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Collective dynamics of dipolar self-propelled particles
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We present a numerical study of the collective behavior of self-propelled particles for which dipolar inter-
actions are considered. These are obtained by introducing pointlike magnetic dipoles in the particles. Various
dynamical regimes are found depending on three major parameters: the density of particles, the ratio � defined as
the competition between kinetic energy and potential magnetic energy, as well as the orientation of the magnetic
dipoles inherent to the particles. Patterns such as chains, vortices, flocks, and strips have been obtained.
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I. INTRODUCTION

Active matter is composed of basic elements that consume
energy from their environment and convert it in order to
act by themselves, providing function or motion. Therefore,
active systems are intrinsically out of equilibrium. A large
class of active systems is composed of self-propelled parti-
cles. Paradigmatic examples are fish schools and shoals [1–4],
bird flocks [5–8], artificial self-propelled colloidal parti-
cles [9–11], and swarms of robots [12,13]. These systems
can be classified into two main categories: living organisms
and inert particles. However, for cost or maintenance reasons,
such systems can also be studied through numerical simula-
tions [14–19]. In some conditions, these systems could exhibit
collective behaviors like swarming, grouping, or vorticing, as
well as phase separation [2–4,9,15,20–22].

Since experiments often encounter challenges to control
living organisms or be reproduced, model systems like kilo-
bots [23], hexbugs [24], or vibrobots [25] have recently
been proposed and studied. In the last case, these particles
are typically one centimeter long with flexible inclined legs
and their self-propulsion comes from a conversion of energy
given by the vertically oscillating support. Depending on how
these little legs are positioned around the particles, we may
observe linearly moving particles [26–28] or rotating parti-
cles [29–31]. When many of them are placed in a closed arena,
they show collective dynamics due to their collisions, which
represent the only way that these active particles interact
with each other. Furthermore, these findings highlight that
high densities are required to show large-scale structures in
such systems.

Since steric interactions between vibrobots require high
densities to trigger collective behaviors, additional local inter-
actions could be added to lowering critical density thresholds.
An elegant way to introduce local interactions is to con-
sider dipole-dipole interactions between active particles. The
vibrobot counterpart corresponds to magnetic interactions
resulting from dipolar magnetic moments inserted in the par-
ticles. Recent numerical findings suggested that some patterns
like chains and vortices form in those systems, and the vortices
seem to be due to wall effects [19].

In this paper, we explore numerically the collective dy-
namics of an open and dilute system composed of a few
dipolar active particles. In particular, we aim to establish a
link between the orientation of their dipoles and the resulting
patterns. We expect that the dynamics will differ depending on
the particle type and density. Figure 1 shows different ways to
insert permanent magnets in vibrobots. Like a branching phy-
logenetic tree, one or two dipoles may be inserted (noted m1
and m2, respectively). Horizontal dipoles can be orientated
along either the major axis a or the minor axis b. Since m1b+
and m1b− are two versions of the same type of particles, this
paper will only focus on three main systems, independently
composed of m2a, m1a, and m1b particles, assuming that
label m1b is used for the label m1b+ in the rest of the paper.
We expect that the number of inserted dipoles per vibrobot and
their orientation may induce different collective behaviors.

II. MODEL

In our model, the self-propelled particles (SPP) have an
elliptical shape with aspect ratio a/b = 1.8 and their 2D mo-
tion was implemented by considering a particle velocity �v
through their components �va and �vb along major and minor
axes, respectively. The evolution of the velocity of a particle
is given by

d

dt
�v = η(γa�ea + γb�eb) − β�v, (1)

where the parameter η is a fitting parameter and β represents
damping. Parameters γa and γb come from the velocity distri-
butions along the base axes of the particle and are randomly
drawn at a constant rate.

