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The collective behavior of active agents, whether herds of wildebeest or microscopic actin filaments propelled
by molecular motors, is an exciting frontier in biological and soft matter physics. Almost three decades ago,
Toner and Tu developed a continuum theory of the collective action of flocks, or herds, that helped launch the
modern field of active matter. One challenge faced when applying continuum active matter theories to living
phenomena is the complex geometric structure of biological environments. Both macroscopic and microscopic
herds move on asymmetric curved surfaces, like undulating grass plains or the surface layers of cells or embryos,
which can render problems analytically intractable. In this paper, we present a formulation of the Toner-Tu
flocking theory that uses the finite element method to solve the governing equations on arbitrary curved surfaces.
First, we test the developed formalism and its numerical implementation in channel flow with scattering obstacles
and on cylindrical and spherical surfaces, comparing our results to analytical solutions. We then progress to
surfaces with arbitrary curvature, moving beyond previously accessible problems to explore herding behavior on
a variety of landscapes. This approach allows the investigation of transients and dynamic solutions not revealed
by analytic methods. It also enables versatile incorporation of new geometries and boundary conditions and
efficient sweeps of parameter space. Looking forward, the paper presented here lays the groundwork for a
dialogue between Toner-Tu theory and data on collective motion in biologically relevant geometries, from drone
footage of migrating animal herds to movies of microscopic cytoskeletal flows within cells.
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I. INTRODUCTION

The beautiful collective motions of flocking or herding
animals have mesmerized the human mind for millennia [1]
and inspired the modern field of study of active matter [2–4].
In recent decades, active matter theories have been used to
describe collective motion in living systems across nearly a
billionfold difference in scales [5], from starling flocks wheel-
ing over Rome at 10 m/s [6], to 50μm/s flows of cytoplasm
in cm-size internodal cells of the algae Chara [7], to 0.1μm/s
flows of actin filaments and myosin molecules in 50μm devel-
oping C. elegans worm embryos [8]. In these macroscopic and
microscopic contexts, beautiful self-organization phenomena
often take place on surfaces. The collective motion of flock-
ing sheep or kilometer-wide migrating wildebeest herds are
influenced by the hills, valleys, or canyons of the landscape
on which they travel. Similarly, the flows of actin and myosin
molecules mentioned above occur in thin layers at the surface
of the embryo or cell, and are thus constrained by its surface
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topology and shape. While modern techniques such as dy-
namical drone imaging [9] and high-resolution fluorescence
microscopy [10,11] enable experimental measurements of
these animal, cell, or molecule kinematics, a dialogue between
measurement and theory requires predictions that incorporate
the complex shapes of the real-world surfaces on which they
move.

In this paper, we present a general curved-surface for-
mulation and numerical implementation of a minimalistic
continuum theory of flocking or herding active matter with
the hope that it will prove useful to others interested in ex-
ploring continuum theory predictions on complex geometries.
For active matter systems such as bacterial swarms [12],
active colloidal fluids [13], self-propelled rods [14], or pu-
rified cytoskeletal networks [15], studying the contribution
of engineered confinement geometries to emergent patterns
has proven a fruitful path [16–20]. Understanding the con-
tribution of biological geometries to pattern formation is an
exciting direction of growth [21–26]. Indeed, our own interest
in solving active matter theories on arbitrary curved surfaces
was initially inspired by a need to predict emergent actin
polarity patterns at the surface of single-celled Toxoplasma
gondii parasites, whose gliding motility is driven and directed
by this surface actin layer [27]. These cells have a beautiful
but complex shape which lacks the symmetries that license
traditional analytic approaches.

We focus on a classic continuum active matter model orig-
inally developed by Toner and Tu [3,4,28], inspired by the
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work of Vicsek et al. [2], to describe the collective behavior
of flocking or herding animals. The Toner-Tu theory helped
launch the modern field of active matter [29] and can describe
collections of dry, polar, and self-propelled agents at any
length scale. We develop a general curved surface framework
for the Toner-Tu theory and implement it in the finite ele-
ment setting, enabling its convenient use on complex surfaces.
While flocking theory—and, in particular, the herding of
wildebeests—serves as our example in this paper, the general
curved surface formulation and finite element method (FEM)
approach presented here may prove useful for any continuum
active matter theory. There is a rich and beautiful literature as-
sociated with formulating field equations on arbitrary curved
surfaces [30–36]. It has been said of these formulations, “The
complexity of the equations may explain why they are so
often written but never solved for arbitrary surfaces.” [34].
Because of our interest in collective motions on biological sur-
faces, we could not afford to avoid solving these equations on
such surfaces. We used a finite element approach, which
can be flexibly adjusted to an arbitrary choice of geometry
and permits an exploration of active, self-organized solutions
predicted by the Toner-Tu theory. With our general surface
formulation and finite element implementation in hand, we
test our framework and approach on cylindrical and spherical
geometries for which analytic solutions exist as well. Satisfied
by the agreement between our numerical and analytic results,
we explore flocking phenomena on a broad collection of
surfaces.

The remainder of the paper is organized as follows. In
Sec. II, we show how the flocking theory of Toner and Tu
can be recast in a general surface form to describe flocking
motions on arbitrary curved surfaces. In Sec. III, we con-
struct a finite element surface formulation that respects the
low symmetry of realistic curved geometries while permitting
numerical analysis of the dynamics. In Sec. IV, we turn to
the great wildebeest herds for inspiration and perform simple
parameter estimates for Toner-Tu wildebeest herding. We then
explore the dimensionless ratios that appear when recasting
the Toner-Tu equations in dimensionless form. In Sec. V, with
the full surface formulation and its numerical implementation
in hand, we explore scaling relationships and changes of dy-
namical state that arise for herds in channels with scattering
obstacles, and we use cylindrical and spherical surfaces to
compare our FEM results to corresponding analytic solutions.
Our approach also allows the exploration of transients and
dynamic solutions not revealed by analytic methods. Finally,
in Sec. VI, we playfully use the curved-space formalism and
its finite element implementation for case studies of wilde-
beest herding on landscapes of rolling hills, and we note that
this paper serves as a theoretical foundation to solve flocking
theories on real-world curved surfaces of biological interest.

II. FLOCKING THEORY FOR ARBITRARY
CURVED SURFACES

A. A minimal Toner-Tu theory in the plane

The first step in the development of continuum theories of
active matter involves selecting the relevant field variables.
Following the classic work of Toner and Tu [3,4] and inspired

by observations of herds of land animals like wildebeests,
we consider a two-dimensional density field ρ(r, t ) and a
corresponding two-dimensional velocity field v(r, t ), which
captures both the orientation and speed of a polar agent.
Throughout this paper, wildebeest herds will serve as inspi-
ration and example, although in a sense the term wildebeest
is our shorthand for a self-propelled polar agent at any length
scale. We also note that the Toner-Tu model used here de-
scribes dry systems, in which momentum is not conserved
and hydrodynamic coupling between the agents is negligible
relative to frictional drag. With variables ρ and v in hand,
our next step is to write the partial differential equations that
describe the spatiotemporal evolution of those field variables.
The first governing equation is the continuity equation given
by

∂ρ

∂t
+ ∂ (ρvi )

∂xi
= 0, (1)

which allows modulations in the density field but enforces
mass conservation, forbidding wildebeest birth or death in
the midst of herding phenomena. Note that we are using the
Einstein summation convention, which tells us to sum over all
repeated indices. For example, a · b = ∑3

i=1 aibi = aibi. The
second governing equation is a minimal representation of the
dynamics of the v field offered by Toner and Tu [3] and is
given by

∂vi

∂t
= [α(ρ − ρc) − βv jv j]vi − σ

∂ρ

∂xi
+ D∇2vi − λv j

∂vi

∂x j
,

(2)
where ρc is the critical density above which the herd moves
coherently, the ratio of α(ρ − ρc) and β sets the wildebeest
mean-field speed vpref = √

α(ρ − ρc)/β, the term σ∂ρ/∂xi

provides an effective pressure, D tunes wildebeest alignment
and speed matching with neighbors, and λ tunes velocity self-
advection. We can conceptualize each term as an update rule
that computes incremental changes in the velocity vector at
each point in space and at every step in time. In Fig. 1 and in
the remainder of this section, we seek to provide an intuitive
interpretation of each term and its contribution to updating the
velocity field.

The first term on the right-hand side of Eq. (2), the pre-
ferred speed term, pushes the velocity magnitude toward the
characteristic speed of a wildebeest, vpref [37]. The second
is based on an equation of state originally used by Toner
and Tu to relate density and pressure [4]. This pressure term
punishes gradients in density, adjusting velocity to flatten the
density field. The third, the neighbor coupling term, provides
a smoothing or diffusion of velocity (orientation and speed)
that reflects coordination between nearby wildebeests. Inter-
estingly, if wildebeests adopt the rule that a given wildebeest
averages the difference between its own velocity and that of
its neighbors, mathematically, the result is a Laplacian term
like that seen in the minimal model [37]. The final term
has analogy to the gradient component of the material time
derivative in the Navier-Stokes equations. In essence, the ve-
locity field advects itself; wildebeests move along a direction
dictated by their orientation and velocity, and they bring that
orientation and velocity with them. In the case of pure velocity
self-advection, λ = 1, but this is not necessarily the case for
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(a) (b)

(c) (d)

FIG. 1. Building intuition for the physics of the velocity field in the Toner-Tu theory. The different terms in the Toner-Tu analysis are
represented graphically for a one-dimensional herd. We can think of each term as providing an update to the current velocity. In each case, an
example of a simple velocity profile (blue) or density profile [graphic in (b)] is shown alongside the corresponding velocity update (green).
(b) The preferred speed term increases the velocity of wildebeests that are moving too slow and decreases the velocity of wildebeests that are
moving too fast. (b) The pressure term punishes gradients in density, adjusting velocity to flatten these gradients. Given mass conservation in
a finite system, the pressure term alone would lead to a steady state of uniform density ρ = ρ0. (c) The neighbor coupling term captures the
velocity adjustment made by a wildebeest to better match its neighbors, smoothing out differences in velocity. A given wildebeest (middle
black dot) adjusts its velocity by an amount represented by the green arrow: an average of the difference between its velocity and its two
neighbors’ velocities. This averaging of two differences is mathematically analogous to taking a local second derivative or local Laplacian,
∇2v. (d) Finally, the advection term ensures that the filament velocity field is swept along according to its own velocities, just as fluid velocity
is self-advected in the Navier-Stokes equations. Mathematically, the velocity adjustment needed to ensure velocity advection is a function of
the spatial gradient of velocity (−∇v, how mismatched in velocity nearby wildebeests are) and the velocity itself (v, how fast that mismatch is
carried along by the herd).

active flocks [37,38]. In the case of wildebeest herds, we can
conceptualize this effect by considering that λ = 1 + ξ , where
ξ reflects a behavioral response to gradients in velocity; for
example, wildebeests may resist running quickly into a steep
gradient of decreasing velocity, and may slow down. For a full
pedagogical derivation of the Toner-Tu model, we recommend
a series of lectures by Toner [37] in which he uses symmetry
arguments to infer what terms should be kept in a complete
continuum description of herding and also provides intuitive
arguments about what these terms mean.

B. Formulating the theory for arbitrary curved surfaces

Inspired by a desire to make contact with phenomena of
the natural world, like wildebeests navigating an undulat-
ing landscape, sheep flocks crossing hilly pastures, and the
surfaces flows of flocking actin we study in Ref. [27], we
sought to solve the minimal Toner-Tu theory presented above
on complex and asymmetric surface geometries. We consider
here flocking on nondeformable surfaces, but we refer the
interested reader to earlier work on surface hydrodynamics

024610-3



HUESCHEN, DUNN AND PHILLIPS PHYSICAL REVIEW E 108, 024610 (2023)

FIG. 2. Illustration of the projection operator essential to the general surface formulation and finite element treatment of the Toner-Tu
equations on curved surfaces. The surface of interest is represented by a collection of nodes (vertices of triangles) and a field of surface normal
vectors, n (black arrows). An arbitrary vector v is projected onto the tangent plane (shown in gold), permitting a decomposition of the form
v = v‖ + v⊥.

in the completely general case in which the surface itself can
evolve over time [32–34,36]. Predicting flocking or herding
behavior on arbitrary surfaces requires us to reformulate the
theory in a more general way that accounts for curvature.
Instead of basing our formulation on a parameterized surface
and the intrinsic differential geometry tools that this approach
licenses, as done in Ref. [39], from the outset we have in mind
arbitrary surfaces that can be represented using finite element
meshes and described by a field of local normal vectors, n.

