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Growth and aging in a few phase-separating active matter systems
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Via computer simulations we study evolution dynamics in systems of continuously moving active Brownian
particles. The obtained results are discussed against those from the passive 2D Ising case. Following sudden
quenches of random configurations to state points lying within the miscibility gaps and to the critical points, we
investigate the far-from-steady-state dynamics by calculating quantities associated with structure and character-
istic length scales. We also study aging for quenches into the miscibility gap and provide a quantitative picture
for the scaling behavior of the two-time order-parameter correlation function. The overall structure and dynamics
are consistent with expectations from the Ising model. This remains true for certain active lattice models as well,
for which we present results for quenches to the critical points.
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I. INTRODUCTION

Nonequilibrium models of self-propelled or active particles
describe a multitude of phenomena ranging from the move-
ment of bacteria and artifical microswimmers to macroscopic
flocks of birds [1–3]. Some of these systems exhibit cooper-
ative phenomena such as motility-induced phase separation
(MIPS) [4] that resembles the passive liquid-gas phase sepa-
ration but occurs in absence of any attractive interactions: At
large propulsion speeds and low rotational diffusion, artificial
microswimmers can self-trap and form clusters. The resulting
phase diagram shows a binodal curve of coexisting densi-
ties that ends in a critical point. Computationally, artificial
microswimmers are often studied with continuously moving
active Brownian particles (ABPs) [5–13] or variants thereof,
but recently active lattice models have gained attention as
well [14–16].

Whether the phase behavior in the vicinity of a nonequilib-
rium critical point is unique, and if it belongs to any standard
universality class is a question of fundamental interest and
has sparked an ongoing controversy [15–22]. For ABPs, a
determination of the critical point and its associated critical
exponents revealed results incompatible with any known uni-
versality class [17], while active Ornstein-Uhlenbeck particles
appear to be compatible with 2D-Ising behavior [19,21,22].
Similarly, active lattice models exhibit exponents close to
the 2D-Ising values [15] even though small model-dependant
deviations remain [16]. For the description of static critical
behavior first theoretical approaches have appeared recently
which may reconcile some of these discrepancies [18,20].
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In this manuscript we focus on dynamical aspects of active
systems. Understanding of nonequilibrium dynamics follow-
ing quenches of homogeneous systems to the critical point,
as well as to state points inside the coexistence region, is
of fundamental as well as practical relevance [23,24]. In the
context of passive matter systems associated phenomena re-
ceived much attention. In this broad area, recent focus has
been on active matter systems [25–31]. In a class of studies
the objective is to understand the scaling behaviors related to
structure, growth, and aging [23,26,32–36]. Below we provide
brief descriptions of these nonequilibrium aspects.

Typically, growth in such nonequilibrium situations, fol-
lowing quenches inside the coexistence region, occurs in a
power-law fashion, viz., average size of domains, rich or poor
in particles of a particular type, �, grows with time (t) as [23]

� ∼ tα. (1)

Such a growth is usually self-similar in nature, i.e., the domain
patterns at two different times are different from each other
only via a change in �. This property is reflected in the scaling
behavior of the two-point equal time correlation function [23],

C(r, t ) = 〈ψ (�r, t )ψ (0, t )〉 − 〈ψ (�r, t )〉〈ψ (0, t )〉, (2)

as [23]

C(r, t ) ≡ C̃(r/�). (3)

Here ψ is a space- (�r) and time-dependent order parameter.
Another important property associated with such nonequilib-
rium systems is the aging phenomena. This can be captured
in the relaxation behavior of the two-time order-parameter
auto-correlation function [32]

Cag(t, tw ) = 〈ψ (�r, t )ψ (�r, tw )〉 − 〈ψ (�r, t )〉〈ψ (�r, tw )〉, (4)
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where tw (< t) is a waiting time, also referred to as the age
of the system. As opposed to the equilibrium systems, the
time translation invariance in growing systems is not obeyed.
Note that the rate of relaxation is expected to be different for
different ages of a system. Thus, Cag does not exhibit collapse
of data from different values of tw when plotted versus t − tw,
but is reported to exhibit collapse when plotted as a function
of t/tw [32], with the scaling form

Cag ∼
(

t

tw

)−αλ

, (5)

λ being referred to as an aging exponent. With the increase
of the exponent λ, the decay of C(t, tw ) becomes generally
faster. In the domain of kinetics of phase transitions, λ is a
key quantity for the determination of the universality classes.