In addition, a particle tends to reorient its major axis along
its velocity, following the equation,

d

dt
φ = ξ sin (α)sgn(cos (α)), (2)

where ξ is a coupling term and α is the angle between the
vector polarization �ea and velocity �v of the particle. More
details can be found in the Supplemental Material [32].
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The dipolar interactions arise from the classical dipole-
dipole potential

U (ri j ) = μ0

4π

[
�μi · �μ j

r3
i j

− 3
(�μi · �ri j )(�μ j · �ri j )

r5
i j

]
(3)

providing either attractive or repulsive short-range interac-
tions depending on the relative orientations of the dipoles �μi

and �μ j embedded in two different particles. This potential is
known to induce dipole alignments so that particle order is
expected.

Systems evolve through interactions and collisions that
occur between particles, modifying their motion and orienta-
tion. In this way, those interactions were implemented using a
discrete element method (DEM) algorithm [33], being a clas-
sical numerical approach in the field of granular systems. The
forces exerted by the particles on each other were calculated
at each time step and were integrated for calculating the new
positions and velocities of the particles.

In this paper, we will study the effects of dipolar interac-
tions on the collective dynamics in the system. Therefore, we
need to introduce several control parameters. The first one is
the number N of SPP that compose the system. The latter were
randomly placed in a square arena of length L with periodic
boundary conditions. The number N is directly related to the
surface fraction covered by particles

s = N
πab

L2
. (4)

Simulations consider particle numbers from N = 25 to
N = 150, thus covering surface fractions from s = 3.93% to
s = 23.56%.

The second relevant parameter compares the typical kinetic
energy K of an SPP and the dipolar interaction potential U
in a simple system of two SPP, which depends on the dipole
strength. The dimensionless control parameter is

� = U

K
= |U (2a)|

1
2 m〈v2〉 (5)

with

〈v2〉 = 〈va〉2 + σ 2
a + 〈vb〉2 + σ 2

b , (6)

where the distance ri j between two dipoles in Eq. (3) is equal
to one SPP length 2a as long as this parameter was defined
considering that the two SPP are one behind another. In the
context of these numerical simulations, the mass m is typically
2 g. The terms in Eq. (6) are the parameters of the velocity
distributions along the basis axes of a particle (see Table I in
the Supplemental Material [32]). We expect that low � < 1
values would imply disordered systems while high � > 1
values would induce particle alignment due to the dipolar
magnetic interactions.

III. RESULTS

A. Dynamics with dipolar interactions

Figure 2 presents typical snapshots of m1a systems when
both control parameters N and � are modified.

As expected, systems remain disordered for low dipolar
interactions while structures emerge when high � values are

FIG. 1. Phylogeneticlike tree of the different active particles con-
sidered in this work. Particles are elliptic vibrobots favorably moving
along their long axis a. In those particles, one (noted m1) or two
(noted m2) magnets can be inserted. Magnetic dipoles can be orien-
tated along the major axis (labeled a) or along the minor axis (labeled
b), and in this last case, the dipole can be directed towards the left
(b+) or the right (b−) side of the particle.

FIG. 2. Snapshots of m1a systems with increasing � (from bot-
tom to top) and N (from left to right). We see that collective dynamics
are more deeply impacted by increasing dipolar magnetic interac-
tions in comparison with the influence of density.
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FIG. 3. Time dependence of the local polarization parameter φ5b.
Each curve is an average over 10 simulations for systems with 50
m1a particles at variable �. When � is close to zero, the system
mainly aligns itself through steric interactions. As the value of �

increases, so does the intensity of the dipolar magnetic interactions,
resulting in an increase of the local polarization and a faster emer-
gence of compact structures. On top of the graph, some snapshots
represent the evolution of the system when N = 50 and � = 500.

reached. More interestingly, structures appear even for low N
values, meaning that they are mostly due to dipolar interac-
tions instead of steric ones.

B. Local polarization

Observations made in Fig. 2 should be completed by a
deeper analysis of the local structure. In most numerical stud-
ies, the order parameter φ, representing the polarization of the
system, is considered when SPP are aligning. It is defined as

φ(t ) = 1

N

∣∣∣∣∣
N∑

i=1

�ea,i(t )

∣∣∣∣∣, (7)

where the polarization measurement returns zero for a fully
disordered system and one if all the particles are perfectly
aligned.