Our choice and use of this extrinsic differential geometry
and FEM approach was aided by the work of many, includ-
ing Refs. [33–35,40–45] and Chap. 3 of the Supplemental
Material for Ref. [46]. The finite element setting permits us
the convenience of carrying out the mathematics in the full
three-dimensional setting of R3, while using our knowledge
of the normal vectors everywhere on the surface of interest
to project our governing equations onto the surface. While
velocity is described by the three-dimensional vector v, both v
and the scalar ρ are defined only on the surface. At every point
on the surface, derivatives evaluated in the usual R3 way are
projected onto the tangent plane using the local normal. For
an insightful description of this extrinsic differential geometry
approach to handling curved surfaces and its mathematical
equivalence to the intrinsic differential geometry strategy, we
recommend Chaps. 22 and 23 of Needham [47]. Central to
the extrinsic geometry approach is the projection operator,
defined as

projection onto tangent plane = P = I − n ⊗ n, (3)

where I is the identity matrix and n ⊗ n is the outer product of
the surface normal vector as shown in Fig. 2. To make sense
of this expression mathematically, we recall that the outer
product n ⊗ n is defined through its action on a vector v as

(n ⊗ n)v = n(n · v). (4)

We can write v = v‖ + v⊥, where v‖ is the component of v
in the tangent plane of the surface and v⊥ is normal to the
surface. The action of I − n ⊗ n on a vector v is given by

(I − n ⊗ n)v = v − n(n · v) = v − v⊥ = v‖, (5)

as illustrated in Fig. 2. We can write the projection operator
in component form as

Pi j = δi j − nin j, (6)

recalling that the normal vector to the surface is given by
n = (n1, n2, n3), or in full component form as

P =

⎡
⎢⎣

1 − n2
1 −n1n2 −n1n3

−n1n2 1 − n2
2 −n2n3

−n1n3 −n2n3 1 − n2
3

⎤
⎥⎦. (7)

Using the projection operator allows us to perform calcula-
tions in the ordinary three-dimensional space within which
the surface of interest is embedded, but then to pick off only
the pieces of the resulting vectors that live within the surface.

In the remainder of this section, we examine each term
in the minimal Toner-Tu equations and translate it into its
projected form. In Appendix Sec. 1, we define the projected
surface form of calculus operators as an additional reference
for the reader. First, to modify the preferred speed term to
its curved-surface implementation, we note that it is now v‖,
the in-plane velocity, that has a privileged magnitude. This
magnitude is imposed through the condition

preferred speed term = [α(ρ − ρc) − βv
‖
j v

‖
j ]v

‖
i . (8)

If |v‖| is either larger or smaller than the privileged value
vpref = √

α(ρ − ρc)/β, this term will adjust the velocity to-
wards that steady-state magnitude.

Next, we consider the pressure term, whose physical origin
comes from a model of pressure in powers of density of the
form introduced by Toner and Tu [3],

P(ρ) =
∞∑

n=1

σn(ρ − ρ0)n, (9)

where ρ0 is the mean density. In the minimal Toner-Tu
theory we adopt here, only the first-order term in that expan-
sion is kept, with the notational simplification that σ1 = σ ,

024610-4



WILDEBEEST HERDS ON ROLLING HILLS: FLOCKING … PHYSICAL REVIEW E 108, 024610 (2023)

resulting in

pressure term = − ∂P

∂xi
= −σ

∂ρ

∂xi
. (10)

We note that while ρ0 is not explicitly present in the gradient
of the first-order pressure term, for the case considered here
of a finite surface on which total density is conserved, this
pressure term effectively maintains a density range centered
around the mean density ρ0 established by our choice of
initial condition. The curved-space version of the pressure
term requires projecting the full 3D gradient of the density
onto the tangent plane, using the projection operator defined
in Eq. (3). We follow Jankuhn et al. [34] in introducing the
notation ∇
 for the projected surface gradient operator, where
the subscript 
 indicates that the gradient is evaluated on the
surface of interest. Mathematically, this amounts to computing

∇
ρ = (I − n ⊗ n)∇ρ, (11)

where ∇ is the ordinary, three-dimensional gradient in Carte-
sian coordinates. This can be rewritten in component form
as

(∇
ρ)i = [(I − n ⊗ n)∇ρ]i

= (δi j − nin j )
∂ρ

∂x j

= ∂ρ

∂xi
− nin j

∂ρ

∂x j
. (12)

The next term in the Toner-Tu equations that we consider
in its curved-space format is the advection term in Eq. (2),
namely,

advection term = −λv j
∂vi

∂x j
. (13)

In direct notation, the curved-space version of this term has
the form

advection term = −λ(v‖ · ∇
 )v‖, (14)

which involves the curved-space version of the velocity gra-
dient tensor. In Appendix Sec. 1, we describe how to compute
this tensor, which stated simply is

∇
v‖ = P(∇v‖)P, (15)

where P is the projection operator defined in Eq. (3). In indi-
cial notation, this leads to the result

(∇
v‖)i j = [P(∇v‖)P]i j = Pik
∂v

‖
k

∂xl
Pl j . (16)

Invoking the definition of the projection operator from Eq. (6),
this expression simplifies to the result

(∇
v‖)i j = [P(∇v‖)P]i j

=
(

∂v
‖
i

∂x j
− nln j

∂v
‖
i

∂xl

)

− nink

(
∂v

‖
k

∂x j
− nln j

∂v
‖
k

∂xl

)
. (17)

Thus, the curved-space advection term can be written as

−λ[P(∇v‖)P]i jv
‖
j = − λ

[(
∂v

‖
i

∂x j
− nln j

∂v
‖
i

∂xl

)

− nink

(
∂v

‖
k

∂x j
− nl n j

∂v
‖
k

∂xl

)]
v

‖
j . (18)

With these examples of tangent-plane calculus established,
we now turn to the most tricky of the terms in the Toner-
Tu equations, the surface-projected version of the neighbor
coupling term, D∇2v. First, we recall that the Laplacian of
a vector field in normal 3D Cartesian space is defined as
∇2v = ∇ · (∇v). Further, we note that ∇v is itself a tensor. As
shown by Jankuhn et al. [34], the surface-projected version of
the Laplacian term (see their Eq. (3.16) for the surface Navier-
Stokes equations for the tangential velocity on a stationary
surface), is therefore given by

∇2v︸︷︷︸
flat Toner-Tu

= div(∇v)︸ ︷︷ ︸
in the plane

−→ Pdiv
 (G(v‖))︸ ︷︷ ︸
curved surface

. (19)

To begin to unpack this expression, we note that P is the
projection operator defined in Eq. (3) and that the tensor G
is the surface velocity gradient,

G(v‖) = ∇
v‖, (20)

already presented in Eq. (17) and repeated here in component
form as

Gi j =
(

∂v
‖
i

∂x j
− nln j

∂v
‖
i

∂xl

)
− nink

(
∂v

‖
k

∂x j
− nln j

∂v
‖
k

∂xl

)
. (21)

We note that Jankuhn et al. [34] use a symmetrized version
of the velocity gradient since they are deriving the surface
versions of the Navier-Stokes equations and are thus taking
the divergence of a stress. For the Toner-Tu case of interest
here, the psychological viscosity that comes from neighboring
wildebeests in the herd comparing their velocities is equiva-
lent to the divergence of the velocity gradient itself. We then
invoke the definition of the surface-projected divergence of a
tensor G presented in Appendix A 1, giving rise to a vector of
the form

div
 (G)l = ∂Gl j

∂x j
− n jnk

∂Gl j

∂xk
. (22)

We also introduce the shorthand notation for this divergence
as (

∂Gl j

∂x j

)



= ∂Gl j

∂x j
− n jnk

∂Gl j

∂xk
(23)

to simplify some of the complex expressions to follow. Fi-
nally, we can write the ith component of the surface version
of the Toner-Tu term D∇2v in indicial notation as

D[Pdiv
 (G(v‖))]i = DPil

(
∂Gl j

∂x j
− n jnk

∂Gl j

∂xk

)
. (24)

We now assemble the results of Eqs. (8), (12), (18), and
(24) to construct a complete curved-surface formulation of the
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minimal Toner-Tu equations. Specifically, we have

∂v
‖
i

∂t
= [α(ρ − ρc) − βv

‖
j v

‖
j ]v

‖
i − σ

(
∂ρ

∂xi
− nin j

∂ρ

∂x j

)

+ DPil

(
∂Gl j

∂x j
− n jnk

∂Gl j

∂xk

)
− λ[P(∇v‖)P]i jv

‖
j ,

(25)

which can be streamlined to the alternative form

∂v
‖
i

∂t
= [α(ρ − ρc) − βv

‖
j v

‖
j ]v

‖
i − σ

(
∂ρ

∂xi

)



+ DPil

(
∂Gl j

∂x j

)



− λv
‖
j

[(
∂v

‖
i

∂x j

)



− nink

(
∂v

‖
k

∂x j

)



]
. (26)

Similarly, the curved-space formulation of the governing
equation for density can be written as

∂ρ

∂t
= −∂ (ρv

‖
i )

∂xi
+ nin j

∂ (ρv
‖
i )

∂x j
= −

(
∂ρv

‖
i

∂xi

)



. (27)

We now have a complete formulation of our minimal Toner-Tu
equations for the general surface context, requiring only a
description of the surface in the language of normal vectors.
We next turn to the implementation of this general surface for-
mulation in a fashion consistent with finite element treatments
on arbitrary surfaces.

III. FORMULATING THE SURFACE TONER-TU
EQUATIONS FOR NUMERICAL IMPLEMENTATION

Numerically solving active matter equations on complex
surfaces relevant to the living world presents a practical
challenge. It precludes the differential geometric formalism
used to describe parameterized surfaces, which would lead
to equations featuring covariant derivatives [e.g., Eq. (81) in
Sec. V B]. In the finite element setting, the surface of interest
is represented by a collection of nodes and corresponding
surface normals, as shown in Fig. 2. Using these surface nor-
mals, we perform surface projections of the full three-space
derivatives following Jankuhn et al. [34]. In the previous sec-
tion, we presented a formal statement in Eq. (25) for handling
the minimal Toner-Tu model on an arbitrary surface, using
these surface normals. We now recast those curved-surface
equations once more, in a fashion consonant with a FEM
solver. To formulate the equations in an expression convenient
for the FEM, we aim to rewrite the Toner-Tu equations in the
form

∂v
∂t

+ ∇ · J(v) = f (v). (28)

Here, the whole formulation comes down to the definitions
of J(v) and f (v). The fluxlike quantity J(v) is a 3 × 3 matrix
defined such that

∇ · J(v) =
(

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)⎡
⎢⎣J11 J12 J13

J21 J22 J23

J31 J32 J33

⎤
⎥⎦, (29)

recalling that the divergence of a second-rank tensor is a
vector. In indicial notation, this can be written as

(∇ · J(v) )i = ∂J (v)
ji

∂x j
. (30)

We need to define the components of the tensor J(v) such that
they yield the correct Toner-Tu terms. As we will see below,
J(v) is not symmetric despite its superficial resemblance to a
stress tensor. To set notation and make sure that the strategy is
clear, we begin by demonstrating how to implement the flat-
space version of the Toner-Tu equations in a form consistent
with Eq. (2). If we define the force term f (v) as

f (v)
i = [α(ρ − ρc) − βv jv j]vi − σ

∂ρ

∂xi
− λv j

∂vi

∂x j
, (31)

then the remaining terms are captured if we define the tensor
J(v) as

J(v) =

⎡
⎢⎢⎣

−D ∂v1
∂x1

−D ∂v2
∂x1

−D ∂v3
∂x1

−D ∂v1
∂x2

−D ∂v2
∂x2

−D ∂v3
∂x2

−D ∂v1
∂x3

−D ∂v2
∂x3

−D ∂v3
∂x3

⎤
⎥⎥⎦. (32)

Considering the one-component of velocity, we see that

(∇ · J(v) )1 = ∂Jj1

∂x j
= ∂J11

∂x1
+ ∂J21

∂x2
+ ∂J31

∂x3
. (33)

Plugging in the components of J(v) gives the result

(∇ · J(v) )1 = ∂

∂x1

(
−D

∂v1

∂x1

)
+ ∂

∂x2

(
−D

∂v1

∂x2

)

+ ∂

∂x3

(
−D

∂v1

∂x3

)
. (34)

Evaluating these derivatives leads to the result

(∇ · J(v) )1 = −D
∂2v1

∂x2
1

− D
∂2v1

∂x2
2

− D
∂2v1

∂x2
3

, (35)

as expected from the original Toner-Tu equations. Combin-
ing the contributions from Eqs. (31) and (32) in the form
∂v/∂t + ∇ · J(v) = f (v), we recover Eq. (2) precisely, as we
set out to do. By defining the quantities J(v) and f (v), we have
successfully reframed the flat-space Toner-Tu equations in a
format that will be conveniently implemented in the finite
element setting. We now need to tackle the more demanding
formulation for an arbitrary curved surface.