Similar interest exists for quenches to the critical point. In
this case the correlation in the system is expected to grow with
time as [29,37,38]

ξ (t ) ∼ t1/z, (6)

z being a dynamic critical exponent. Note that in the long time
limit values of ξ diverge with the approach to the critical point
in a power-law fashion with an exponent ν [39].

Obtaining the values of α, λ, and z are of fundamental
importance in the domain of dynamics of phase transitions.
Understanding of these are quite advanced for various lattice
systems in the case of passive matter. For fluids, the status is
reasonably poor. In the case of active matter systems, such
interest is very recent. In this work, we intend to obtain these
quantities for phase-separating systems consisting of active
Brownian particles [4,17]. In addition, we also study active
lattice systems [14,15] as they are computationally less de-
manding and thus yield statistically better data. These systems
did show interesting deviations in steady-state critical behav-
ior from ABPs in prior work [16]. Therefore, a comparative
analysis of dynamical behavior adds further understanding
toward the uniqueness of active matter systems.

Note that self-propelled particles forming nonequilibrium
active systems offer a wide range of interesting behavior
and applications [1–3,40,41]. While phase transition and the
overall nonequilibrium behavior in these systems constitute
a broad field of ongoing research [5–12,17], we add an
additional aspect of nonequilibrium behavior by quenching
uncorrelated homogeneous active systems to correlated or
phase separated states.

II. METHODS

A. Model and simulations: Active Brownian particles

Systems of active Brownian particles in two dimensions
consist of hard disks which are actively propelled along their
orientation (see below). Periodic boundary conditions are ap-
plied in both dimensions and equations of motion are given
by [17]

ṙk = − Dt

kBT
∇kU + v0

(
cos ϕk

sin ϕk

)
+

√
2Dt Rk, (7)

where Rk is normal distributed Gaussian noise, Dt the
translational diffusion constant, and U arises from a purely

FIG. 1. Phase diagram for ABPs as shown in Ref. [17]. The green
stars at the bottom mark the initialization points from where the
systems were quenched at constant packing fractions φ = 0.597 and
φ = 0.3 into the phase separated region (blue stars at the top) and
to the critical point (red diamond). Dotted lines were only drawn to
guide the eye.

repulsive Weeks-Chandler-Andersen (WCA) potential be-
tween disks with ε = 100 and σ = 1 as in Ref. [17]. If not
mentioned otherwise, then units are from now on omitted and
correspond to standard simulation units. Furthermore, Dt is
set to 1. With a cutoff distance of r = 21/6 we obtain an ef-
fective hard disk Barker-Henderson diameter dBH ≈ 1.10688.
A particle’s orientation is described by the angle ϕk , which
undergoes free rotational diffusion with diffusion coefficient
Dr , i.e. ϕ̇k = √

2DrRr , where Rr is Gaussian distributed, has
unit variance and is neither correlated between particles nor
in time. Each particle is propelled along its orientation with
constant speed v0. GPU-based simulations were performed
using HOOMD-blue [42] applying a Brownian integrator with
a time step of 10−6. Temperature was set to 1, and simulations
were performed at fixed volumes and particle numbers. If the
rotational diffusion Dr (set to 3Dt/d2

BH ≈ 2.45 throughout this
work) is small with respect to the active velocity v0, then a
self-trapping mechanism can be observed [4,43]. Particles that
form an emerging cluster require more time to orient away
from the cluster than it takes for other particles to reach and
enlarge it. This leads to a separation into a dense and a dilute
phase and a nonequilibrium phase diagram with a critical
point (Fig. 1) [17] even in the absence of explicit attractions.

