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Influence of a bias dc field and an ac field amplitude on the dynamic susceptibility
of a moderately concentrated ferrofluid
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In this paper, we study the effect of a bias dc field on the dynamic response of a moderately concentrated
ferrofluid to an ac magnetic field of arbitrary amplitude. The ferrofluid is modeled by an ensemble of interacting
moving magnetic particles; the reaction of particle magnetic moments to ac and dc magnetic fields occurs
according to the Brownian mechanism; and the ac and dc magnetic fields are parallel. Based on a numerical
solution of the Fokker-Planck equation for the probability density of the orientation of the magnetic moment
of a random magnetic particle, dynamic magnetization and susceptibility are determined and analyzed for
various values of the ac field amplitude, the dc field strength, and the intensity of dipole-dipole interactions.
It is shown that the system’s magnetic response is formed under the influence of competing interactions, such
as dipole-dipole, dipole-ac field, and dipole-dc field interactions. When the energies of these interactions are
comparable, unexpected effects are observed: the system’s susceptibility can either increase or decrease with
increasing ac field amplitude. This behavior is associated with the formation of nose-to-tail dipolar structures
under the action of the dc field, which can hinder or promote the system’s dynamic response to the ac field. The
obtained results provide a theoretical basis for predicting the dynamic properties of ferrofluids to improve their
use in biomedical applications, such as, in magnetic induction hyperthermia.
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I. INTRODUCTION

Ferrofluid is a stable colloidal suspension of one-domain
magnetic particles in carrier liquids [1–3]. A ferrofluid’s abil-
ity to react to a magnetic field while remaining in a liquid state
has led to a variety of applications [4–11], such as, targeted
drug delivery, enhancing the contrast of magnetic resonance
imaging, localized heating (hyperthermia), and the destruction
of diseased tissue.

In an ac magnetic field Hac cos(ωt ) with an amplitude Hac

and an angular frequency ω the ferrofluid is magnetized. Its
dynamic magnetization can be written as

M(t ) =
∞∑

k=0

M ′
k cos(kωt ) + M ′′

k sin(kωt ), (1)

where t is time. The coefficients M ′
k and M ′′

k depend on the
amplitude of the ac field and determine the kth harmonic of
magnetization χk = χ ′

k + iχ ′′
k (χ ′

k = M ′
k/Hk

ac, χ ′′
k = M ′′

k /Hk
ac),

the signal of which can be filtered in the experiment. In a weak
alternating magnetic field, the system’s magnetic response is
completely described by the first harmonic χ1 = χ , which is
called dynamic susceptibility. In ac fields with a high ampli-
tude, the higher harmonics become significant and their signal
is registered in experiments.

A great variety of theoretical approaches are available to
describe the dynamic susceptibility of ferrofluids. Most theo-
retical papers deal with an ideal system of noninteracting mag-
netic particles. The earliest dynamic theory of dipolar fluids
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was developed by Debye [12] for an ensemble of noninter-
acting dipolar particles under a weak ac field. Expressions for
the Brownian relaxation time of the magnetic particles were
derived in Refs. [13,14]. The influence of the ac field’s ampli-
tude on dynamic susceptibility and nonlinear harmonics has
been studied in [14–19]. Yoshida and Enpuku [20], based on
a numerical solution of the Fokker-Planck equation, have pro-
posed simple approximation formulas for the dynamic suscep-
tibility and third harmonic of moving noninteracting magnetic
particles, which can be used for strong ac fields with an ampli-
tude up to αac = 20 (αac is the Langevin parameter). The dc
field’s influence on the dynamic response and relaxation char-
acteristics of an ensemble of moving noninteracting particles
was investigated [21–23]. Zhong et al. [24], based on experi-
mental data, have proposed a formula for describing the Brow-
nian relaxation time of magnetic nanoparticles, that takes into
account the relative location of the ac and dc magnetic fields.
Single-particle theories of the dynamic response of an ensem-
ble of moving noninteracting particles allow us to qualita-
tively describe the behavior of a ferrofluid in ac and dc fields.
However, the range of applicability of these theories is limited
to weakly concentrated and weakly interacting systems.