Abstractly, our finite element version of the curved-space
Toner-Tu equations is written as

∂v
∂t

= − div
 J(v) + f (v), (36)

where div
 is the surface projected version of the divergence
introduced in Eq. (22). We now introduce the definition

J (v)
ji = −DPil Gl j, (37)

where we recall P from Eq. (3) and G from Eq. (20). Given
this definition, we can attempt to write our Toner-Tu equations
as

∂vi

∂t
= −D

(
∂ (−Pil Gl j )

∂x j

)



+ f (v)
i , (38)
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where we use the shorthand notation introduced in Eq. (23).
This can be rewritten as

∂vi

∂t
= D Pil

(
∂Gl j

∂x j

)

︸ ︷︷ ︸

Pdiv
 (∇
v‖ )

+D

(
∂Pil

∂x j

)



Gl j︸ ︷︷ ︸
unwanted term

+ f (v)
i . (39)

Unfortunately, as written, these equations contain an extra
term that is not present in the Toner-Tu formulation. To re-
move this unwanted extra term, we must introduce a new term
in force f (v) that subtracts the unwanted term:

f fict
i = −D

(
∂Pil

∂x j

)



Gl j . (40)

We view this as a mathematical trick that allows us to use a
formalism convenient for FEM analysis and have not sought
to find a physical interpretation of this force in the way that
ideas such as the Coriolis force arises in mechanics. In this
case, our real Toner-Tu equations can be written as

∂vi

∂t
= D Pil

(
∂Gl j

∂x j

)

︸ ︷︷ ︸

Pdiv
 (∇
v‖ )

+D

(
∂Pil

∂x j

)



Gl j︸ ︷︷ ︸
unwanted term

+ f (v)
i + f fict

i . (41)

We now have precisely the equations we want, cast in the form
we will use in the finite element setting.

As we saw above, the force term f (v) + ffict needs to account for those terms that are not present in ∇ · J(v) and to subtract
terms that are present in ∇ · J(v) but unwanted. To that end, the one-component of f (v) + ffict takes the form

f (v)
1 + f fict

1 = (α(ρ − ρc) − β((v‖
1 )2 + (v‖

2 )2 + (v‖
3 )2))v‖

1 − σ

(
∂ρ

∂x1

)



− λ

(
v

‖
1

∂v
‖
1

∂x1
+ v

‖
2

∂v
‖
1

∂x2
+ v

‖
3

∂v
‖
1

∂x3
− v

‖
1n1n1

∂v
‖
1

∂x1

− v
‖
1n1n2

∂v
‖
2

∂x1
− v

‖
1n1n3

∂v
‖
3

∂x1
− v

‖
2n1n1

∂v
‖
1

∂x2
− v

‖
2n1n2

∂v
‖
2

∂x2
− v

‖
2n1n3

∂v
‖
3

∂x2
− v

‖
3n1n1

∂v
‖
1

∂x3
− v

‖
3n1n2

∂v
‖
2

∂x3

− v
‖
3n1n3

∂v
‖
3

∂x3

)
− D

((
∂P11

∂x1

)



G11 +
(

∂P11

∂x2

)



G12 +
(

∂P11

∂x3

)



G13

)
− D

((
∂P12

∂x1

)



G21 +
(

∂P12

∂x2

)



G22

+
(

∂P12

∂x3

)



G23

)
− D

((
∂P13

∂x1

)



G31 +
(

∂P13

∂x2

)



G32 +
(

∂P13

∂x3

)



G33

)
. (42)

Note that the α and β terms capture the preferred speed contribution, the σ term captures the pressure, the terms multiplied by
λ capture the advection contribution to the Toner-Tu equations, and the final terms involving P and G subtract off the fictitious
force. We can repeat a similar analysis for the two- and three-components of the force as

f (v)
2 + f fict

2 = (α(ρ − ρc) − β((v‖
1 )2 + (v‖

2 )2 + (v‖
3 )2))v‖

2 − σ

(
∂ρ

∂x2

)



− λ

(
v

‖
1

∂v
‖
2

∂x1
+ v

‖
2

∂v
‖
2

∂x2
+ v

‖
3

∂v
‖
2

∂x3
− v

‖
1n2n1

∂v
‖
1

∂x1

− v
‖
1n2n2

∂v
‖
2

∂x1
− v

‖
1n2n3

∂v
‖
3

∂x1
− v

‖
2n2n1

∂v
‖
1

∂x2
− v

‖
2n2n2

∂v
‖
2

∂x2
− v

‖
2n2n3

∂v
‖
3

∂x2
− v

‖
3n2n1

∂v
‖
1

∂x3
− v

‖
3n2n2

∂v
‖
2

∂x3

− v
‖
3n2n3

∂v
‖
3

∂x3

)
− D

((
∂P21

∂x1

)



G11 +
(

∂P21

∂x2

)



G12 +
(

∂P21

∂x3

)



G13

)
− D

((
∂P22

∂x1

)



G21 +
(

∂P22

∂x2

)



G22

+
(

∂P22

∂x3

)



G23

)
− D

((
∂P23

∂x1

)



G31 +
(

∂P23

∂x2

)



G32 +
(

∂P23

∂x3

)



G33

)
(43)

and

f (v)
3 + f fict

3 = (α(ρ − ρc) − β((v‖
1 )2 + (v‖

2 )2 + (v‖
3 )2))v‖

3 − σ

(
∂ρ

∂x3

)



− λ

(
v

‖
1

∂v
‖
3

∂x1
+ v

‖
2

∂v
‖
3

∂x2
+ v

‖
3

∂v
‖
3

∂x3
− v

‖
1n3n1

∂v
‖
1

∂x1

− v
‖
1n3n2

∂v
‖
2

∂x1
− v

‖
1n3n3

∂v
‖
3

∂x1
− v

‖
2n3n1

∂v
‖
1

∂x2
− v

‖
2n3n2

∂v
‖
2

∂x2
− v

‖
2n3n3

∂v
‖
3

∂x2
− v

‖
3n3n1

∂v
‖
1

∂x3
− v

‖
3n3n2

∂v
‖
2

∂x3

− v
‖
3n3n3

∂v
‖
3

∂x3

)
− D

((
∂P31

∂x1

)



G11 +
(

∂P31

∂x2

)



G12 +
(

∂P31

∂x3

)



G13

)
− D

((
∂P32

∂x1

)



G21 +
(

∂P32

∂x2

)



G22

+
(

∂P32

∂x3

)



G23

)
− D

((
∂P33

∂x1

)



G31 +
(

∂P33

∂x2

)



G32 +
(

∂P33

∂x3

)



G33

)
. (44)

By setting ∂v/∂t equal to the sum of − div
 J(v) and the f (v) + ffict terms, we have fully reproduced the curved-space version of
the Toner-Tu equations.
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We express the continuity equation in similar form,

∂ρ

∂t
= − div
 J(ρ) + f (ρ), (45)

where J(ρ) is now a vector and the scalar f (ρ) can be thought
of as a source term. We set div
 J(ρ) equal to zero and thus
define

f (ρ) = −div
 (ρv‖)

= −
(

∂ (ρv
‖
l )

∂xl
− nlnk

∂ (ρv
‖
l )

∂xk

)

= −
(

∂ρv
‖
1

∂x1

)



−
(

∂ρv
‖
2

∂x2

)



−
(

∂ρv
‖
3

∂x3

)



. (46)

Altogether, Eqs. (37), (42)–(44), and (46) comprise a com-
plete curved-surface FEM implementation of the minimal
Toner-Tu equations and make possible the numerical results
presented in the remainder of this paper. We also refer the
interested reader to Appendix A 2 for details on our imple-
mentation in the specific commercial finite element package
COMSOL MULTIPHYSICS. Our code, files, and a tutorial on
their use are available in Ref. [48].

IV. PARAMETERS AND DIMENSIONLESS
RATIOS FOR THE THEORY

A. Parameter choices for wildebeest herds

To put our finite element formulation into numerical action,
we must of course adopt specific values for the parameters
ρ0, ρc, α, β, σ , D, and λ that appear in our governing partial
differential equations. In this paper, we focus on the macro-
scopic length scale of animal herds, although we consider
the microscopic activity of cytoskeletal proteins elsewhere
[27]. While our goal here is to explore the phenomenology
of Toner-Tu flocks on curved surfaces in a general way, not
to claim an understanding of specific animal behavior, our pa-
rameter choices are loosely inspired by migrating wildebeest
herds as seen in Fig. 3. By inspecting aerial photographs of
wildebeest herds, we estimated an average wildebeest density
of

ρ0 = 0.25 m−2. (47)

For the critical density above which coordinated herding be-
havior occurs, we make the estimate

ρc = 0.05 m−2, (48)

based roughly on the observation that for densities much
higher than this, the photographed wildebeest have an orga-
nized herd structure. We note that it would be very interesting
to carefully measure these parameters in the context of herds
of wildebeests with a Toner-Tu framework in mind.

The remainder of the parameters are determined in the
spirit of exploring how the different terms compete to alter
the density and velocity fields. Thus, parameters are chosen
to make all terms comparable in magnitude. Here we provide
the actual values used in our finite element calculations, fully
cognizant that our parameter choices are at best approximate.
We begin by estimating the magnitude of ∂v/∂t . We picture

wildebeests circling a small hill in the landscape, moving with
a characteristic speed of 1 m/s and taking 20 s to change
directions completely. This scenario implies

∂v

∂t
≈ 1 m/s − (−1 m/s)

20 s
≈ 0.1 m/s2. (49)

Using the strategy of balancing the magnitudes of the different
terms, we estimate the coefficient for the preferred speed
terms by considering that

0.1 m/s2 = α(ρ0 − ρc)v

≈ α × (0.25 m−2 − 0.05 m−2) × 1 m/s, (50)

which leads us to adopt

α = 0.5 m2/s. (51)

For the parameter β, we choose a value that sets the correct
mean field speed, vpref , for wildebeests. Thus, we adopt

β = α(ρ0 − ρc)

v2
pref

≈ (0.5 m2/s)(0.2 m−2)

(1 m/s)2
= 0.1 s/m2. (52)

We can also check independently that the magnitude of the β

term is of order 0.1 m/s2. Indeed,

βv3 ≈ 0.1
s

m2
× (1 m/s)3 = 0.1 m/s2. (53)

To find the parameter σ , the coefficient of the pressure
term, we consider the gradients in density seen at the edge
of a wildebeest herd and estimate that ρ drops from ρ0 =
0.25 m−2 to 0 m−2 over 25 m. Using these numbers implies

0.1 m/s2 = σ
∂ρ

∂x
≈ σ

0.25 m−2

25 m
, (54)

which leads us to adopt

σ = 10 m4/s2. (55)

We can now apply this thinking to make an estimate of the
neighbor coupling coefficient D by using the equality

0.1 m/s2 = D
∂2v

∂x2
≈ D

1 m/s

(10 m)2
, (56)

which leads to the coefficient choice

D = 10 m2/s. (57)

To estimate the magnitude of λ, we imagine that the wilde-
beest will come to a full stop from a speed of 1 m/s over a
distance of roughly 10 m, permitting us to make the corre-
spondence

0.1 m/s2 = λv
∂v

∂x
≈ λ × 1 m/s × 1 m/s

10 m
, (58)

which implies that

λ = 1. (59)

This estimated set of parameters provides us with a complete
description of the Toner-Tu herd in the minimal model we
seek to explore. Throughout the remainder of the paper, we
consistently use these parameter values. In later sections, in
some cases we will go beyond this idealized parameter set
to perform parameter sweeps that permit different regimes of
behavior to emerge. Unless noted otherwise, time-dependent
FEM simulations were initialized with a uniform density field
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FIG. 3. Estimates for key parameter values from tracking data and images of wildebeest herds. Mean density is estimated in the middle of
a herd, while the critical density is estimated as in between the density of a region that does not show flocking structure (right white box) and
the density of a region that does (left white box). For this paper, we use a wildebeest walking speed of 1 m/s, inferred from the plot of tracking
data adapted from Ref. [49]. The scale of wildebeest acceleration is estimated from images of a turning herd, where a change in the vector v of
roughly 1 m/s occurs over a timescale s/|v|, or roughly 10 s. Aerial photos from drones (mean density and acceleration image) and satellites
(critical density image) are from Ref. [50].

ρ = ρ0 and a disordered velocity field, with velocity orienta-
tions drawn randomly from a uniform distribution of angles
between 0 and 2π and with velocity magnitude v(0) = 1 m/s,
our estimated characteristic wildebeest speed. We note again
that these parameters were chosen to highlight competition
between the different terms in the dynamics; they are far from
the final word for describing real wildebeest herds.