In the present work we have performed several quenches
into the phase-separated region and to the critical point. All
simulations started in a mixed state with v0 = 10 and were
first equilibrated for 2 × 107 time steps (corresponding to
20 MD times). For the quenches into the phase-separated
region the final active velocity was set to v0 = 125. Critical
density (φ = 0.597 [17]) was established in a system of size
1024 × 1024 with 649 636 particles [Fig. 2(b)], while the
quench to the low-density branch (at φ = 0.3) [Fig. 2(a)]

024609-2



GROWTH AND AGING IN A FEW PHASE-SEPARATING … PHYSICAL REVIEW E 108, 024609 (2023)

FIG. 2. Snapshots obtained during the evolutions of the ABP
model, at three different times, after the quenches took place. Time t
is given in MD units. (a) For density φ = 0.3, we have simulated sys-
tem size 1024 × 1024 following quench to v0 = 125. (b) For critical
density φ = 0.597, we have system size 1024 × 1024 and quench
was to v0 = 125. (c) For critical density φ = 0.597, system size was
256 × 256 and quench was to the critical v0 = 40/dBH ≈ 36.14.

was realized with 314 573 particles. To improve statistics we
averaged over 10 independent runs each.

For quenches to the critical point [Fig. 2(c)] the final active
velocity was set to v0 = 40/dBH ≈ 36.14 [17]. To study the
scaling of the steady-state correlation length ξmax with system
size, different system sizes had to be realized. In particular,
100 independent runs for size 64 × 64 containing 2500 parti-
cles each, 50 runs for size 128 × 128 with 10 000 particles,
and 15 runs for size 256 × 256 containing 40 401 particles
each were performed.

B. Model and simulations: Active lattice systems

Quenches to the critical points were also performed for
three active lattice models which are described in detail in
Ref. [16]. In contrast to ABPs [17], these systems are already
reported to exhibit steady-state critical exponents close to the
2D-Ising values [16]. From a computational point of view
they are also less demanding, and superior statistics can be
achieved in a straightforward implementation on CPUs.

Rotational diffusion and active propulsion are handled sim-
ilarly to ABPs, but parameters are probabilities or rates in
Monte Carlo (MC) simulations. Each particle can occupy a
single site and is oriented toward one of its neighboring sites.
Density is defined as the number of occupied divided by the
total number of sites. Again, all simulations were performed
with a fixed number of particles in 2D with periodic boundary
conditions. One Monte Carlo time unit consists of as many
individual Monte Carlo attempts as there are lattice spaces in
the system. A rotation move only changes the orientation of

the particle. In a translation move, a particle attempts to move
to a neighboring site, which is always accepted if the targeted
space is empty and rejected otherwise. To implement activity,
movements along the particles’ orientation were chosen with
higher probability. Other directions were also allowed with
reduced probability to account for translational diffusion.

As in Ref. [16] Model I [15] on a hexagonal (hex.) and a
square (sq.) lattice were investigated to study the influence of
lattice geometry on emerging dynamical properties. In each
simulation step, the program attempts to change the orienta-
tion of a particle first: A Gaussian distributed random number
(having standard deviation σrot and zero mean) is chosen
and rounded to the nearest integer. The current orientation
is adjusted by that integer, and the move is accepted with
probability 1. As indicated, the rotational diffusion parameter
σrot governs the width of the Gaussian distribution and hence
the activity of the model: A low value for σrot corresponds
to a low probability for orientation adjustments and thus
enhanced activity and vice versa. Afterwards, a translation
move is attempted with the same particle and accepted if the
destination location is empty. The direction for the move is
chosen at random, with probability w+ along the particle’s
current orientation and with probability wt for any of the
remaining directions. For the hexagonal lattice probabilities
are set to w+ = 25/30 and wt = 1/30 [15], for the square
lattice w+ = 17/20 and wt = 1/20 [16].

In Model II [14] either a rotation or a translation move is at-
tempted in an individual simulation step on the square lattice.
A clockwise or anticlockwise rotation is performed with rate
w1 = 0.1, an attempted move along the current orientation
is undertaken with rate w+ and in any other direction with
wt = 1. Activity is regulated by adjusting w+. Probabilities
for each move are obtained by dividing the individual rates by
the sum of all rates, namely (w+ + 3wt + 2w1). For a more
in-depth discussion of the lattice models including steady state
critical exponents and visualizations of particle moves, the
reader is referred to Ref. [16]. Note that model parameters
for the three active lattice models (including w+,wt , and w1)
were all taken from the original publications in which the
models were first introduced [14–16]. In general, parameters
were chosen to balance active movement with regular diffu-
sion and mimic off-lattice models such as active Brownian
particles. Such choices are helpful in dealing with matters that
are parts of debates.