The main difficulty in predicting the properties of real
ferrofluids is taking into account dipole-dipole interactions
and polydispersity. The effect of polydispersity on the
magnetic properties of ferrofluid has been studied in [25–31].
The influence of dipole-dipole interactions on the dynamic
susceptibility has been investigated in the works [26,32–38].
Ivanov et al., using the strict methods of classical statistical
mechanics, have obtained an analytical expression for a
dynamic response of an ensemble of interacting magnetic
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particles to a weak ac magnetic field [39]. The dependence
of the dynamic response of interacting particles on the ac
field’s amplitude has been investigated in [40–42]. Analytical
expressions are proposed for dynamic susceptibility, nonlinear
harmonics, and Brownian relaxation times of magnetic
particles. The dynamic response of interacting particles in a
bias dc field was theoretically studied only for the case of
weak ac fields [43,44].

In this paper, the dynamic response of an ensemble of
moving interacting magnetic particles in a bias dc field will
be studied in the case of arbitrary amplitudes of ac fields: the
ac and dc magnetic fields are directed in parallel. As already
noted, in strong ac fields, a nonlinear response (the higher
harmonics χk , k > 1), makes a nonzero contribution to the
system’s magnetization. In this article, we will focus on an-
alyzing the effect of competing interactions—dipole-dipole,
dipole-ac field, and dipole-dc field—only on the first harmon-
ics, which is a linear magnetic response of an ensemble of
interacting particles.

II. MODEL AND METHODS

A. Ferrofluid model

The ferrofluid is modeled as a suspension of N hard spher-
ical and uniformly magnetized particles with equal diameters
d and dipole moments m, immersed in a structureless fluid
with viscosity η at temperature T and total volume V . The
short-range interactions are given by the hard sphere form

Us(i j) =
{∞, ri j < d

0, ri j � d
, (2)

where ri j is the distance between the centers of i and j parti-
cles. The dipole-dipole interaction is modeled by the potential
Ud(i j),

Ud(i j) = μ0mimj

4πr3
i j

[(m̂i · m̂ j ) − 3(m̂i · r̂i j )(m̂ j · r̂i j )], (3)

where μ0 is the vacuum permeability, mi = mm̂i =
m(sin θi cos φi, sin θi sin φi, cos θi ) is the dipole moment of
the particle i, ri j = ri − r j = ri j r̂i j is the vector connecting
the centers of particles i and j, r̂i j is the unit vector of ri j , and
ri = ri(sin ξi cos ψi, sin ξi sin ψi, cos ξi ) is the radius-vector
of ith particle position. The strength of the dipole-dipole
interactions is characterized by the dipolar coupling constant

λ = μ0m2

4πd3kBT
, (4)

where kB is Boltzmann’s constant. The particle number con-
centration is ρ = N/V ; the volume particle concentration is
ϕ = ρπd3/6. It is assumed that the particles are in a ther-
modynamically equilibrium state, which for the case of the
absence of an external magnetic field and weak interparticle
interactions corresponds to a uniform random distribution of
particles in the volume V . The Langevin susceptibility χL =
8ϕλ is used for a complex description of the sample density
and the intensity of interparticle dipole-dipole interactions.

In order to avoid demagnetization effects, it is assumed
that the magnetic particles are placed in a long cylindrical
container with a height directed along the Oz axis. Note that

FIG. 1. Laboratory coordinate system.

this is not a significant limitation, since the demagnetizing
field can be taken into account using the demagnetizing factor.
An ac magnetic field Hac = Hac cos(ωt )Ĥ and a dc magnetic
field Hdc = HdcĤ are applied parallel to Oz axis, where Hac

is the amplitude of the ac field, Hdc is the dc field intensity,
Ĥ = (0, 0, 1), t is the time, and ω is an angular frequency
of the ac field. In this case, the internal macroscopic field
inside the sample and the external magnetic field are the same
H = Hac + Hdc. This model system is shown in Fig. 1.