B. Dimensionless representation of the theory

We next recast the Toner-Tu equations in dimensionless
form, rendering the meaning and magnitude of the terms more
transparent. For the positional coordinate, we take x∗ = x/L,

where L is a characteristic length scale in the problem. In this
case, we conceptualize L as the length scale of the wildebeest
herd. We note that in the problems considered here, the scale
of the herd is the same as the scale of the surface landscape
on which the herd moves. Similarly, we use a characteris-
tic velocity scale U to define the dimensionless velocity as
v∗ = v/U . We note that U is conceptually related to vpref ,
but vpref = √

α(ρ − ρc)/β features a hidden dependence on
the density that would complicate our rescaling. Similarly,
we can define a dimensionless density ρ∗ = ρ/ρc, using the
critical density ρc as our scaling variable. Lastly, in light of
the definitions above, we can determine a timescale L/U , the
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time it takes for a given wildebeest to cross the entire surface
landscape. Thus, we define t∗ = t/(L/U ).

Using the various definitions given above, we can now
rewrite the Toner-Tu equations using the dimensionless ver-
sions of t , x, ρ, and v as

U 2

L

∂v∗
i

∂t∗ = αρcU (ρ∗ − 1)v∗
i − βU 3|v∗|2v∗

i − σρc

L

∂ρ∗

∂x∗
i

+ DU

L2
∇2

∗v
∗
i − λU 2

L
v∗

j

∂v∗
i

∂x∗
j

. (60)

Dividing everything by U 2/L results in five dimensionless
parameters whose magnitudes provide a sense of the relative
contributions of the different terms, within the full dynamical

equations of the form

∂v∗
i

∂t∗ = αρcL

U
(ρ∗ − 1)v∗

i − βLU |v∗|2v∗
i − σρc

U 2

∂ρ∗

∂x∗
i

+ D

UL
∇2

∗v
∗
i − λv∗

j

∂v∗
i

∂x∗
j

. (61)

Using definitions of dimensionless variables given above, we
find that the generalized continuity equation takes the form

∂ρ∗

∂t∗ = −∂ (ρ∗v∗
i )

∂x∗
i

. (62)

Next, we briefly turn to interpreting the dimensionless
ratios that appear when casting the minimal Toner-Tu the-
ory in dimensionless form as exhibited in Eq. (61). The two
components of the preferred speed term have dimensionless
parameters given by

preferred speed α term = αρcL

U
= L/U

1/(αρc)
= time for wildebeest to cross herd

time for speed to increase to vpref
(63)

and

preferred speed β term = βLU = L/U

1/(βU 2)
= time for wildebeest to cross herd

time for speed to decrease to vpref
. (64)

Each of these terms provides intuition about how quickly the wildebeest will return to their steady-state speed given some
perturbation that disturbs them from that value. Recall that L/U (the time for wildebeest to cross herd) is roughly the time it
takes for a wildebeest to move a distance equal to the size of the herd or, equivalently, to move across the surface landscape. In
other words, L/U is the time for density advection across the herd. The pressure term can be rewritten as

pressure term = ρc

U 2/σ
= critical density

typical density excursion away from ρ0
. (65)

Increasing σ decreases density variance; in other words, the densities that emerge are within a more narrow range around the
mean density ρ0. The neighbor coupling term that carries out democratic velocity smoothing has the dimensionless prefactor

neighbor coupling term = D

UL
= L/U

L2/D
= time for wildebeest to cross herd

time for velocity to diffuse across herd
, (66)

analogous to the Péclet number. The last term can be written as

advection term = λL/U

L/U
= time for velocity advection across herd

time for wildebeest to cross herd (density advection)
. (67)

These dimensionless ratios give a sense of how large a
contribution a given term will make to the incremental update
to v(t ). In a sense, their values capture the relative importance
of each term, serving roles analogous to the Reynolds
number in thinking about the Navier-Stokes equations and the
Péclet number in the context of coupled diffusion-advection
problems.

V. SOLVING TONER-TU ON HIGHLY
SYMMETRIC GEOMETRIES

In this section, we use the finite element implementation
of the curved-space minimal Toner-Tu model to illustrate
herding in symmetric geometries in anticipation of the fully
general case. Our goals are twofold: to explore the behavior
of Toner-Tu herds in classic geometries but also, importantly,
to validate our finite element implementation by comparison

to analytic solutions. This validation is particularly important
in the context of systems as complex as the partial differential
equations considered here, which are already subtle in flat
space and more demanding yet in their curved-space form.
We begin with the planar geometry of a two-dimensional (2D)
channel before moving to a 2D channel with an embedded
scattering obstacle. Then, we turn to collective herding mo-
tions on cylindrical and spherical surfaces, as those two cases
do admit analytic solutions that can be directly compared to
the curved-space numerical results.

A. Solving the Toner-Tu equations in the plane

One of the classic case studies for traditional fluid mechan-
ics is channel flow, a problem dating back at least to the 19th
century. Here, we consider several versions of the channel
flow problem in the context of active herding agents, with
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FIG. 4. Toner-Tu herding in a 2D channel with periodic boundary conditions at its ends. The left panel shows the time evolution of the
density field (colors) with the velocities superimposed as arrows. The right panel reports on the same simulation but uses a color map to show
the speed. In the long-time limit, the density is uniform and the speed is constant throughout the channel except for a boundary layer near
the walls. See also video 1 (SM). Here and in all subsequent figures, parameters used are those inferred in Sec. IV unless explicitly stated
otherwise.

the recognition that herding animals are sometimes faced with
passing through canyons or gorges. In the Disney movie The
Lion King, Hollywood filmmakers gave their own versions of
herding behavior in a scene in which the young lion Simba
is trapped in a gorge of stampeding wildebeests as a result of
the machinations of his evil uncle Scar. In this section, in a
playful frame of mind, we use the minimal Toner-Tu theory
in conjunction with the FEM to explore a herd of stamped-
ing wildebeest in a gorge. We first consider a 2D channel,
yielding the Toner-Tu version of pipe flow. This problem has
been explored experimentally in work on annular channels
[12,17,18,51]. We follow this with an analysis of an obstacle
in the middle of the channel [20] to show the generality and
flexibility of the finite element implementation in action.

Solving the problem of channel flow is a rite of passage
in the study of the hydrodynamics of Newtonian fluids. How-
ever, for active agents, this simple geometry already reveals
interesting phenomenology, as shown in Fig. 4 and video 1 of
the Supplemental Material (SM) [52]. As illustrated in Fig. 4,
we begin with a uniform density and a randomly oriented ve-
locity field in a 2D channel with periodic boundary conditions
at its ends. We then use our finite element implementation
of the minimal Toner-Tu theory to explore the transient and
steady-state dynamics. Despite starting from an initially dis-
ordered velocity field, in the long-time limit the system finds

a steady state with uniform density ρ0 and speeds that are
consistent with the preferred speed term, here equivalent to
|v| = √

α(ρ0 − ρc)/β. Near the edges of the channel, because
of the no-slip boundary condition, there is a boundary layer
interpolating between the optimal speed at the middle of the
channel and the zero velocity at the walls. We note that it is
not at all clear that no-slip boundary conditions are the most
reasonable biological choice either for animal herds in a gorge
or for cytoskeletal filaments in channels, but solving this prob-
lem provides a case study for exploring the intuition behind
the Toner-Tu theory and our numerical implementation of it.

Tuning the neighbor coupling coefficient D results in dif-
ferent steady-state velocity profiles, vss(y), as shown in Fig. 5.
For comparison to these FEM findings, we now consider
several analytical calculations. In the steady state, the velocity
field in the minimal Toner-Tu model for this channel geometry
is described by

D
d2vx(y)

dy2
+ (

α(ρ0 − ρc) − βv2
x (y)

)
vx(y) = 0. (68)

We can solve this equation by numerical integration with a
custom-written MATLAB code using shooting methods. As
shown in Fig. 5, the time-dependent FEM and the shooting
method solutions to Eq. (68) give essentially indistinguishable

024610-11



HUESCHEN, DUNN AND PHILLIPS PHYSICAL REVIEW E 108, 024610 (2023)

FIG. 5. Steady-state velocity for active agents during channel
flow as a function of position y, across the channel. Solutions
were obtained both by the time-dependent finite element method
(circles) and by numerically integrating the steady-state Toner-Tu
equations (solid lines) for the highly symmetric channel geometry.
Different choices of the neighbor coupling coefficient D result in
boundary layers of different thicknesses. The width �FEM of the
boundary layer is estimated by computing the initial slope of the
velocity versus position curves and extrapolating out (dashed lines)
to the preferred speed (vpref = 1 m/s), as shown in the top left of the
figure. In Fig. 6, �FEM is compared to analytical calculations of the
boundary layer thickness.

results. This correspondence provides a validation of the FEM
approach.

For a deeper understanding of the channel problem, we
focus on the velocity boundary layers clearly noticeable in
Fig. 5. For sufficiently small values of the neighbor coupling
coefficient D, the preferred speed term keeps the steady-state
speed at vpref = 1 m/s throughout the channel except for a
narrow band near the walls, where the no-slip condition gives
rise to a boundary layer. In Fig. 5, we show how the width
of the boundary layer in the FEM solution, �FEM, can be
estimated using the condition

dvx(y)

dy
�FEM

∣∣∣∣
y=0

= vpref , (69)

where vpref = √
α(ρ0 − ρc)/β is the preferred speed. We ex-

plore the scaling of boundary layer thickness numerically for
different values of the neighbor coupling coefficient D using
the finite element implementation, and we report these numer-
ically determined boundary layer widths, �FEM, in Fig. 6.

To interpret the length scale of the boundary layer and its
scaling with D, we can perform an estimate by introducing the
dimensionless variables

ȳ = y√
D

α(ρ0−ρc )

(70)

and

v̄ = vx√
α

(ρ0−ρc )
β

. (71)

FIG. 6. Boundary layer thickness as a function of the neighbor
coupling coefficient, D. A numerical result for the thickness of the
boundary layer, �FEM, was estimated by computing dv/dy at the
wall and using the condition (dv/dy)�FEM = vpref , where vpref =√

α(ρ0 − ρc )/β. An analytical result for the thickness of the bound-
ary layer, �analytic, was calculated in Eqs. (74)–(77).

With these dimensionless variables in hand, we can rewrite
the steady-state equation for velocity in the channel [Eq. (68)]
in dimensionless form as

d2v̄

dȳ2
+ (1 − v̄2)v̄ = 0. (72)

The act of rendering the equation in dimensionless form im-
mediately presents us with the length scale

� =
√

D

α(ρ0 − ρc)
, (73)

which gives us a sense of the thickness of the boundary layer
found by numerical methods in Fig. 5. This scaling relation
can be understood more rigorously by considering the prob-
lem of the velocity vx(y) of active agents in a half space
for 0 � y < ∞. In this case, we have vx(0) = 0 as a no-slip
boundary condition and vx(∞) = √

α(ρ0 − ρc)/β, implying
that far from the wall, the speed achieves the Toner-Tu pre-
ferred speed value. In this case, Eq. (72) has the analytic
solution v̄(ȳ) = tanh(ȳ/

√
2), which can be written in dimen-

sionful form as

vx(y) =
√

α(ρ0 − ρc)

β
tanh

√
α(ρ0 − ρc)

2D
y. (74)

For sufficiently small y, we can approximate this by Taylor
expanding the tanh function to first order in y, resulting in

vx(y) ≈ α(ρ0 − ρc)√
2βD

y, (75)

which implies, in turn, that the thickness of the boundary layer
can be estimated using

dvx

dy

∣∣∣∣
y=0

�analytic = α(ρ0 − ρc)√
2βD

�analytic =
√

α(ρ0 − ρc)

β
. (76)
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FIG. 7. Solution of the Toner-Tu equations for a herd moving through a channel with a small circular obstacle (15 m obstacle radius; 100 m
channel width). The left panel shows the time evolution of the density field (colors) with the velocities superimposed as arrows, from an initial
condition of uniform density and a disordered velocity field. The right panel uses a color map to show the speed. For this choice of obstacle
size and neighbor coupling coefficient D, a steady-state flow is achieved in which the active agents can reach their preferred speed even in the
passage between the obstacle and the wall. See also video 1 (SM).