All lattice systems were equilibrated at the correspond-
ing critical densities (0.524 for Model I hex., 0.498 for
Model I sq., and 0.527 for Model II [16]) for 5000 time units
in a mixed state and then quenched to the critical points. For
equilibration, activity in Model I was set to σrot = 1 and in
Model II to w+ = 1.25. Two hundred independent runs were
performed for L = 512. The system size for the hexagonal
lattice was increased by 2/

√
3 to 592 in one direction to

account for the hexagonal structure. Quenches to the critical
points were simulated for five different system sizes. Four
hundred independent runs were undertaken for L = 64 and
L = 128 200 runs for L = 256 and 512 and 50 for L = 1024.
For the hexagonal lattices, one dimension was again adjusted
as described above. Critical simulation parameters were taken
from Ref. [16] as σrot = 0.3048 for Model I hex., σrot =
0.2415 for Model I sq. and w+ = 4.76 for Model II sq.
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FIG. 3. Scaling plots of the correlation functions for the quench
protocol of Fig. 2(c). Data from several different times are included
for quenches of random initial configurations to the critical point,
for the off-lattice model. The exponent η is set to 0.25, the 2D Ising
value.

III. RESULTS AND DISCUSSION

As already stated, in Fig. 1 we show the phase diagram of
the off-lattice model. The MIPS phase behavior resembles that
of a vapor-liquid phase separation in passive systems rather
closely. Nevertheless, it is not clear yet whether the critical
behavior can be attributed to the Ising universality class. On
the one hand, a study with the model used in this paper showed
clear deviations from the 2D Ising universality class [17]. On
the other hand, studies using other (somewhat similar) models
concluded agreement with 2D Ising universality class [15,19]
which resulted in a controversy. Recently, however, renormal-
ization group studies of active matter models appeared [18,20]
which could potentially reconcile these discrepancies and ex-
plain deviations from ideal Ising behavior. Apart from the
Wilson-Fisher fixed point associated with the Ising univer-
sality, these studies find other points that limit the region in
which the former dictates the phase transition. Even though
little is known about the transitions described by these other
points, they might potentially be connected to various forms
of microphase separation observed, e.g., in Ref. [44].

In Fig. 2 we show snapshots from the evolution of our
off-lattice ABP model system following a quench of random
initial configurations to various state points. There, locations
of particles are marked by dots. The frames under Figs. 2(a)
and 2(b) are for quenches to state points inside the coexistence
region (see Fig. 1). In Fig. 2(a) the overall density of particles
is closer to the vapor branch of the coexistence curve. For
this case, as expected, we observe formation and growth of
disconnected clusters. In Fig. 2(b) we have included evolution
snapshots corresponding to the critical value of φ = φc. In this
case we observe an essentially bicontinuous structure. The
snapshots in Fig. 2(c) are for quenches to the critical point,
and the resulting fractal nature of the morphology can be
appreciated. In the following we will only discuss Figs. 2(b)
and 2(c) before moving to results from the lattice models.

FIG. 4. (a) Results for growing correlation length are shown
from different system sizes for quenches of random initial config-
urations to the critical point. The solid line is a power law, the
value of the exponent mentioned next to it. Inset shows the plot
of instantaneous exponent, 1/zi, as a function of 1/ξ , for L = 256.
(b) The steady state values of the correlation length, ξmax, are plotted
versus the system size L. These results are for the continuum model.

Note that in the case of Fig. 2(a), gathering meaningful data
would require simulations of very large systems over long
periods.

First we discuss the case of a quench to the critical point. In
this case, due to the fractal nature of the structure the scaling
property of Eq. (3) should be written as

C(r, t ) ≡ rC̃[r/ξ (t )], (8)

where  is a function of the space and the fractal dimensions.
Recalling that the equilibrium (here steady-state) correlation
function in the critical vicinity has the form [38,39]

r−pe−r/ξ ; p = d − 2 + η, (9)
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FIG. 5. Scaling plots of (a) C(r, t ) and (b) S(k, t ), for the quench-
ing protocol described in Fig. 2(b). In panel (b) the solid lines
represent power laws with exponent values mentioned in adjacent
locations. These results are from the simulations of the off-lattice
model.

we have the modified scaling form

rηC(r, t ) ≡ C̃[r/ξ (t )], (10)

the critical exponent η being 1/4 in space dimension d = 2
for the Ising class [39]. To confirm this scaling property we
have plotted r0.25C(r, t ) as a function of r/ξ (t ) in Fig. 3. Re-
sults from several different times have been included. Similar
exercises were performed by replacing η by other numbers.
The collapse for 0.25 appears the best.