The interaction UH (i) between ith magnetic moment and
the external magnetic fields can be written in a Zeeman form

UH (i) = −μ0(mi · H) = −μ0m cos θi(Hac cos(ωt ) + Hdc).

(5)

The strength of the dipole-field interaction can be character-
ized by the Langevin parameters

αac = μ0mHac

kBT
, αdc = μ0mHdc

kBT
. (6)

For the case of noninteracting magnetic particles, the potential
energy of the system in units of kBT is

U (i) = Uid (i) = UH (i)

kBT
. (7)

For interacting particles, we use the approximation of the first-
order modified mean-field theory (MMF1) suggested in [45]:

U (i) = Uint (i) = 1

kBT
(UH (i) + ρ〈Ud (i j)�(i j)〉 j ), (8)

where the Heaviside step-function �(i j) describes the
impenetrability of two particles, which is given in the model
by hard-sphere potential (2); the angle brackets denote the
statistical averaging over the positions of particle j and its
magnetic moment orientations:

〈· · · 〉 j =
∫

dr jdm̂ jW
id ( j) . . . ,

∫
dm̂ j = 1

4π

∫ 1

−1
d cos θ j

∫ 2π

0
dφ, (9)

∫
dr j = lim

R→∞

∫ 2π

0
dψ j

∫ 1

−1
d cos ξ j

∫ R/ sin ξ j

0
r2

j dr j, (10)
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where integration weight function W id ( j) is the orientational
probability for the magnetic moment of particle j in an ideal
(noninteracting) system. Note that the integration (10) in
the expression (8) assumes that the translational degrees of
freedom of the particles are not limited by anything, except
for the condition of mutual nonpenetration, that is, a particle
can be located at an arbitrary point of the volume V at any
moment of time.

B. Numerical solution of the Fokker-Planck equation

The considered system has spherical symmetry, so the
probability distribution function of magnetic moment orienta-
tions W (i) does not depend on the azimuth angle φi. To define
W (i) = W (t, x), x = cos θi the Fokker-Plank equation (FPE)

is used

2τB
∂W (i)

∂t
= ∂

∂x

[
(1 − x2)

(
∂W (i)

∂x
+ W (i)

∂U (i)

∂x

)]
, (11)

where τB is the Brownian rotational time given by

τB = πd3η

2kBT
. (12)

In the absence of interparticle interactions, the potential en-
ergy U (i) is simply

U (i) = Uid = −x(αac cos(ωt ) + αdc). (13)

For interacting particles, considering Eqs. (9) and (10), the
potential energy (8) takes the form

U (i) = Uint (i) = −x

(
αac cos(ωt ) + αdc + χL

2

∫ 1

−1
W id ( j)x jdx j

)
, x j = cos θ j, (14)

where W id ( j) is the probability density of the magnetic moment orientation of particle j in the ideal system. The FPE (11)
was solved numerically. For this an unconditionally stable finite-difference scheme was used, which is suggested in [46] for the
ensemble of immobilized interacting magnetic particles in applied ac field. The outline for the calculation of the function W (i)
for interacting particles is the following:

(i) The FPE (11) is solved numerically for a system of noninteracting particles with potential energy (13). As a result, the
function W id (i) is found numerically.

(ii) W id (i) is used to determine the system’s potential energy with interaction (14).
(iii) The FPE (11) is solved numerically again, using the potential energy from the previous step (14). The result is a

numerical function W (i), which takes into account the interparticle interactions within the framework of MMF1.
Equation (11) is solved numerically for each value of ωτB ∈ (10−3, 103). A feature of the realization of the numerical scheme

from [46] in this work is the dynamic calculation of the time step ht depending on the frequency of the ac field: the higher the
field frequency ω, the lower ht . This method makes it possible to obtain the convergence of the numerical solution for a high
value of the dc field strength at lower computation costs. A 2D grid was used:{

(tk, xi ) | tk = tk−1 + ht , xi = xi−1 + hx, x0 = −1 + hx

2
, t0 = 0, hx = 0.01, ht = 2π

ω
10−4

}
.