Solving for the length scale of the boundary layer by project-
ing the straight line with the correct slope at y = 0 out to the
saturation speed, as done in Fig. 5 to compute the analogous
�FEM, leads to

�analytic =
√

2D

α(ρ0 − ρc)
, (77)

with the factor of
√

2 arising naturally from the analytic so-
lution for the half space. This analytical calculation for the
boundary layer length �analytic jibes exactly with the numer-
ical result �FEM, as seen in Fig. 6, until D reaches values
large enough that the half-space assumption of vx(∞) =√

α(ρ0 − ρc)/β becomes invalid.
The problem of Toner-Tu channel flow for wildebeests

becomes richer when we introduce a circular obstacle into the
channel, as shown in Fig. 7 and video 1 (SM). In the classic
example of this problem for a Newtonian fluid, the fluid mo-
tion will speed up near the obstacle because of the narrowing
of the channel. However, in the case of a Toner-Tu collective,
the preferred speed term attempts to maintain all agents at
a fixed speed. Thus, if a large obstacle narrows the channel
sufficiently, as shown in Fig. 8 and video 1 (SM), most of the
herd will reflect off the obstacle rather than squeezing through
at a higher velocity. Interestingly, this oscillatory direction re-

versal at an obstacle was observed in recent experimental and
theoretical work, in which rectangular or triangular objects
partially blocked the path of an active colloidal fluid confined
in a ring-shaped track [20].

To better understand the origins of these reversals of mo-
tion, we contrast the Toner-Tu theory with our expectations
for Newtonian fluids. Specifically, we note the crucial role of
the preferred speed term, which penalizes any active agents
with velocity magnitudes other than v = √

α(ρ − ρc)/β. We
estimate the critical obstacle radius R for a channel of width L
by imagining that when the thickness of the passage that the
active agents can pass through (i.e., L/2 − R) is comparable
to the boundary layer thickness, none of the active agents get
to move at the optimal speed and as a result will reflect off the
obstacle. That condition can be written as

L

2
− R = 2

√
D

α(ρ0 − ρc)
, (78)

where the factor of 2 on the right side captures the idea that
if the gap is wide enough, there will be two boundary layers,
one at the obstacle and one at the wall. When the width of
these two boundary layers adds up to the width of the gap,
we estimate that reversals will occur. Note that, as written,
Eq. (78) features the length scale � that arose from recasting
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FIG. 8. Solution of the Toner-Tu equations for a herd moving through a channel with a large circular obstacle (30 m obstacle radius; 100 m
channel width). The left panel shows the time evolution of the density field (colors) with the velocities superimposed as arrows. The right panel
uses a color map to show the speed. For this choice of obstacle size and neighbor coupling coefficient D, no steady state motion is achieved.
Most of the herd is reflected off the obstacle at each attempted passage, resulting in repeated reversals of direction. See also video 1 (SM).

the steady-state Toner-Tu equations in dimensionless form as
defined in Eqs. (70) and (71), not the length scale �analytic from
our analytic solution for the half space.

As seen in Fig. 9, we have explored the phenomenology
of the motions in the channel with an obstacle by sweeping
through the parameter space of obstacle size R and neighbor

FIG. 9. Phase diagram of herding behavior in a channel with
an obstacle. Obstacle radius, R, and neighbor coupling coefficient,
D, were systematically varied. Emergent herd dynamics were either
unidirectional, reaching a steady-state as in Fig. 7 or displayed mo-
tion reversals at the obstacle indefinitely, as in Fig. 8. The transition
between these two behaviors appears to occur when the width of the
passage between obstacle and channel wall, L/2 − R, is comparable
to twice the boundary layer length scale � obtained by dimensional
analysis in Eq. (73).

coupling coefficient D. Depending upon the choices of these
parameters as already seen in Figs. 7 and 8, we find either
steady unidirectional motion or dynamical reversals, which
continue indefinitely. Interestingly, the boundary in this phase
portrait is in very good accord with the estimate of Eq. (78). In
light of the apparent success of these case studies on the min-
imal Toner-Tu model using a finite element implementation
for planar geometries, we turn to the application of the mini-
mal Toner-Tu model and its finite element implementation to
curved surfaces.

B. Formulating the Toner-Tu equations
for parameterized surfaces

We now move to apply and test our general surface formu-
lation (Sec. II) and finite element implementation (Sec. III)
of the Toner-Tu equations on curved surfaces. We begin with
two highly symmetric surfaces, the cylinder and the sphere,
for which it is tractable to derive analytical solutions using
intrinsic parametrizations. In the remainder of Sec. V, we will
analytically determine dynamical Toner-Tu solutions for ve-
locity on the cylinder and steady-state Toner-Tu solutions for
density and velocity on the sphere. These analytical solutions
are of great interest to us as test beds for our curved-space
finite element formulation of the minimal Toner-Tu theory. We
will compare our analytical calculations to results obtained
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using the finite element approach, with the ultimate goal of
validating its performance.

First, we must formulate the minimal flocking theory in the
language of intrinsic differential geometry. We follow the an-
alytical study by Shankar et al. [39] of Toner-Tu equations on
highly symmetric curved surfaces, in which steady-state solu-
tions for the sphere were considered. Following Shankar et al.
[39], we need to write the fully covariant form of the dynam-
ical Toner-Tu equations. First, the continuity equation can be
written as

∂tρ + ∇μ(ρvμ) = 0. (79)

This formulation invokes the covariant derivative

∇μvν = ∂μvν + 
ν
αμvα, (80)

where 
ν
αμ are the Christoffel symbols. All of this extra

machinery and corresponding notation comes down to the
subtlety of getting our derivatives right in the curved-space
setting. Then, the dynamical equation for v itself is given by

∂vμ

∂t
= [α(ρ − ρc) − βgabv

avb]vμ − σ∇μρ

+ D�vμ − λvν∇νv
μ, (81)

where we introduce the symbol � to represent the intrinsic
curved-space version of the Laplacian operator. We now put
these equations into concrete play in the context of cylinders
and spheres, with the ambition of directly comparing analyti-
cal results and finite element solutions for the same problems.

C. Solving the Toner-Tu equations on a cylindrical surface

To test our numerical implementation of the Toner-Tu
equations in the finite element setting for curved surfaces, we
begin with the highly symmetrical case of a cylindrical sur-
face. The geometry of the cylindrical surface is parameterized
using r(θ, z) = (R cos θ, R sin θ, z). Using this parametriza-
tion, we seek to analyze the steady state and the dynamics
of v for a simplified version of Eq. (81),

∂vμ

∂t
= [α(ρ − ρc) − βgabv

avb]vμ − σ∇μρ − λvν∇νv
μ,

(82)

in which the neighbor coupling term with coefficient D is
neglected. In Appendix A 2, we first present a complete
derivation of the steady-state solution of this equation for the
cylinder, which leads to the result

|vss|2 = α(ρ0 − ρc)

β
, (83)

where vss is the steady-state velocity field, whose only
nonzero component is vθ . This solution represents a simple
circumferential flow around the cylinder coupled to a uniform
density field.

We then derive the dynamics of a relaxation to the steady
state from an initial condition with the same symmetry of
circumferential flow and uniform density, but with an arbitrary
initial speed. Given an initial magnitude v(0) and a uniform
density ρ, the solution for the time-dependent relaxation is

given by

|v|2 =
α(ρ0−ρc )

β

1 − (
1 − α(ρ0−ρc )

βv(0)2

)
e−2α(ρ0−ρc )t

. (84)

In Fig. 10, we compare the dynamics predicted here an-
alytically to the numerical solution of our curved-surface
formulation using the FEM. As with many theoretical anal-
yses, one of the most important aspects of our solutions is
understanding how the phenomenology depends upon param-
eters. Here we see how the parameter α controls the saturation
value of |vss|2 as well as the timescale [τ = 1/2α(ρ0 − ρc)] to
achieve that saturation. Figure 10 reveals an excellent corre-
spondence between the analytical results and their numerical
counterparts as explored using our finite element implementa-
tion.

Although it tests a subset of our full surface formulation
due to the highly symmetric geometry and initial condi-
tion that make this analytic solution tractable, we view the
correspondence between the analytical results and the finite
element solution as a helpful validation of our formulation and
numerical approach, which uses the full projection machinery
of the previous sections rather than a knowledge of vector
calculus in cylindrical coordinates.

D. Solving the Toner-Tu equations on a spherical surface

We next take up an analysis of the minimal Toner-Tu model
on the sphere. Previous works [39,53] described a highly
symmetric rotating band solution for flocks on the sphere, in
which both the density and velocity depend only upon the
polar angle θ at the steady state and not upon the azimuthal
angle φ. Here we present the analytical solution for density
and velocity on the sphere derived by Shankar et al. [39],
for comparison to our numerical results. For their steady-state
analysis, Shankar et al. [39] make the approximation that the
neighbor coupling term with coefficient D is absent, resulting
in a simpler minimal version of the steady-state Toner-Tu
equations of the form

λvν∇νv
μ = [α(ρ − ρc) − βgabv

avb]vμ − σ∇μρ. (85)

We note that while Shankar et al. chose the field vari-
ables ρ and p = ρv, we continue in the language of ρ and
v. In Appendix A 4, following Shankar et al., we present
a step-by-step derivation of the steady-state solution of
Eq. (85) using the spherical surface parametrization r(θ, φ) =
(R cos φ sin θ, R sin φ sin θ, R cos θ ). This analytical calcula-
tion leads to the steady-state solution for flock or herd density
on the sphere,

ρss(θ ) = ρc + (ρ0 − ρc)Aη sinη θ, (86)

where η is a dimensionless parameter given by

η = λα

βσ
(87)

and the prefactor Aη is defined by

Aη = 2
((3 + η)/2)/[
√

π
(1 + η/2)], (88)

and 
 is the gamma function. Note that the dimension-
less parameter η gives us a convenient knob to tune in our
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(a)

(b) (c)

FIG. 10. Dynamics of Toner-Tu flow on a cylinder. (a) The initial condition is a uniform circumferential flow field with a very small initial
speed. Over time, the speed relaxes to the steady-state value |vss| = √

α(ρ0 − ρc )/β. The timescale for this relaxation is τ = 1/(2α(ρ0 − ρc )).
(b) Comparison of analytic and numerical (COMSOL) results for dynamics of |v|2 for different choices of parameters. The asymptotic values
of the curves correspond to the steady-state solution worked out earlier in this section. The ratio α/β is fixed such that the steady-state velocity
of 1 m/s is the same for all four cases and |v|(0) = 0.1 m/s. (c) Data collapse in which |v|2 is plotted against dimensionless time, revealing
that all curves are dictated by the same underlying timescale, set by α(ρ0 − ρc ).

calculations, which can be compared directly with the nu-
merical results of our finite element calculations as shown in
Fig. 11(b). The analytic solution and the result of our finite
element treatment of the same problem agree convincingly.

We view this as a crucial validation that explores the pa-
rameter dependence of the solution and tests that the finite
element treatment of the various curved-space derivatives is
done correctly.

(a) (b) (c)

FIG. 11. Comparison of analytic and numerical (COMSOL) solutions to the Toner-Tu equations on a sphere. (a) Example steady-state
solution for Toner-Tu herds on the surface of a sphere, for η = 1. (b) Steady-state herd density on the sphere. Different choices of the
dimensionless parameter η elicit different density profiles. (c) Steady-state velocity v2 for Toner-Tu herds on the surface of a sphere. As
in (b), different choices of the dimensionless parameter η result in different profiles. Parameter values used: α = 2 m2/s; σ = 40 m4/s2,
20 m4/s2, or 10 m4/s2, respectively; others as in Sec. IV. In both (b) and (c), analytical results (curves) are in good accord with numerical
results (open circles) obtained using the finite element method.
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(a) (b)

FIG. 12. Toner-Tu dynamics on the sphere. (a) Dynamics of herd density and velocity on the sphere, during the evolution from an initial
condition of uniform density and circumferential velocity vφ = vpref sin θ toward the steady-state band pattern shown at 2000 s and 10 000 s.
In the long-time limit, density oscillations are damped out and a steady state emerges. (b) Density as a function of angular position, showing
the damping of density oscillations over time. Parameters as defined in Sec. IV. See also video 2 (SM).

In Appendix A 4, following the work of Shankar et al.
[39], we also derive an analytical solution for steady-state herd
velocity on the sphere as

|vss|2 = α

β
(ρ0 − ρc)Aη sinη θ. (89)

For the specific case of η = 2, for example, we have

A2 = 2

(

5
2

)
√

π
(2)
= 3

2
. (90)

Using this value for A2, we can write the density and the
velocity fields as

ρss(θ ) = ρc + 3
2 (ρ0 − ρc)sin2θ (91)

and

|vss|2 = 3
2 (ρ0 − ρc)sin2θ, (92)

respectively. These solutions from the work of Shankar et al.
[39] provide an important opportunity to test our numerical
implementation of the Toner-Tu theory on a curved surface, as
shown in Fig. 11(c) for |vss|2. As for the density, once again
the correspondence between the analytic results and the finite
element treatment of the problem is convincing.

VI. WILDEBEEST ON SPHERES AND HILLS:
COMPLEX FLOCKING DYNAMICS

In the remainder of the paper, we move beyond situations
where analytical solutions are feasible, using the curved-space
Toner-Tu formulation and the FEM to explore more complex
herding dynamics and herding behaviors on more complex
geometries.

