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Effects of inertia on conformation and dynamics of tangentially driven active filaments
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Active filamentlike systems propelling along their backbone exist across scales ranging from motor-driven
biofilaments to worms and robotic chains. In macroscopic active filaments such as a chain of robots, in
contrast to their microscopic counterparts, inertial effects on their motion cannot be ignored. Nonetheless, the
consequences of the interplay between inertia and flexibility on the shape and dynamics of active filaments
remain unexplored. Here we examine inertial effects on a flexible tangentially driven active polymer model
pertinent to the above examples and we determine the conditions under which inertia becomes important.
Performing Langevin dynamics simulations of active polymers with underdamped and overdamped dynamics
for a wide range of contour lengths and activities, we uncover striking inertial effects on conformation and
dynamics for high levels of activities. Inertial collisions increase the persistence length of active polymers and
remarkably alter their scaling behavior. In stark contrast to passive polymers, inertia leaves its fingerprint at long
times by an enhanced diffusion of the center of mass. We rationalize inertia-induced enhanced dynamics by
analytical calculations of center-of-mass velocity correlations, applicable to any active polymer model, which
reveal significant contributions from active force fluctuations convoluted by inertial relaxation.

DOI: 10.1103/PhysRevE.108.024606

I. INTRODUCTION

Active matter systems, consisting of self-driven units,
exhibit emergent properties which defy the laws of
equilibrium statistical mechanics [1,2]. The majority of
recent studies have focused on active particles moving in
the realm of low Reynolds numbers, e.g., bacteria and active
colloids whose motion is overdamped [2,3]. However, a wide
range of macroscopic organisms, including birds, fish, and
snakes, as well as synthesized agents such as microflyers
[4–6] and shaken granulate chains [7], often have elongated
flexible shapes with non-negligible masses which need to be
accounted for in the description of their dynamics. Indeed,
recent studies have revealed significant inertial effects on
the dynamics of individual and collectives of isotropic and
rigid active particles [4,6,8–17]. Notably, inertia enhances
the diffusive dynamics of active Brownian particles [4,6,16],
unlike their passive counterparts, which do not hold any
memory of inertia at long times. These findings raise the
interesting question of whether inertia induces memory
effects and enhanced dynamics for active macroscopic
systems with flexible bodies like fish and snakes.

Currently, the consequences of inertia on shape and
dynamics of macroscopic active systems remain an open
question. To explore the role of inertia on flexible active
particles, we consider the widely studied system of linear
active filaments [18,19] spanning a diverse range of biological
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systems such as biopolymers driven by molecular motors
[20,21], worms [22–24], and snakes [25]. Recently, even
filamentous robots [24–26] have been achieved, belonging
to this class of active systems. Investigations of single
overdamped active filaments [18,19,27–31] have revealed that
the interplay between activity and flexibility profoundly alters
the chain conformation and dynamics and leads to an activity-
dependent relaxation time [18,28,32,33]. It also appears that
the details of the coupling between the local active force and
the conformation of the polymer backbone are crucial for
determining the overall dynamics of the polymer. However,
it remains unknown under what conditions inertial effects
become dominant as we change the scale and mass even if
self-propulsion of filaments is governed by the same rules.

Here we examine the inertial effect on the structural and
dynamical features of tangentially driven active polymers
[27], in which the orientation of the active force on each
segment is parallel to the local tangent of the backbone.
In this model, the total active force on the polymer is
proportional to end-to-end vector; thus the center-of-mass
dynamics is directly coupled to the polymer conformation.
We focus on this model as recent studies have shown that it
provides a good description of several active filaments across
the scales including biofilaments driven by molecular motors
[27], worms [34], and filamentous robots [26]. Additionally,
robotic snakes [35,36] with tangential activity have been
realized. The question that arises is for what systems and
under what conditions the inertial effects become important.
To answer this question, we study the inertial effects on the
conformation and dynamics of active filaments of varying
contour lengths and activity strengths.
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FIG. 1. (a) Snapshots of active polymers of size N = 500 with
active forces f a∗ = 1 (blue) and 100 (red) in the steady state ob-
tained in the overdamped (left) and underdamped (right) regimes.
(b) End-to-end distance R∗

e versus active force f a∗
for different chain

lengths as given in the legend. The closed and open symbols in
(b) correspond to underdamped and overdamped chains, respectively.
The lines are guides to the eyes.