This calculation was performed for the time interval t ∈
[0, 4π/ω]. It should be noted that W (i) at small time (t ∼
0) “remembers” the initial conditions, which were chosen
as W (t = 0) = 1/2. In the second period t ∈ [2π/ω, 4π/ω],
W (i) “forgets” about the initial conditions and demonstrates
the thermodynamically equilibrium behavior of the system.
For this reason, the values W (i) determined numerically in
the second period t ∈ [2π/ω, 4π/ω] were used to calculate
the system’s dynamic magnetic properties, such as magnetiza-
tion and susceptibility. Magnetization M(t ) is calculated using
W (i) as follows:

M(t ) = ρm
∫

dm̂i(m̂i · Ĥ)W (i) = ρm

2

∫ 1

−1
xW (i)dx.

(15)

Dynamic susceptibility χ is defined as the first term in the
Fourier series of M(t ):

χ (ω) = ω

2πH

∫ 4π
ω

2π
ω

M(t )eiωt dt . (16)

III. RESULTS AND DISCUSSION

A. Dynamic magnetization

Figure 2 shows the dynamic magnetization of interacting
moving magnetic particles in the dc and ac magnetic fields.
The figures present results for two dimensionless ac field fre-
quencies: ωτB = 0.1 and ωτB = 1 and various combinations
of values of αac and αdc. At high frequencies ωτB = 1, the
hysteresis loops are wider than at low frequencies ωτB = 0.1,
which indicates a significant delay in the reaction of magnetic
moments to the magnetic field rate at ωτB = 1. In the absence
of dc fields, the hysteresis loops are symmetric with respect
to the origin. An increase in the dc field’s intensity leads to
an upward shift of the hysteresis loop, narrowing, and loss
of symmetry. This behavior is explained by the fact that the
dc field orients and holds the magnetic moments in the dc
field’s direction, increasing the system’s magnetization. The
magnetization reaches maximum value when the ac and dc
fields are co-aligned.

The effect of the dipole-dipole interaction on dynamic
magnetization is shown in Fig. 3. With the increasing intensity
of the ac and dc fields, the contribution of the dipole-
dipole interaction to magnetization decreases. In general, the
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FIG. 2. Dynamic hysteresis loop of an ensemble of moving interacting magnetic particles with χL = 1; the results are presented for four
sets of frequencies ωτB and ac field amplitudes αac (a) ωτB = 1, αac = 1, (b) ωτB = 1, αac = 5, (c) ωτB = 0.1, αac = 1, (d) ωτB = 0.1, αac = 5
for different values of the bias dc field αdc = 0 (red), αdc = 1 (blue), αdc = 5 (black).

characteristic behavior of the dynamic magnetization of an en-
semble of interacting and noninteracting particles is similar: in
the absence of the dc field, the hysteresis loop is symmetrical

FIG. 3. The effect of the dipole-dipole interaction on the dy-
namic hysteresis loop of an ensemble of moving magnetic particles
with χL = 1.5 in an ac field with frequency ωτB = 0.1, amplitude
αac = 1 and a bias dc field αdc = 0 (red), αdc = 1 (blue), αdc = 5
(black). Solid lines are used for the system with interactions; dashed
lines correspond to the system without interactions.

with respect to the origin; an increase in the intensity of the dc
field leads to an increase in susceptibility, narrowing and the
loss of the hysteresis loop’s symmetry.

The results obtained in this section resemble the dynamic
hysteresis loops for the system of immobilized noninteracting
particles with uniaxial magnetic crystallographic anisotropy
[47]. This is because the uniaxial anisotropy term has some-
times the same effect as a mean field interaction energy
[48].