A. Toner-Tudynamics on the sphere

First, we continue with the case study of herding on the
sphere but take a step beyond the analytic solution provided in
Sec. V. We add back in the analytically intractable neighbor
coupling term D∇2v and examine its contribution. In other
words, we explore the dynamics of density and velocity on

the spherical surface using the full finite element formulation
of Sec. III, including all the terms present in Eq. (41). We
begin with uniform density and a circumferential velocity field
vφ = vpref sin θ . As seen in Fig. 12 and video 2, this solution
develops oscillations in which a nonuniform density moves
back and forth in the θ direction, from the north and south
poles to the equator. The presence of the neighbor coupling
term damps out these oscillations as shown in Fig. 12(b). We
qualitatively observe that smaller D corresponds to a longer
damping time. In the long-time limit, damping by the neigh-
bor coupling term enables the emergence of a steady state.
Figure 13 shows several of these steady-state solutions for
different choices of the neighbor coupling coefficient D. We
note that at small D, the solution approaches the steady-state
analytic solution which is attainable in the absence of this
term.

However, the dynamics that can take place on the spherical
surface can be significantly richer than the steady-state band
solution shown above. To seed the dynamics, we consider an
initial condition in which the active agents are confined to
an angular wedge between φ = 0 and φ = π/2, again with
circumferential velocity vφ = vpref sin θ , as shown in Fig. 14
and video 3 (SM). This asymmetric initial condition can give
rise to both dynamic and steady-state solutions, depending on
the value of parameters such as ρ0 or σ . In Fig. 14, different
choices of σ lead to different herding behaviors in the long-
time limit. In Fig. 14(a), at small σ , a droplet-shaped patch
of dense wildebeests circulates around the sphere indefinitely.
Tuning σ to increase the magnitude of the pressure term
leads instead to the emergence of oscillating density bands,
as shown in Fig. 14(b), and then to steady-state density bands,
as shown in Fig. 14(c). Note that we have not highlighted the
interesting transient dynamics displayed as herds evolve from
the wedge initial condition toward the patch and band pat-
terns. For the rotating patch and steady-state band solutions,
which reach dynamic or steady-state solutions with mirror
symmetry across the equatorial plane (θ = π/2), we can plot
herd density as a function of φ to characterize the shape of the
density patch and to further explore the effect of increasing
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(a) (b)

FIG. 13. Steady-state solutions on the sphere including the neighbor coupling term. (a) Steady-state density as a function of angular position
θ for different choices of the neighbor coupling coefficient D. An analytic solution in the absence of the D term is plotted for comparison.
(b) Steady-state velocity squared as a function of angular position θ for the same parameters values and analytic solution as shown in (a).

(a)

(b)

(c)

FIG. 14. Herds on the sphere can form rotating patch, oscillating band, and steady-state band patterns. In these examples, herd dynamics
are seeded at t = 0 s by confining wildebeest to an angular wedge between φ = 0 and φ = π/2 and giving them a circumferential velocity
vφ = vpref sin θ . (a) Given a smaller pressure term (σ = 5 m4/s2), a rotating patch pattern of herd density emerges. (b) A larger pressure term
(σ = 15 m4/s2) leads the density field to exhibit temporal oscillations about the equatorial plane (θ = π/2), while remaining axisymmetric in
φ. (c) Given an ever larger pressure term (σ = 20 m4/s2), herd density is restricted to a narrow range around ρ0(0.0625 m−2), and a steady-state
banded pattern of density emerges. See also video 3 (SM).
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FIG. 15. Increasing the Toner-Tu pressure term drives herd den-
sity from patch to band patterns. Plot shows density as a function of
φ, angular position around the sphere circumference. The simulation
was seeded with the initial condition depicted in Fig. 14 for varied
σ that lead to rotating patch or steady-state band solutions in the
long-time limit. Curves are aligned such that their maxima are at
φ = π .

the Toner-Tu pressure term. As shown in Fig. 15, increasing σ

drives the emergent density pattern from a patch to a band by
flattening ρ(φ) from the interesting asymmetric patch shape
observed at σ = 5 m4/s2 to the uniform profile observed for
σ = 20 m4/s2 and σ = 30 m4/s2.

B. Herding over a Gaussian hill

Moving beyond the symmetric geometry of the sphere,
we next explore the contribution of curvature to steady-state
density and velocity for a herd on a racetrack. As shown
in Fig. 16, the addition of a Gaussian hill on the racetrack
straightaway leads to local changes in herd density. Density is
lower on the face of the hill approached by the wildebeests,
as they climb and their velocity field diverges, increasing
the space between wildebeest neighbors as their paths bend
around the hill. Density is higher on the face of the hill that
the wildebeest descend, where the velocity field again con-
verges. This curvature-dependent effect is loosely reminiscent
of lensing [54,55], but we have not rigorously explored the
analogy.

C. Herding on an undulating island landscape

In a final case study, inspired by wildebeests herding on
complicated natural landscapes, we consider the motion of a
Toner-Tu herd on an island of Gaussian hillsides. We offer
this study as a step toward a dialogue with real-world data, for
which we hope the approach presented in this paper may prove
useful. For this final exploration of how herding behavior is
altered by the local topography of a landscape, we develop
one additional term for the herding equations that govern the
time evolution of wildebeest velocity.

In much the same way that body forces are incorporated
into the Navier-Stokes equations, we hypothesize that the
topography of the landscape upon which the wildebeest are
marauding acts upon them through a gravitational force term
of the form

fg = −ζk, (93)

where k is the unit vector in the z direction (height). We note
that the units of ζ are not strictly those of force since the
Toner-Tu equations simply have dimensions of acceleration.
In the same spirit that we selected the other parameters in
Sec. IV to ensure terms of comparable magnitude, we estimate
that ζ is on the order of 0.1 m/s2. For the simulations shown in
Fig. 17, we chose ζ = 0.05 m/s2 to prevent the emergence of
unphysical negative densities at hilltops. To write the curved-
surface contribution of the gravitational force term to the
dynamical equations, we carry out the surface projection as
usual,

Pfg = −ζPk = −ζk + ζn(n · k), (94)

where we recognize that (n · k) = n3. Because of the pro-
jection operator, this term affects all three components of
velocity. For example, we can write the Toner-Tu equa-
tion governing the one-component of velocity, with the
addition of the gravitational force, as

∂v
‖
1

∂t
= [α(ρ − ρc)−βv

‖
j v

‖
j ]v

‖
1 −σ

(
∂ρ

∂x1

)



+ DP1l

(
∂Gl j

∂x j

)



− λv
‖
j

[(
∂v

‖
1

∂x j

)



− n1nk

(
∂v

‖
k

∂x j

)



]
+ ζn1n3. (95)

FIG. 16. Curvature induces local density and velocity changes. Steady-state herd density (colors) and velocity (black arrows) for wildebeest
traversing a Gaussian hillside embedded in a racetrack straightaway. From an initial condition of random velocity orientation, a steady-state
recirculation around the racetrack emerges in the long-time limit. In an effect reminiscent of lensing [54,55], the Gaussian hill’s curvature
induces low and high density regions.
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FIG. 17. Dynamics of a Toner-Tu herd on an undulating land-
scape, initialized with uniform density ρ0 = 0.25 m−2 and randomly
oriented velocities. Comparing the left column (ζ = 0 m/s2) and
the right column (ζ = 0.05 m/s2) highlights the contribution of the
gravitational force. In the presence of the gravitational force, the hills
act as soft obstacles, favoring herd circulation around them. Other
parameters used were presented in Sec. IV. See also video 4 (SM).

As in the channel flow example, where the preferred speed
term and the neighbor coupling term compete to modify ve-
locity magnitude near no-slip boundaries, the preferred speed
and the gravitational term compete on sloped hillsides.

To explore the dynamics of an active herd on this undulat-
ing landscape, we seed the region with an initial distribution
of wildebeest at uniform density ρ0 and with random veloc-
ity orientation. From this initial distribution, over time the
wildebeests self-organize into a herd that navigates around the
complex landscape. In Fig. 17 and video 4 (SM), we show an
example of these dynamics and explore the contribution of the
gravitational force term. In the presence of the gravitational
force, the hills effectively serve as “soft” obstacles, directing
the herd to circulate around them. These obstacles can sta-
bilized fixed patterns in the velocity field, as on the right in
Fig. 17 and video 4 (SM).

We hope that these playful Toner-Tu solutions on the com-
plex geometry of a hill-studded island show the versatility
of the approach presented in this paper. We also hope that
they visually illustrate a vision of the dialogue between theory
and real-world data towards which we ultimately strive, and
towards which the current paper takes one step.

VII. CONCLUSION

The collective motion of animals, cells, and molecules
presents a beautiful phenomenon. Toner-Tu flocking theory
has proven a versatile mathematical description of such phe-
nomena, helping us to enable an expansion from traditional
continuum models of materials into the relatively uncharted
waters of the dynamics of living matter. Toner-Tu and other
continuum active matter models make possible a dialogue be-
tween mathematical prediction and the stunning living world
outside our windows. To undertake such a dialogue necessi-
tates solving these equations for real-world geometries and
boundary conditions. Flocks of sheep, collectively migrat-
ing cells, collectively flowing cytoskeletal filaments—all of
these flocking agents move within structured environments
that must be accounted for to make a comparison between
in vivo data and predictions of theoretical models.

Here, we focused on flocking phenomena that occur on
curved surfaces, such as wildebeests navigating terrain, or the
motility-driving flows of cytoskeletal filaments at the surface
of protozoan parasites of particular interest to us [27]. Both the
formulation and solution of the Toner-Tu equations is more
challenging once our goal is their implementation on curved
surfaces. Frequently, surfaces of biological interest are highly
asymmetric, rendering analytical approaches challenging or
impossible. In this work we sought to present, in accessible
form, a general curved-surface formulation of the Toner-Tu
equations and its FEM implementation. We hope that our
pedagogical derivation of a surface formulation using the
tools of extrinsic differential geometry, and our explication
of numerically solving it on arbitrary curved surfaces, will
prove useful to others interested in a versatile approach for
exploring continuum theories on complex shapes. We also
sought to demonstrate the equivalence of our approach to
analytical ones, for simple geometries where analytical results
are licensed. Finally, we sought to harness the versatile power
of this approach by exploring its predictions across a range of
geometries, boundary conditions, and parameter values. By
observing the effect of geometry and parameter choice on
herd direction reversal in a channel with a circular obstacle
in Fig. 8, for example, we demonstrated the ability of this
approach to generate hypotheses that can subsequently be
explored analytically, as in Fig. 9. By exploring the local
density changes induced by curvature for herds passing over
a Gaussian hill in Fig. 16, we highlighted the ability of this
approach to generate intriguing observations that generate
new questions. By predicting the dynamics of herds on a
undulating island landscape in Fig. 17, we took a step towards
a vision of predictive dialogue with data from the rich, struc-
tured environment in which we live.