In this paper we will use a local parameter that considers
the close environment of each particle, within a radius of 5b.
We note φ5b the average value of the local alignment over
all the particles in the system. Figure 3 presents φ5b over
simulation time t for different interaction strengths, i.e., for
different � values. Systems are composed of 50 m1a SPP,
corresponding to the central column of Fig. 2. The local po-
larization increases with time, meaning that SPP are aligning
due to their interactions and they eventually form groups
which will be analyzed below. At � = 0, when only steric
interactions occur in the system, we see a weak increase of
the local polarization that remains around φ5b � 0.7 at the
end of the simulations. Since this value differs from the initial
φ5b � 0.35 for randomly oriented particles, this means that
small local crowds emerge as a consequence of the steric
interactions. Therefore, this curve is a reference behavior for

dynamics only governed by collisions. We observe that this
behavior also appears for low � values, meaning that magnetic
interactions are not strong enough yet to overcome the natural
movement of the particles. However, as � increases, so does
the intensity of the dipolar magnetic interactions, and such
systems exhibit structures in a smaller time window and reach
a higher local polarization, typically with φ5b � 0.85, even
though every system started with a similar random distribu-
tion for the initial orientation of the SPP. This means that
magnetic interactions first act mainly in the emergence of col-
lective dynamics before being helped by collisions to enhance
order in the system. Short-range interactions are therefore
able to create structures. We should also notice that even
for high � values, systems still struggle to reach a steady
state after a long time. In particular, all SPP are not per-
fectly aligned due to the angular movement produced by their
self-propulsion.

C. Structures and local order

Simulations show various patterns following the imposed
orientation of the dipoles in their SPP and the values attributed
to the different control parameters. Figure 4 presents typical
behaviors for the three types of SPP. The left column shows
some snapshots with different patterns while the right column
gives corresponding polar graphs that summarize how parti-
cles are relatively positioned by focusing on their immediate
environment. To plot the polar graphs, we have compiled each
frame of a simulation between 25 and 40 seconds, i.e., the time
window during which we assume the system is in a steady
state according to Fig. 3. In the polar graphs, a dot indicates
the relative position of another particle within a radius of
5b, with a color that depends on the scalar product between
the orientations of both particles, from red for antialigned
particles to blue for fully aligned particles. All particles from
all the analyzed frames are treated to create the polar graph,
where the resulting particle in the center is considered moving
in the direction indicated by the black arrow. The red arrows
illustrate how the dipoles are placed in the particles.

The top row of Fig. 4 concerns a m2a system that devel-
ops vortex dynamics. We see that the main peaks appear in
the front and behind the particles. This means that chainlike
structures appear. It seems that those chains are flexible and
they eventually form loops and vortices. Many scattered red
dots suggest that several chains can move close to each other
and in opposite directions. In contrast, some localized yel-
low and orange dots are more typical of vorticing structures.
The central row shows a typical pattern formed with a m1a
system, with compact groups composed of ordered particles.
The corresponding polar graph indeed highlights several more
precise peaks in the front and at the back of the particles but
also in the close neighborhood. A crystallike structure remi-
niscent of a hexagonal lattice is observed. The last row shows
the typical pattern observed with m1b particles. The dipoles
are perpendicular to the major motion of the SPP and strips
are observed. The polar graph evidences the strips since peaks
are only seen in the direction of the minor axis.

Since the neighborhood is deeply affected by particle type
and dipole strength, an additional parameter C is calculated.
This parameter is a local coordination number that reports
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FIG. 4. From top to bottom, results with chains and vortices
(m2a-inclusion), flocks (m1a-inclusion), and strips (m1b-inclusion).
(left) Representative snapshots of the observed structures. (right)
Typical polar graphs show the relative positions and alignments
between particles in their close environment (up to distances 5b). The
color scale represents the scalar product between the orientations of
each pairwise particle. It ranges from −1 in red for two antialigned
particles to one in blue for fully aligned particles. The black arrow
represents the direction of motion and the red one represents the
dipole inclusions.

the close environment of the particles defined as the average
number of neighbors with which a particle is in contact.