B. Susceptibility at low frequencies of the ac field

Experimental data and the results of theoretical studies
show that if only the ac magnetic field reacts to the ferrofluid,
then an increase in the ac field’s amplitude reduces its dy-
namic magnetic response at low frequencies [20,40,42,49].
It is also known that the addition of a bias dc field directed
parallel to the weak ac field reduces the ferrofluid’s dynamic
susceptibility in the low frequency region [24,43]. On the
other hand, dipole-dipole interactions increase the ferrofluid’s
dynamic response in a weak ac magnetic field [50]. If high
intensity ac and dc magnetic fields act simultaneously on
a concentrated ferrofluid competing dipole-dipole, dipole-ac
field, and dipole-dc field interactions occur in the system that
lead to nonmonotonic effects in the magnetic response. In this
section, the magnetic susceptibility of an ensemble of interact-
ing particles to an ac field at ω → 0 for different values of the
ac field’s amplitude and the dc field’s intensity are analyzed.
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FIG. 4. Dependence of dynamic susceptibility at ω → 0 on the
Langevin susceptibility χL . The points correspond to numerical re-
sults for αac = 0.01 and αdc = 0 (red dots); αac = 1 and αdc = 3
(blue dots); αac = 2 and αdc = 2 (black dots); αac = 3 and αdc = 1
(green dots). The black dashed line corresponds to MMF1 [51]; the
black solid line corresponds to the Langevin theory.

Figure 4 shows the dependence of the dynamic sus-
ceptibility of magnetic particles at low frequencies on the
Langevin susceptibility. The black solid line corresponds to
the Langevin theory χ = χL, which describes the static initial
magnetic susceptibility of noninteracting particles. The black
dashed line shows the static theory MMF1 [51] χ = χL(1 +
χL/3), valid for interacting particles. The numerical values of
dynamic susceptibility determined in this paper in the region
ω → 0 (red dots) at αac = 0.01 and αdc = 0 for interacting
particles are in strong agreement with the static theory of
interacting particles MMF1. The blue, green, and black dots
correspond to the numerical results of the dynamic suscepti-
bility of interacting particles in the ω → 0 region, determined
not for weak ac and dc fields and such that αac + αdc = 4.
An increase in the intensity of the ac and dc fields leads to
a decrease in the system’s magnetic response in the low fre-
quency region, and the resulting susceptibility values for the
given parameters lie below the Langevin curve. This behavior
is explained by the fact that the reaction of magnetic moments
to the ac field is hindered by a sufficiently strong dipole-dc
field interaction, which leads to a decrease in the system’s
magnetic response to the ac field. Note that in all cases,
an increase in χL (which means an increase in interparticle
interactions) leads to an increase in the system’s magnetic
response.

Dependence of dynamic susceptibility at low frequen-
cies on αdc for interacting particles with χL = 0.5 at αac =
0.01, 1, 3, 5, and 10 is shown in Fig. 5. The solid lines cor-
respond to numerical results, while the dashed line shows
theory [43] developed for the case of a weak ac field. The
numerical results defined for αac = 0.01 (red line) agree well
with theory [43]. When αac > αdc the system’s susceptibility
changes slightly with the growth of αdc. A sharp decline in
susceptibility is observed when the values of αdc begin to
exceed αac. In such a system, the dipole-dc field interactions

FIG. 5. The effect of the intensity of the bias dc field on the sus-
ceptibility of interacting particles with χL = 0.5 at low frequencies
of the ac field with the amplitude αac = 0.01 (red solid line), αac = 1
(blue solid line), αac = 3 (green solid line), αac = 5 (black solid line),
αac = 10 (purple solid line). Solid lines denote numerical results,
dashed lines are used for theory [43].

begin to dominate, the magnetic moments of the particles are
held by the strong dc field and their response to the ac field
becomes weak.