Looking forward, we dream of more dialogue between
continuum active matter theory and measurements taken in
our rich living world, from drone footage of migrating animal
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herds to movies of microscopic cytoskeletal flows within em-
bryos and cells. Such a dialogue will enable the determination
of absolute parameter values for such systems, which will in
turn make possible the contrivance of experiments designed
to test the theory. Can the same field theories, indeed, be
applied to sheep and to microscopic microtubules? What is the
effect of curvature on velocity for different types of agents?
We hope that our presentation of the approach taken here
will contribute towards efforts to bridge active matter the-
ory and complex real-world shapes, directly testing whether
our observations of the living world can be understood and
predicted in the language of continuum theories of active
collectives.
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APPENDIX

1. Calculus on surfaces via projection operators

The formulation of the coupled partial differential equa-
tions that describe the herd density and velocity fields required
us to perform various derivative operations on surfaces. To
do so, we used extrinsic differential geometry to take the tan-
gential calculus approach described pedagogically by Jankuhn
et al. [34] and Needham [47]. This approach involves defining
all necessary differential operators in terms of the projec-
tion operator, P = I − n ⊗ n or Pi j = δi j − nin j , instead of
working in the language of parameterized surfaces. In this
Appendix, we set these tangential calculus operations front
and center. We define the tangential curved-space differential
operators used in this paper, and we attempt to convey some
intuition for what these operations achieve.

a. Gradient of a scalar

Our treatment of Toner-Tu surface problems requires us
to compute derivatives in the tangent plane of the surface of
interest. For example, we might be interested in the gradient
of a scalar field such as the density ρ(r). We can think of
the surface gradient as resulting from projecting the full 3D
gradient onto the tangent plane, using the projection operator

P defined in Eq. (3). Thus, we find

P∇ρ = (I − n ⊗ n)∇ρ

= (δi j − nin j )
∂ρ

∂x j
= ∂ρ

∂xi
− nin j

∂ρ

∂x j
. (A1)

Hence, throughout the paper, whenever we need to invoke the
tangent curved-space gradient operator, we do so in the form

(∇
ρ)i = (∇ρ)i − nin j
∂ρ

∂x j
= ∂ρ

∂xi
− nin j

∂ρ

∂x j
. (A2)

b. Gradient of a vector

Several terms in the minimal Toner-Tu model involve more
complex differential operations. For example, the advection
term in the Toner-Tu theory requires us to evaluate the gra-
dients of the velocity field (a vector!). Thus, we also need to
formulate the mathematical tools for constructing the gradient
of a vector. In direct notation, the tangential curved-space
gradient of a vector is

∇
v = P(∇v)P, (A3)

which we can write in indicial notation as

(∇
v)i j = [P(∇v)P]i j = Pik
∂vk

∂xl
Pl j . (A4)

We can expand this out using the definition of the projection
operator, resulting in

Pik
∂vk

∂xl
Pl j = (δik − nink )

∂vk

∂xl
(δl j − nln j ), (A5)

which simplifies to the form

Pik
∂vk

∂xl
Pl j =

(
∂vi

∂x j
− nln j

∂vi

∂xl

)
− nink

(
∂vk

∂x j
− nl n j

∂vk

∂xl

)
,

(A6)

an expression that we will see repeatedly. We note that the
final result features the projected gradient of the vi and vk

components of velocity, respectively.

c. Divergence of a vector

Using the definition of the gradient of a vector presented
above, we can formally write the tangential curved-space di-
vergence of a vector as

div
 v= tr (∇
v)= tr (P(∇v)P) = tr (P(∇v))= tr ((∇v)P).
(A7)

The final two expressions follow from the fact that tr(ABC) =
tr(BCA) and all other cyclic permutations as well, in con-
junction with the fact that P2 = P. In component form, this
simplifies to

div
 vi = ∂vi

∂xi
− nink

∂vi

∂xk
, (A8)

an expression we used repeatedly in our derivations of the
field equations and in their formulation numerically within
COMSOL.
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d. Divergence of a tensor

As seen in the main text, the Toner-Tu theory requires us
to evaluate the divergence of tensorial quantities on curved
surfaces. For example, we invoked the stresslike quantity J,
which in the full three-dimensional setting we write as

∇ · J = Jji, j . (A9)

This result needs to be amended in the context of an arbitrary
surface. To define the divergence of a tensor, we can examine
separately the divergence of the component vectors of that
tensor, which we obtain by having the tensor act on the unit
vectors. More precisely, we work out the divergence of a
tensor A, following Jankuhn et al. [34], as

div
 A = (
div


(
eT

1 A
)
, div


(
eT

2 A
)
, div


(
eT

3 A
))T

(A10)

where we use the definitions

eT
1 = (1, 0, 0), (A11)

eT
2 = (0, 1, 0), (A12)

and

eT
3 = (0, 0, 1). (A13)

We recall that the divergence of a tensor gives rise to a vector,
consistent with the multiple components in our expression for
div
 A. Indeed, we can rewrite this expression in component
form as

(div
 A)i = Plk
∂Ail

∂xk
= ∂Aik

∂xk
− nl nk

∂Ail

∂xk
. (A14)

e. Laplacian of a vector

As shown by Jankuhn et al. [34], the surface-projected
version of the Laplacian term (see their Eq. (3.16) for the
surface Navier-Stokes equations) is given by

∇2v︸︷︷︸
in the plane

= div(∇v)︸ ︷︷ ︸
in the plane

−→ P div
 (∇
v)︸ ︷︷ ︸
on a curved surface

. (A15)

We will now unpack this expression for the curved surface
Laplacian, from right to left. We must first compute the sur-
face gradient of the vector v, given by the tensor G = ∇
v. In
component form, we write this as

∇
v = Gi j =
(

∂vi

∂x j
− nln j

∂vi

∂xl

)
− nink

(
∂vk

∂x j
− nl n j

∂vk

∂xl

)
.

(A16)

We then invoke the definition of the surface-projected diver-
gence of the tensor G:

div
 (G)i = Plk
∂Gil

∂xk
. (A17)

Using the definition of the projection operator, we can expand
this out as

Plk
∂Gil

∂xk
= (δlk − nlnk )

∂Gil

∂xk
= ∂Gil

∂xl
− nlnk

∂Gil

∂xk
. (A18)

To complete our calculation of the curved-space Laplacian of
a vector, we need to compute P div
 (G), which we can write

in indicial notation as

Pil div
 (G)i = Pil

(
∂Gl j

∂x j
− n jnk

∂Gl j

∂xk

)
. (A19)

2. Implementation in COMSOL MULTIPHYSICS

Our COMSOL MULTIPHYSICS files are available for down-
load, use, and adaptation at Ref. [48] . They are accompanied
by a “How-To” document that provides a tutorial on navigat-
ing and using these files.

We hope that others will find our approach user-friendly
and adaptable for solving the Toner-Tu equations on other
complex curved surfaces, for solving other continuum equa-
tions on curved surfaces, or for additional study of the cases
presented here. For our FEM calculations, we chose to use
the off-the-shelf software COMSOL MULTIPHYSICS for its ac-
cessibility and learner-friendly interface. We note with regret,
however, that the use of this software and our code requires
access to a paid COMSOL MULTIPHYSICS license. If you do
not already have a license and are affiliated with an institution,
we recommend looking into access options through a shared
software library.

Below, for the convenience of COMSOL users among our
readers, we highlight some of the COMSOL-specific features
and nomenclature that we used.

To solve our custom surface partial differential equations,
we used the COMSOL MULTIPHYSICS General Form Bound-
ary PDE interface and took advantage of COMSOL’s built-in
tangential differentiation operator, dtang(f,x), discussed in
detail below. We also made use of the normal vector (nx,
ny, nz), a built-in geometric variable. For a thorough and
practical introduction to the FEM, we recommend Ref. [56].
For simulations initialized with a disordered velocity field,
every node’s velocity orientation was drawn randomly from
a uniform distribution of angles between 0 and 2π and had
magnitude v(0). Unless noted otherwise, as in the case of the
cylinder dynamics shown in Fig. 10, v(0) = vpref = 1 m/s.
Other parameters are defined and discussed in detail in
Sec. IV. On curved surfaces, to avoid the accumulation
of out-of-plane components in v from numerical error, we
implemented a weak constraint of n · v = 0. Similarly, we
implemented a global constraint on the total integrated den-
sity ρ on the surface, ensuring it stayed at its initial value.
Default COMSOL solvers and settings were used: implicit
backward differentiation formula for time stepping and mul-
tifrontal massively parallel sparse direct solver for the linear
direct spatial solver. Our meshes employed between 1310 and
6525 triangular elements (1310–1674 for the channel with
obstacles; 1312 for the cylinder; 6525 for the sphere; 1604 for
the racetrack with hill; 2642 for the island) and can be viewed
in the source files available at Ref. [48].

We now provide additional details on formulating our cus-
tom equations to solve them in COMSOL. The user-defined
partial differential equation is written in COMSOL as

∂v
∂t

+ ∇ · �(v) = f (v). (A20)

Here, the whole formulation comes down to the definitions of
�(v) and f (v). The fluxlike quantity �(v) is a 3 × 3 matrix that

024610-22



WILDEBEEST HERDS ON ROLLING HILLS: FLOCKING … PHYSICAL REVIEW E 108, 024610 (2023)

is defined such that

(∇ · �(v) )i = ∂

(v)
ji

∂x j
. (A21)

In this section, we use the notations � and f to precisely match
the notation of COMSOL’s General Form PDE interface. We
note that in the main body of the paper we referred to J(v)

rather than �(v) to avoid confusion with subscript 
, which
signifies “surface,” following the notation of Jankuhn et al.
[34] in their description of the tangential calculus. There, we
wanted to give readers the opportunity to make contact with
Jankuhn et al. with minimal difficulty.

COMSOL is constructed to allow us to evaluate what
we have earlier called ∇
 using an operation known as
dtang(f,xi), which is the tangent plane component of the gra-
dient in the ith direction of the function f (x1, x2, x3). We can
write this formally as

∇
 f = ∇ f − n(n · ∇ f )

= (dtang( f , x1), dtang( f , x2), dtang( f , x3)) (A22)

Thus, these terms can be written in component form as

dtang( f , x1) = (∇
 f )1 = ∂ f

∂x1
− n1n j

∂ f

∂x j
. (A23)

Specifically, we have for the gradient in the one-direction:

dtang( f , x1) = ∂ f

∂x1
− n1

(
n1

∂ f

∂x1
+ n2

∂ f

∂x2
+ n3

∂ f

∂x3

)
,

(A24)

with similar results for the other directions given by

dtang( f , x2) = ∂ f

∂x2
− n2

(
n1

∂ f

∂x1
+ n2

∂ f

∂x2
+ n3

∂ f

∂x3

)
(A25)

and

dtang( f , x3) = ∂ f

∂x3
− n3

(
n1

∂ f

∂x1
+ n2

∂ f

∂x2
+ n3

∂ f

∂x3

)
.

(A26)

To provide detailed examples for those interested in simi-
lar FEM implementations, we now translate key expressions
from our curved-space Toner-Tu formulation into COMSOL
syntax. In Eq. (21), we defined the matrix Gi j which can be
written in COMSOL syntax as

Gi j = dtang(v‖
i , x j ) − ninkdtang(v‖

k , x j ), (A27)

where v
‖
i refers to the tangent plane component of the ith

component of velocity. For example, in expanded form,

G21 = dtang(v‖
2, x1) − n2(n1dtang(v‖

1, x1)

+ n2dtang(v‖
2, x1) + n3dtang(v‖

3, x1)). (A28)

In addition, we introduced a force term in Sec. III to reca-
pitulate the Toner-Tu equations. When written in COMSOL
format, those terms are of the form

f (v)
1 + f fict

1 = (α(ρ − ρc) − β((v‖
1 )2 + (v‖

2 )2 + (v‖
3 )2))v‖

1 − σdtang(ρ, x) − λ(v‖
1dtang(v‖

1, x1)

+ v
‖
2dtang(v‖

1, x2) + v
‖
3dtang(v‖

1, x3) − v
‖
1n1n1dtang(v‖

1, x1) − v
‖
1n1n2dtang(v‖

2, x1)

− v
‖
1n1n3dtang(v‖

3, x1) − v
‖
2n1n1dtang(v‖

1, x2) − v
‖
2n1n2dtang(v‖

2, x2) − v
‖
2n1n3dtang(v‖

3, x2)

− v
‖
3n1n1dtang(v‖

1, x3) − v
‖
3n1n2dtang(v‖

2, x3) − v
‖
3n1n3dtang(v‖

3, x3)) − D(dtang(P11, x1)G11

+ dtang(P11, x2)G12 + dtang(P11, x3)G13) − D(dtang(P12, x1)G21 + dtang(P12, x2)G22

+ dtang(P12, x3)G23) − D(dtang(P13, x1)G31 + dtang(P13, x2)G32 + dtang(P13, x3)G33), (A29)

for the x1 component. Note that the α and β terms capture the
preferred speed part of Toner-Tu theory, the term involving σ

treats the pressure term, the terms preceded by λ capture the
advection contribution to the Toner-Tu equations, and the final
pieces involving P and G subtract off the fictitious force due
to the curved-space Laplacian. We have similar equations for
the x2 and x3 components of the force.