IV. DISCUSSION

Since the dipole orientation in the SPP leads to various
patterns, the results will be independently discussed for each
SPP type as a function of the control parameters. For this
purpose, the discussion focuses on two color diagrams, one
for each analyzed order parameter, φ5b and C, respectively, the
average local polarization and the average local coordination
number. Averages are performed over the steady state deduced
from Fig. 3 and over five independent simulations for each
couple (N, �).

A. Chains and vortices

Particles with two dipoles will inevitably provide strong
interactions with front and rear particles. The formation of

FIG. 5. Order parameters φ5b and C for the m2a-inclusion. Three
regimes appear on the graphs. When having weak magnetic interac-
tions and low densities (� � 400 and N � 75), SPP have an average
of two neighbors, showing that they form chains. Because they are
quite independent, we observe that the local alignment is not perfect.
When the parameters reach high values (� � 1780 and N � 75),
SPP gain more neighbors but are still not quite ordered with their
close environment, resulting in more vortices in the arena. In the
intermediate regime, there is a coexistence of phases where both
chains and vortices can be observed at the same time.

chains as seen in Fig. 4 (top row) is therefore not surprising.
However, the question is to identify the conditions under
which vortices are more likely to form by comparison with
simple chains.

Figure 5 shows the color diagrams for the m2a-inclusion.
The first remark is the effect of the intensity of the dipolar
magnetic interactions. Figure 5(b) exhibits clearly that in-
creasing � leads to an aggregation of particles, going from
particles with one or two neighbors in contact when � � 400,
typical of chains structures, to more than two neighbors be-
yond that value. Looking at the local alignment details the
analysis. On one hand, when we have weak magnetic inter-
actions (� � 400) and small densities (N � 75), particles are
not close to being fully aligned. Chains are small and quite
few in number to have independent trajectories and result in a
globally disordered system. On the other hand, when we have
strong magnetic interactions (� � 1780) and high densities
(N � 75), particles are more connected to each other but are
not quite aligned yet. In this case, such systems are mainly
composed of compact vortices. In fact, chains are longer and
are able to undulate and form loops as detailed in Fig. 6. In the
intermediate regime, particles are usually locally aligned and
both chains and vortices may coexist in the system. However,
chains seem more numerous and the observed vortices are less
compact structures in this case.

B. Flocks

When particles have only one dipole orientated to their
front, we expect the formation of flocks as seen in Fig. 4
(central row).
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FIG. 6. Detailed evolution of a system with chains and vortices
(N = 75 and � = 400 for the m2a-inclusion). Snapshots are taken
every five seconds and show how long chains progressively undulate
and assemble to form large vortices.

Comparing the corresponding color diagrams exposed in
Fig. 7 shows that the system faces some difficulties to form
stable global structures only in the case of low density (N <

50) and weak magnetic interactions (� < 180). No significant
order appears because particles are more likely to form several
small moving entities that have independent trajectories and
little influence on each other. Otherwise, a higher density
and/or stronger magnetic interactions allow the system to
self-organize. In particular, the density helps the system to
have a perfect local alignment while the magnetic interactions
also help those emergent structures to be more compact, in-
creasing the average number of neighbors in contact to four
or more when experiencing extreme conditions. At the steady
state, such systems often display a unique large flock after
some collisions between smaller flocks during the simulation,
as represented by the inset snapshots in Fig. 3.

C. Strips

As seen in Fig. 4 (bottom row), particles with one dipole
orientated to their side will provide strong interactions with

FIG. 7. Order parameters φ5b and C for the m1a-inclusion. When
the density is low and the magnetic interactions are weak (N < 50
and � < 180); the system is globally disordered. SPP assemble into
small flocks but these emerging structures have no sufficient influence
on each other to expect collective dynamics at a large scale. In
other cases, increasing one of the control parameters is sufficient
to enhance interactions between SPP, which often leads to a unique
stable flock where SPP have on average four neighbors or more.