Figure 6 shows the dynamic susceptibility of interacting
particles with χL = 0.5 at low frequencies depending on αac.
Solid lines correspond to the numerical results for interact-
ing particles, dot-and-dash lines are numerical results for
noninteracting particles, and the dashed line is the approxi-
mation formula from [40]. In the absence of the dc field, the

FIG. 6. The effect of the amplitude of the ac field at low fre-
quencies (ω → 0) on the susceptibility of an ensemble of interacting
(solid lines) and noninteracting (dot-and-dash lines) magnetic parti-
cles with χL = 0.5, under the influence of the dc magnetic field with
intensity: αdc = 0 (red), αdc = 1 (blue), αdc = 3 (green), αdc = 5
(black), αdc = 10 (purple). Solid and dot-and-dash lines denote nu-
merical results, dashed line is used for the approximation formula
from [40].
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(a) (b)

FIG. 7. Numerical results of dynamic susceptibility of magnetic particles to an ac field with amplitude αac = 1 for different values of the
Langevin susceptibility (a) χL = 1, (b) χL = 2. The intensities of the bias dc field are αdc = 0 (red), αdc = 1 (blue), αdc = 5 (black). The solid
line corresponds to a system with interactions, the dashed line indicates a system without interactions.

numerical results for interacting particles (red solid line) are in
strong agreement with [40]. In the region αac � 3, at αdc = 0
and 1, dipole-dipole interactions increase susceptibility, but at
αdc = 3 and 5, the opposite trend is observed. The explanation
for this behavior is as follows. Dipole-dipole interactions in
the presence of a dc field lead to the formation of nose-to-tail
correlation structures. When the energy of the ac field exceeds
the energy of the dc field, these dipole correlation structures
react to the ac field and move with it, making a significant con-
tribution to susceptibility. However, when the dc field strong,
it captures magnetic moments, and the resulting nose-to-tail
correlation structures are an additional orientation constraint
that reduces susceptibility. In the region of 3 � αac � 4 at
αdc = 3 and in the region of 4 � αac � 6 at αdc = 5, the
ac field begins to dominate the dc field, the dipole-dipole
and dipole-dc field bonds break and more and more single
particles move after the ac field, which causes an increase
in susceptibility. In strong fields, the dipole-dipole interaction
becomes weak in comparison with the interaction between the
magnetic moment and the ac field, and the system’s behavior
is completely determined by the dipole-ac field interaction.
The change of regimes from the dominance of dipole-ac field
interaction to dipole-dc field interaction and vice versa occurs
near the critical point αdc − αac ≈ 0. This difference is not
strictly equal to zero, since the magnetic field introduced by
the interparticle dipole-dipole interaction contributes to the
total magnetic field acting on the system.

C. Dynamic susceptibility spectrum

Figure 7 shows the effect of interparticle dipole-dipole
interactions and the intensity of the dc field on the spectrum
of dynamic susceptibility of a system of moving interact-
ing magnetic particles. The susceptibility is shown for two
systems with Langevin susceptibility χL = 1 [Fig. 7(a)] and
χL = 2 [Fig. 7(b)]. At low intensities of the dc field αdc = 0
and 1, dipole-dipole interactions lead to an increase in the
system’s susceptibility, while for a sufficiently high intensity

of the dc field αdc = 5, the opposite trend is observed. This
behavior manifests itself more significantly in a system with
strong interparticle interactions at χL = 2 and is associated
with the formation of nose-to-tail dipolar correlation struc-
tures, which are an additional orientation factor. Depending
on the intensity of competing dipole-dipole, dipole-ac field,
and dipole-dc field interactions, these structures can reduce or
increase susceptibility. An increase in αdc leads to a decrease
in the system’s susceptibility at all frequencies of the ac field
and a shift to the right of the maximum of the imaginary
part of susceptibility. The latter indicates a decrease in the
relaxation time of magnetic moments and is explained by the
fact that in a magnetized system, the ac field is not able to
significantly deflect the magnetic moments held by the dc
field, as a result of which their effective relaxation time is
reduced.

The effect of ac field amplitude on the dynamic susceptibil-
ity spectrum of an ensemble of moving interacting magnetic
particles under a bias dc field is shown in Fig. 8. In the case
of αdc = 1 [Fig. 8(a)], an increase in αac leads to a decrease in
susceptibility for all field frequencies. If the dc field is strong
αdc = 5 [Fig. 8(c)], then the system’s susceptibility increases
with the growth of αac at all frequencies of the ac field. When
αdc = 3 [Fig. 8(b)], a nonmonotonic change in susceptibility
is observed with an increase in αac due to competing dipole-ac
field, dipole-dc field, and dipole-dipole interactions.