We add here an additional note concerning our imple-
mentation of user-defined partial differential equations within
COMSOL using ∇ · �, where the tensor � is a generalized
stresslike term. As we saw in the context of the curved-space
version of the Laplacian above, we wished to implement an
equation of form Eq. (A19) which is not in the form of the
divergence of a tensor. Thus, we introduced

(
∂ (PilGl j )

∂x j

)



= ∂ (PilGl j )

∂x j
− n jnk

∂ (PilGl j )

∂xk
. (A30)

The right side of this equation asks us to do ordinary calculus
according to the product rule, culminating in(

∂ (Pil Gl j )

∂x j

)



= Pil
∂Gl j

∂x j
+ ∂Pil

∂x j
Gl j

− n jnk
∂Pil

∂xk
Gl j − n jnkPil

∂Gl j

∂xk
. (A31)

We can rewrite this as(
∂ (PilGl j )

∂x j

)



= Pil

(
∂Gl j

∂x j
− n jnk

∂Gl j

∂xk

)

+
(

∂Pil

∂x j
− n jnk

∂Pil

∂xk

)
Gl j . (A32)

This proves the assertion used in the paper that the quantity
we want can be written as the divergence of a tensor minus an
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unwanted term that we can treat as a force, resulting in

Pil

(
∂Gl j

∂x j

)



=
(

∂ (PilGl j )

∂x j

)



−
(

∂Pil

∂x j

)



Gl j . (A33)

3. Analytical solutions for Toner-Tu on the cylinder

In this Appendix section, we derive analytical solutions on
the cylinder for steady-state Toner-Tu density and velocity,
and for velocity dynamics during relaxation to that steady
state. These solutions are used for comparison to our FEM
results in Sec. V C. To develop analytic intuition on a cylin-
drical surface to complement our finite element studies, our
first step is the parametrization of the cylindrical surface:

r(θ, z) = (R cos θ, R sin θ, z). (A34)

We have two parameters, u1 = θ and u2 = z, which provide
an address for every point on the cylindrical surface. That
is, every choice of (u1, u2) has a corresponding point on the
surface. Next we need to find the tangent vectors, which are
defined via

ai = ∂r
∂ui

, (A35)

where ui is the coordinate of the surface defined above. Given
these definitions, we have

aθ = ∂r
∂θ

= (−R sin θ, R cos θ, 0) = Reθ (A36)

and

az = ∂r
∂z

= (0, 0, 1) = ez (A37)

as our two tangent vectors, exactly as expected. Note that
these vectors do not have the same units. Indeed, this issue
of units is revealed in the metric tensor. The components of
the metric tensor are obtained by computing the dot product
of these tangent vectors and are given as

gαβ ≡ aα · aβ. (A38)

For the specific case of a cylinder, the metric tensor takes the
particularly simple form

g =
[

R2 0

0 1

]
, (A39)

with much of the simplicity resulting from the fact that the
tangent vectors are orthogonal.

With this background, we now want to solve the Toner-Tu
equations,

∂vμ

∂t
= [α(ρ − ρc) − βgabv

avb]vμ − σ∇μρ − λvν∇νv
μ,

(A40)

for the case of the cylinder. Following the work of Shankar
et al., we neglect the diffusive (neighbor coupling) term, both
to make an analytical solution tractable and to compare di-
rectly with their previous study. This formulation invokes the
covariant derivative

∇μvν = ∂μvν + 
ν
αμvα, (A41)

where 
ν
αμ are the Christoffel symbols. All of this extra

machinery and corresponding notation comes down to the
subtlety of getting our derivatives right in the curved-space
setting. We also introduce the symbol � to represent the
intrinsic curved-space version of the Laplacian. We assume
that the Toner-Tu steady state,

λvν∇νv
μ = [α(ρ − ρc) − βgabv

avb]vμ − σ∇μρ, (A42)

has no velocity in the z direction. Equation (A42) corresponds
to two equations to solve, one arising from μ = z and the other
arising from μ = θ . In the steady state, we can evaluate the z
equation with the result that

∂ρ

∂z
= 0, (A43)

implying a constant density. We can then evaluate the μ = θ

equation, leading to

α(ρ0 − ρc) − βR2(vθ )2 = 0, (A44)

and thus to

vθ
ss =

√
α(ρ0 − ρc)

βR2
. (A45)

To find the actual magnitude of the velocity in physical units,
we must contract with the metric tensor using

|vss|2 = gμνv
μ
ssv

ν
ss. (A46)

Further, since the only nonzero component of the velocity is
vθ

ss, this implies that |vss|2 = gθθv
θ
ssv

θ
ss. Given that gθθ = R2,

we can now write the velocity as

|vss|2 = α(ρ0 − ρc)

β
. (A47)

This solution represents a simple circumferential flow around
the cylinder coupled to a uniform density field.

It is one thing to obtain steady-state solutions. It is quite
another to work out the time evolution of the solutions. We
now revisit the Toner-Tu dynamics on the cylindrical surface
for the case in which we prescribe a highly symmetric initial
condition with the same symmetry of circumferential flow and
uniform density ρ0, and we work out the relaxation dynamics
to the steady state that were shown in Fig. 10. For this geom-
etry, the dynamical equation of interest is given by

∂vθ

∂t
= [α(ρ − ρc) − βR2(vθ )2]vθ − σ

R

∂ρ

∂θ
− λvθ ∂vθ

∂θ
.

(A48)

For the special case of high symmetry considered here, we
know that both vθ and ρ do not depend upon θ . Thus, the
dynamical equation simplifies to the form

dvθ

dt
= [α(ρ − ρc) − βR2(vθ )2]vθ . (A49)

This nonlinear equation is separable resulting in the elemen-
tary integral

1

βR2

dvθ

vθ
(

α(ρ−ρc )
βR2 − (vθ )2

) = dt . (A50)

024610-24



WILDEBEEST HERDS ON ROLLING HILLS: FLOCKING … PHYSICAL REVIEW E 108, 024610 (2023)

Given an initial magnitude v(0) = Rvθ (0) and a uniform den-
sity ρ0, the solution for the time-dependent relaxation is given
by

|v|2 = R2(vθ )2 =
α(ρ0−ρc )

β

1 − (
1 − α(ρ0−ρc )

βv(0)2

)
e−2α(ρ0−ρc )t

. (A51)

In Fig. 10, we compared the dynamics predicted here analyti-
cally to our FEM solution of the same problem.

4. Analytical solution for Toner-Tu on the sphere

We next take up the analysis of the minimal Toner-Tu
model on the sphere. Previous work [39,53] described a highly
symmetric rotating band solution for flocks on the sphere, in
which both the density and velocity depend only upon the
azimuthal angle θ at the steady state. Here, we present the ana-
lytical solution for density and velocity on the sphere derived
by Shankar et al. [39], which is compared to our numerical
results in Sec. V. For their steady-state analysis, Shankar et al.
[39] made the approximation that the neighbor coupling term
with coefficient D is absent, resulting in the simpler minimal
version of the steady-state Toner-Tu equations of the form

λvν∇νv
μ = [α(ρ − ρc) − βgabv

avb]vμ − σ∇μρ. (A52)

We note that while Shankar et al. chose the field variables
ρ and p = ρv, we continue in the language of ρ and v.
To concretely solve these equations, the first step is the
parametrization of the spherical surface, resulting in

r(θ, φ) = (R cos φ sin θ, R sin φ sin θ, R cos θ ). (A53)

Next we need to find the tangent vectors which are defined via

ai = ∂r
∂ui

, (A54)

where ui is the coordinate of the surface defined above. Given
these definitions, we have

aθ = (R cos φ cos θ, R sin φ cos θ,−R sin θ ) (A55)

and

aφ = ∂r
∂φ

= (−R sin φ sin θ, R cos φ sin θ, 0) (A56)

as our two tangent vectors, exactly as expected. The compo-
nents of the metric tensor are obtained by computing the dot
product of these tangent vectors and are given as

g =
[

R2 0
0 R2 sin2 θ

]
, (A57)

with much of the simplicity resulting from the fact that the
basis vectors are orthogonal. In moving back and forth be-
tween covariant and contravariant components of our vectors
of interest, we also need

gab = (gab)−1 =
[

1
R2 0

0 1
R2 sin2 θ

]
. (A58)

Equation (A52) corresponds to two equations we have to
solve, one arising from μ = θ and the other arising from μ =
φ. To evaluate the covariant derivatives on the surface present
in these equations, we will need the Christoffel symbols.

Generically, the Christoffel symbols are defined intuitively
to tell us how our basis vectors change when we take small
excursions with the parameters that characterize our surface
of interest. Specifically, we have


k
i j = ∂ai

∂u j
· ak, (A59)

measuring how an excursion in u j leads to a change of ai.
For the highly symmetric geometry of the cylinder considered
earlier, the Christoffel symbols all vanish. We can see this
by recognizing that the z direction and the θ direction are
essentially uncoupled. That is, there is no dependence of aθ

on the coordinate z and, similarly, there is no dependence of
az on θ . Further, ∂aθ /∂θ is perpendicular to aθ and hence there
is no contribution to the Christoffel symbol.

Evaluation of the covariant derivatives for the sphere re-
quires us to invoke Christoffel symbols which, unlike the
cylinder case, do not all vanish. Because of the symmetry
of the sphere, only a few of the Christoffel symbols survive.
Using the tangent vectors defined above, we have


θ
φφ = ∂aφ

∂φ
· aθ = − sin θ cos θ (A60)

and



φ

θφ = ∂aθ

∂φ
· aφ = cot θ. (A61)

With these geometrical preliminaries settled, we can now turn
to the steady-state form of the dynamical equations them-
selves.

For the case when μ = θ , the Toner-Tu equations become

λvν∇νv
θ = −σ∇θρ (A62)

since the term [α(ρ − ρc) − βgabv
avb]vθ vanishes because

vθ = 0 as a result of our assumption that the solution only has
a φ component of velocity. At first, we might be tempted to set
the term λvν∇νv

θ equal to zero, but because of the covariant
derivative, there is a contribution due to v

φ
ss. To see that, we

note that the full term λvν∇νv
θ requires a covariant derivative

and is given by

λvν∇νv
θ = λvν∂νv

θ + λvν
θ
ανv

α. (A63)

The first term on the right vanishes because vθ = 0. The
term λvν
θ

ανv
α results in λvφ
θ

φφvφ = −λ sin θ cos θ (vφ
ss)2. A

critical point necessary for evaluating −σ∇θρ is the relation
between ∇μ and ∇μ. Specifically, we note that

∇μ = gμν∇ν . (A64)

In light of this relationship, we have

∇θ = gθ j∇ j = gθθ∇θ . (A65)

Given that gθθ = 1/R2 and ∇θ = ∂/∂θ , we can now write out
the steady-state μ = θ equation as

λ sin θ cos θ
(
vφ

ss

)2 = σ

R2

∂ρss

∂θ
. (A66)

For the case when μ = φ, we have

λvν∇νv
φ = [α(ρ − ρc) − βgabv

avb]vφ, (A67)
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where we have dropped the term σ∇φρ since, by symmetry,
we have assumed that the density does not depend upon the
coordinate φ. The first term vanishes, resulting in

vφ
ss

[
α(ρss − ρc) − βR2 sin2 θ

(
vφ

ss

)2] = 0. (A68)

We can now use these two conditions in our two unknowns
ρss(θ ) and v

φ
ss(θ ) to solve for the steady-state values of density

and velocity. Shankar et al. [39] began by defining a density
X (θ ) with a reference value as

X (θ ) = ρss(θ ) − ρc. (A69)

We can use this definition to solve Eq. (A68) for v
φ
ss as(

vφ
ss

)2 = αX

βR2 sin2 θ
. (A70)

This can now be substituted into Eq. (A66) to obtain the
differential equation:

σ

R2

dX

dθ
= λα

βR2

cosθ

sinθ
X. (A71)

Multiplying both sides by R2/σ results in the emergence of a
dimensionless parameter given by

η = λα

βσ
, (A72)

permitting us to rewrite the equation for X (θ ) as

dX

dθ
= (ηcotθ )X. (A73)

This differential equation is separable and upon integration
yields the simple expression

lnX = ηln(sinθ ) + C. (A74)

By exponentiating both sides of the equation, we then find the
solution

X (θ ) = Asinηθ. (A75)

The unknown coefficient A can be determined by exploiting
the symmetry of the solution that tells us that the maximal
density will be at the equator of the sphere, implying

X

(
π

2

)
= ρss

(
π

2

)
− ρc = Asin

π

2
, (A76)

permitting us then to write the steady-state solutions for the
density as

ρss(θ ) = ρc + (ρ0 − ρc)Aη sinη θ, (A77)

where the prefactor Aη is defined by

Aη = 2
((3 + η)/2)/[
√

π
(1 + η/2)]. (A78)

Note that the dimensionless parameter η gives us a convenient
knob to tune in our calculations, which allowed us to directly
compare with the numerical results of our finite element cal-
culations in Fig. 11.

We can also work out the steady-state value of the velocity
field by invoking the condition(

vφ
ss

)2 = α

βR2sin2θ
X (θ ). (A79)

Recall that to find the actual magnitude of the velocity in
physical units, we must contract with the metric tensor using

|vss|2 = gμνv
μvν . (A80)

Further, since the only nonzero component of the velocity
is v

φ
ss, this implies that |vss|2 = gφφv

φ
ssv

φ
ss Given that gφφ =

R2sin2θ , we can now write the velocity as

|vss|2 = α

β
(ρ0 − ρc)Aη sinη θ. (A81)

For the specific case of η = 2, for example, we find

A2 = 2

(

5
2

)
√

π
(2)
= 3

2
. (A82)

Using this value for A2, we can then write the density and the
velocity fields as

ρss(θ ) = ρc + 3
2 (ρ0 − ρc)sin2θ (A83)

and

|vss|2 = 3
2 (ρ0 − ρc)sin2θ, (A84)

respectively. These solutions from the work of Shankar et al.
[39] provided an opportunity to test our numerical implemen-
tation of the Toner-Tu theory on a curved surface using the
FEM, as shown in Fig. 11 of Sec. V D.
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