FIG. 8. Order parameters φ5b and C for the m1b-inclusion. Three
regimes appear on the graphs. In most cases, typically N � 75 with
� � 80, the system is fully aligned and has an average of two neigh-
bors, forming strips. Their number and length are sufficient to have
enough collisions and magnetic interactions with each other which
lead to a global alignment. However, if the density is low enough, the
average of two neighbors shows that there is also a formation of strips
but their length and number are too small to have sufficient interac-
tions, decreasing the probability to observe a complete alignment.
In the same way, if � is high, magnetic interactions are sufficient to
create some layers, with strips moving in close proximity, one behind
another. This configuration occasionally involves different entities
facing each other and decreasing the average local alignment.

other particles on their left and right sides, leading to the
formation of strips.

On the color diagrams exposed in Fig. 8, three main
regimes can be distinguished. In most cases, when the system
has a sufficient density (N � 75) but no quite strong dipolar
magnetic interactions (� � 80), the emerging strips are large
and influence each other. This leads to a global collective
motion in the same direction even if each individual strip
has its own independence and does not assemble with one
another once formed. We see on the diagram that particles
are almost fully aligned and have on average two neighbors,
one on each side. With a low-density system (N � 50), the
situation is similar to flocks with weak interactions. Several
small strips appear but their limited number allows them
to have independent trajectories. Each particle also has two
neighbors on average, but that behavior reduces the local
alignment. In a similar way, if the system has strong dipo-
lar magnetic interactions (� � 100), the attraction between
particles is high enough to assemble several strips in layers,
a more compact agglomeration of particles. These flocklike
patterns are indicated by the higher coordination number, with
particles that have three or four neighbors. The polar graph in
Fig. 4 (bottom row) highlights what happens with different
peaks in front of and behind the particles. However, the shape
of such structures leads to situations where two strips or
layers moving in opposite directions fit into each other. The
resulting structure moves at a lower speed and its composition
decreases the average local alignment.

D. Low density patterns

From the above observations of three types of SPP, we can
conclude that some collective dynamics are emerging at low
densities when the dipole-dipole interaction is strong enough
to overcome the intrinsic noise of the particles. Indeed, all
phase diagrams show at least one structured regime for a low
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number N of SPP. Since the interactions are shortrange, these
patterns are building up on the successive collisions between
particles. Vortices are forming without wall effects. Therefore,
our numerical results suggest that dipolar self-propelled par-
ticles are relevant for future experiments, such as exploring
new configurations with the dipoles embedded in the particles
or adding external dipoles in order to create barriers or traps
and studying how active matter behaves in a potential well.

V. CONCLUSION

Social behaviors are as diverse as animal communities in
nature, and the model presented in this study is a good way
to approach them with a simple system. Though, including
dipolar magnetic interactions is the only feature that distin-
guishes this model from the basic ones in the research field of
active matter. Various patterns are observed—such as chains,
vortices, flocks, and strips—depending on the way the dipoles
are inserted in the self-propelled particles, but these dynamics
can also be diversified with the control of the intensity of the
magnetic interactions. We showed that reinforcing attraction
and repulsion between particles helps the system to rapidly
reach a steady state and to exhibit collective dynamics while

collisions continue to play a role in the global order in the sys-
tem after the main structures have been formed. In addition,
systems do not need a large number of particles to be able to
organize themselves. However, dynamics vary depending on a
subtle control of both the density and intensity of the magnetic
interactions.

We also showed that behaviors are only dependent on
the interactions between particles because the imposed peri-
odic boundary conditions exclude any interactions with walls,
corners, or obstacles. This remark is especially relevant for
vortices formation.

This study focused on three configurations of dipoles in-
serted in particles but many other configurations remain to be
explored and constitute a large perspective for this work, as
well as the reproduction of those systems in an experimental
way.
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