It is possible to show a clear dependence of dynamic sus-
ceptibility on temperature (Fig. 9). For magnetite particles
(Fe3O4), which are typical for real ferrofluids, the mean di-
ameter is d = 10 nm, saturation magnetization is Ms = 4.8 ×
105 A m−1, and particle dipole moment is m = Msπd3/6 =
2.5 × 10−19 Am2. For a system with a volume concentration
ϕ = 0.08 in applied ac and dc magnetic fields with Hac =
Hdc = 12 kAm−1, an increase in temperature leads to a de-
crease in the susceptibility at low frequencies. This behavior
is due to an increase in the kinetic energy of the system, which
contributes to the disordering of the magnetic moments of the
ferroparticles.
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(a) (b)

(c)

FIG. 8. Numerical results of dynamic susceptibility of an ensemble of interacting magnetic particles with χL = 1 to an ac field with
amplitude αac = 0.01 (red), αac = 2 (blue), αac = 4 (black), and αac = 6 (green). The intensities of the bias dc field are (a) αdc = 1, (b) αdc = 3,
(c) αdc = 5.

FIG. 9. Numerical results of dynamic susceptibility for a suspen-
sion of the magnetite particles with diameter d = 10 nm and volume
concentration ϕ = 0.08 in applied ac and dc magnetic fields with
Hac = Hdc = 12 kAm−1 at T = 270 K (green), T = 297 K (blue),
and T = 330 K (red).

IV. CONCLUSIONS

The dynamic magnetization and susceptibility of an en-
semble of moving interacting magnetic particles in applied
dc field and ac field with an arbitrary amplitude are studied.
The following configuration of magnetic fields is considered:
ac and dc fields are directed along the Oz axis of the co-
ordinate system. Dynamic magnetization and susceptibility
were obtained based on a numerical solution of the Fokker-
Planck equation for the probability density of the orientation
of the magnetic moment of a random particle. In the FPE,
dipole-dipole interactions are taken into account within the
framework of the first-order modified mean-field theory. The
obtained numerical results were tested on known theoretical
results for two limiting cases: (a) there is a dc field and the ac
field’s amplitude is low [43]; (b) there is no dc field and the ac
field is of an arbitrary amplitude [40]. Strong agreement with
the literature data was obtained.

The dynamic response of an ensemble of moving interact-
ing particles is formed as a result of competing dipole-dipole,
dipole-ac field, and dipole-dc field interactions. In a region
where the energy of these three interactions is comparable, an

024607-7



RUSANOV, KUZNETSOV, ZVEREV, AND ELFIMOVA PHYSICAL REVIEW E 108, 024607 (2023)

increase in αac at a fixed αdc can cause both an increase and
decrease in susceptibility.

At low dc field intensities, interparticle dipole-dipole in-
teractions increase the magnetic response of an ensemble of
moving magnetic particles, while at high αdc dipole interac-
tions decrease the system’s dynamic response. This behavior
is associated with the formation of nose-to-tail dipolar struc-
tures under the dc field. When the dipole-ac field energy
exceeds the dipole-dc field energy, nose-to-tail dipolar struc-
tures move under the action of the ac field, significantly
increasing the system’s susceptibility. When the dipole-ac
field energy is less than the dipole-dc field energy, nose-to-tail
structures are held in the direction of the dc field, being an
additional orientation constraint that reduces susceptibility.

The theory developed in the article allows us to numeri-
cally predict the magnetic response of an ensemble of free
moving magnetic particles taking into account competing
dipole-dipole, dipole-ac field, and dipole-dc field interactions.
Since the theory is built within the framework of the first-order
modified mean-field theory, it has limitations on the concen-
tration and intensity of dipole-dipole interactions χL � 3. The
numerical scheme implemented for the FPE solution does not
impose any restrictions on the intensity of the dc field or the
amplitude of the ac field.
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