c0Q∗

11

−c0P∗
2 c0P∗

1

0 2c0P∗
1 −2c0P∗

2

±1 − 3Q∗
11

2

−Q∗
12

2

−(
k2

x + k2
y

) −2Q∗
11Q∗

12

0 2c0P∗
2 2c0P∗

1 −2Q∗
11Q∗

12

±1 − 3Q∗
12

2

−Q∗
11

2

−(
k2

x + k2
y

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B9)

As usual, the eigenvalues {λ̄i} and eigenvectors of W (k)
determine the stability of a FP. If any λ̄i > 0, then the fluc-
tuations grow exponentially in time in the corresponding
eigen-direction, i.e., the FP is unstable. To examine the sta-
bility of the disordered solution, we set P∗

1 = P∗
2 = Q∗

11 =

Q∗
12 = 0 in Eq. (B9). It is clear that the coupling terms

do not contribute at the linear level as they are quadratic
in Pi and Qi j . Thus, the stability properties of the triv-
ial disordered FP are the same as those of the LC and
AM separately.
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TABLE I. FP solutions for Cases 1–3.

Cases FP solutions
(Q∗

11, Q∗
12, P∗

1 , P∗
2 ) = (rQ, 0, rP, 0)

Case 1 rQ = −21/3
(
1 + c2

0

)
a−1/3

1 + a1/3
1 (21/33)−1

(T > Tc, ρ0 = ρ+
c ) r2

P = c0rQ + |g0|
a1 = 27|g0|c0 +

√
(27|g0|c0)2 + 4

(
3 − 3c2

0

)3

Case 2 rQ = 21/3
(
1 + c2

0

)
a−1/3

1 + a1/3
1 (21/33)−1

(T < Tc, ρ0 = ρ−
c ) r2

P = c0rQ − |g0|
a1 = −27|g0|c0 +

√
(27|g0|c0 )2 + 4

(
3 − 3c2

0

)3

Case 3 rQ = 21/3
(
1 + c2

0

)
a−1/3

1 + a1/3
1 (21/33)−1

(T < Tc, ρ0 = ρ+
c ) r2

P = c0rQ + |g0|
a1 = 27|g0|c0 +

√
(27|g0|c0 )2 + 4

(
3 − 3c2

0

)3

For nontrivial FPs, the analysis is more complicated and
and analytically ugly even after setting P∗

2 = Q∗
12 = 0. We

determine the {λ̄i(k)} numerically as a function of k, and see
whether any of the values lies above 0. For example, consider
the phase diagram in Fig. 1(i). For large values of ρ0 − ρc, the
system lies in the ordered state of Case 1 in Table I. Thus,
all eigenvalues are negative-definite for this state. We reduce
the value of ρ0 − ρc at constant c0, and investigate where the
first instability arises. This signals the onset of a nontrivial
ordered state with spatial inhomogeneity, which is identified
as a chimera. This is how the dashed lines in Fig. 1(i) and
Figs. 3(a) and 3(b) are obtained.

In Case 2, we also have a nontrivial FP where Q∗
11 =

1, Q∗
12 = P∗

1 = P∗
2 = 0., i.e., the LC is ordered and AM is

disordered. The dotted line in Fig. 3(a) denotes the boundary
where this isotropic state becomes unstable, foreshadowing
the onset of order in both fields.
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