The values of ξ (t ) obtained via the above discussed scaling
analysis are plotted in Fig. 4(a), as a function of t . Data
from different system sizes, as seen on the log-log scale,
indicate a power-law growth with the exponent 	 0.275. This
is consistent with 1/z, with z = 4 − η, as expected for the
2D Ising class. In the inset we have shown the instantaneous

FIG. 6. (a) Plot of the average domain length as a function of
time for the quenching protocol described in Fig. 2(b). (b) Instanta-
neous exponent corresponding to the growth in panel (a) is plotted
versus 1/�. These results are from the simulations of the continuum
model.

exponent [46–48]

1/zi = d ln ξ (t )

d ln t
, (11)

as a function of 1/ξ (t ). Asymptotically, a convergence toward
0.275 can be appreciated. In Fig. 4(b) we demonstrate that the
maximum correlation length scales with the system size, as in
the passive case, at the critical point. A more accurate study
calls for an exercise where ξmax for different system sizes L
are calculated at the finite-size critical points. Now we discuss
the case of Fig. 2(b).

To check for the self-similar nature of the evolving pat-
tern we calculate C(r, t ). Scaling plots of this quantity are
presented in Fig. 5(a). In this case we aim to validate the
scaling form of Eq. (3). Data from a few different times
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FIG. 7. Autocorrelation functions from the simulations of the
off-lattice model are plotted versus the translated time t − tw, for a
few values of the waiting time tw. These results are for the protocol
of Fig. 2(b).

are shown. There, the distance axis is scaled by the average
domain lengths at the corresponding times. Clearly, data from
different times nicely collapse on top of each other, confirm-
ing self-similar growth. A scaling plot for the structure factor
is presented in Fig. 5(b). There the power-law decay in the
large wave vector (k) limit validates the Porod law [49]. The
latter originates from scattering from sharp interfaces. We will
discuss the small k power-law behavior later. Note that the
presented scaling form for the structure factor S(k, t ) is a
direct consequence of the fact that this quantity is the Fourier
transform of C(r, t ).

FIG. 8. Same as Fig. 7 but here we show Cag(t, tw) as a function
of t/tw. The solid line has a power-law decay. The value of the
exponent is mentioned next to the line.

FIG. 9. The instantaneous aging exponent is plotted versus tw/t
for a value of tw . The solid line is a guide to the eyes.

The average domain lengths are plotted in Fig. 6(a) as a
function of time. The late time behavior is consistent with a
power-law exponent 1/3. The latter is expected for diffusive
domain growth as seen in Lifshitz-Slyozov mechanism [35]
and is realized in Monte Carlo simulations [29] of Ising model
via Kawasaki exchange [50] kinetics that preserves the system
integrated order parameter over time [23,29]. In Fig. 6(b) we
show [46–48]

αi = d ln �(t )

d ln t
, (12)

versus 1/�. Clearly the asymptotic convergence (� = ∞ limit)
is toward a value very close to 1/3.

In Fig. 7 we present the autocorrelation function, Cag(t, tw ),
versus the translated time t − tw. Clearly, results from dif-
ferent tw do not overlap, as expected for evolving systems.
The same data sets are plotted versus t/tw in Fig. 8. Good
overlap is observed. There the deviations of the data points
from the master curve, that occur at different abscissa values
for different tw, are due to finite size of the systems. These
departures should not be considered while quantifying the
decay in the thermodynamically large system size limit. At
large values of t/tw, prior to the appearance of the finite-size
effects, it appears that Cag decays in a power-law manner
with an exponent 1. For an accurate estimate of the exponent,
in Fig. 9 we show the corresponding instantaneous expo-
nent [32,36] −d ln Cag/d ln(t/tw ) as a function of tw/t . The
convergence is toward 1.1, when analyzed by discarding the
finite-size affected part, that appears when tw/t is small. This
implies λ 	 3.3 which is in agreement with the Ising value for
conserved order parameter [36].

Depending upon the conservation of order-parameter dur-
ing evolution, there exist important bounds on the aging
exponent λ [32,34]. For nonconserved order-parameter dy-
namics, which is not relevant to the present problem, Fisher
and Huse provided a lower bound, λ � d/2, that can be
obtained from the well-known Ohta-Jasnow-Kawasaki (OJK)
correlation function [52] involving two space points and two
times. Later Yeung, Rao, and Desai (YRD) [34] provided a
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FIG. 10. Snapshots obtained during the evolutions of the consid-
ered lattice models are presented for three different times after the
quenches to the critical points took place. Time t is given in Monte
Carlo steps. The locations of the particles are marked. (a) For Model I
hex., a system at critical density 0.524, is quenched to σrot = 0.3048.
The system is of size 512 × 592, to adjust for the hexagonal lattice
structure. (b) For Model I sq., a critical density (0.498) system is
quenched to σrot = 0.2415. The system is of size 512 × 512. (c) For
Model II sq., a system with critical density 0.527 is quenched to
w+ = 4.76. System is of size 512 × 512. The comparison of the
results with the 2D conserved Ising model is presented in Fig. S4,
in the Supplemental Material [45].

more general lower bound, viz.,

λ � d + β

2
, (13)

where β is the exponent characterizing the small wave-vector
(k) power-law behavior [51],

S(k, tw ) ∼ kβ. (14)

For Ising-type systems, for standard nonconserved dynam-
ics [36,52] β = 0. Thus, the YRD bound matches with
the lower bound of FH. However, for similar models with
conserved order-parameter dynamics one should ideally
have [51] β = 4. The latter type of dynamics is of relevance
here [23,29]. In Fig. 5(b) we have shown a representative plot
of the structure factor, as a function of k, on a double-log scale.
The small k behavior is consistent with β = 3. In that case we
have the YRD bound to be equal to 2.5, recalling that here
d = 2. Our result in Fig. 9 satisfies the lower bound of YRD.
Somewhat smaller value of β than 4 was realized in earlier
works also [53].

Before concluding, we present results from growth in the
lattice models. In Fig. 10 we show evolution snapshots for
quenches to the critical points for different lattice models.
In Fig. 11 we have shown the growth of ξ for these lattice
models. The results are consistent with the Ising case. For

FIG. 11. Time-dependent correlation lengths are plotted for
(a) square lattice using method-I, (b) hexagonal lattice using method-
I, and (c) square lattice using method-II. The solid lines are power
laws with mentioned value of the exponent. These results are for
quenches of random initial configurations to the critical points.
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quenches inside the coexistence regions, patterns obtained
from the lattice models differ from the 2D conserved Ising
model, and in the late stages the underlying lattice geometry
becomes apparent. See Figs. S1 and S2 in the Supplemental
Material [45]. The average domain length grows faster as
well (Fig. S3) [45]. Further investigations, thus, are certainly
warranted.

IV. CONCLUSION

We have studied critical and off-critical kinetics of vapor-
liquid phase transition in a model system consisting of active
Brownian particles [17]. Results are presented for structure,
growth, and aging. Each of these aspects appear to be quite
similar to those observed during phase separation in the Ising
model with conserved order-parameter dynamics [23,29].
The growth of average domain size follows a power-law
behavior with an exponent α = 1/3, as expected for Lifshitz-
Slyzov mechanism [35]. The aging exponent λ appears to
have a value 3.3 that is in quite good agreement with
two-dimensional conserved dynamics of Ising model [36]
within 10%. The value of λ satisfies the Yeung-Rao-Desai
bound [34]. The structure also matches Ising behavior.

Note that our results for ABPs are not necessarily in
contradiction to the central claim of Ref. [17], namely that
static critical exponents differ from the 2D Ising case. In

our opinion, they merely indicate that critical behavior in
nonequilibrium systems may still not be as well-understood
as in the equilibrium case, and that future research in this
field is certainly warranted. On a related note, inertia [54,55]
and hydrodynamics [56] also appear to affect behavior of
active particles in the phase separated region and beyond,
and a thorough investigation of their influence on dynam-
ics, particularly in the critical region would be interesting as
well.

Finally, we have also presented results from a few lattice
models [15] for quenches to the critical points. In these cases
also the structure and dynamics, like in the case of the contin-
uum model, are similar to those for the conserved Ising model
in d = 2.
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