Comparing the conformation and dynamics of active poly-
mers in the overdamped and underdamped limits, we find re-
markable inertial effects for sufficiently high levels of activity.
Inertial effects become non-negligible when the timescale of
advection by active force per unit of length becomes smaller
than the inertial timescale. At high levels of activity, inertial
collisions of active monomers with relative high velocities
result in extended chain conformations [see Fig. 1(a)], in-
ducing an activity-dependent persistence length. We find that
inertia enhances the diffusive dynamics of the center of mass
of inertial active polymers remarkably, in contrast to passive
polymers for which inertial effects vanish at long timescales
[37–39]. To elucidate the origin of enhanced dynamics, we
put forward analytical calculations which derive the center-of-
mass velocity time-autocorrelation function in the steady-state
limit for an arbitrary active force distribution along a polymer
backbone. Our calculations reveal that the enhanced long-time
diffusion in any active polymer model stems from fluctua-
tions of the total active force on a filament convoluted by an
exponential relaxation with an inertial timescale. For tangen-
tially driven polymers in which the active force is coupled to
the polymer conformation, we show that the long-time diffu-
sion coefficient is proportional to the mean-square end-to-end

distance. Hence, our theory illuminates the link between
enhanced dynamics and extended polymer conformations.

II. NUMERICAL SIMULATIONS

To further elaborate our insights, we start by outlining our
Langevin dynamics simulations of tangentially driven active
polymers, implemented in Hoomd Blue software package
[40]. The equation of motion for each monomer of an active
chain of N beads of mass m in three dimensions is described
by

mr̈i = −γ ṙi −
∑

j

∇riU (ri j ) + fa
i + f r

i , (1)

in which ri is the coordinate of bead i with the dots denoting
derivatives with respect to time, γ is the friction coefficient
of the bead with the surrounding medium, and ri j denotes the
distance between beads i and j. The potential energy U (ri j )
includes contributions from harmonic springs of equilibrium
length � and stiffness ks between adjacent monomers and
interbead excluded-volume interactions modeled by the
WCA potential [41], Uexcl(r) = 4ε[( σ

r )12 − ( σ
r )6 + 1

4 ] for
r < rc = 21/6σ . The fa

i and f r
i are the active and random

forces acting on the bead i, respectively. The active force
on each bead, except for end monomers, is given by
fa
i = f a

2�
(ri−1,i + ri,i+1), where ri,i+1 = ri+1 − ri defines the

bond vector connecting the (i + 1)th and ith monomers. The
active forces on the end monomers are given by fa

1 = f a

2�
r1,2

and fa
N = f a

2�
rN−1,N . The spring constants are chosen to be

very stiff ks � f a/� to ensure that the mean bond length
and polymer contour length remain almost constant [see the
Supplemental Material (SM) [42] for details]. The random
force is chosen as a white noise of zero mean and correlation
〈f r

i (t ) · f r
j (t ′)〉 = 6D0γ

2δi jδ(t − t ′).
We choose �u = σ , Eu = ε, and τu = γ σ 2/ε, with γ = 1,

as the units of length, energy, and time, respectively, denoting
reduced quantities with asterisk superscripts. We set �/σ = 1
and the dimensionless diffusion coefficient D∗

0 = 0.1. To elu-
cidate the role of inertia, we compare the scaling behavior
and overall dynamics of underdamped active polymers with
m∗ = mε/(γ σ )2 = 1 and overdamped chains m∗ = 0, vary-
ing the chain length 50 � N � 1000 and active force strength
f a∗ = f aσ

ε
in the range 0.01 � f a∗ � 100. Additionally, for

chain length N = 500 the effects of varying the mass 0 �
m∗ � 5 on the polymer mean conformation and persistence
length are also investigated and included in Fig. 6.

III. RESULTS

A. Inertial effects on conformation

We first investigate inertial effects on the global con-
formation of polymers. Figure 1(a) shows that the chain
conformation is significantly more extended for high active
forces in the underdamped scenario. To compare the mean
conformation of polymers in the overdamped and under-
damped regimes, we plot the end-to-end distance of active
polymers, obtained as R∗

e = √〈R2
e 〉/σ , in their steady state

as a function of activity f a∗
for different chain lengths N as

presented in Fig. 1(b). For f a∗ � 1, when the active force per
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FIG. 2. Probability distribution function of end-to-end distance for active chains of N = 500 at different levels of activity with (a) under-
damped and (b) overdamped dynamics. (c) Asphericity A of active polymers of different chain lengths 50 � N � 1000 as a function of f a∗

in
the underdamped (closed symbols) and overdamped (open symbols) regimes.

monomer exceeds the damping force, we observe a striking
contrast between conformations of inertial and overdamped
active polymers. Chains with underdamped dynamics swell,
whereas overdamped chains slightly shrink upon an increase
of activity. The onset of departure from the overdamped
limit is set by the ratio of the inertial timescale τm = m/γ

to the time of advection by the active force per monomer
τadv = σγ / f a. For high active forces when τm/τadv > 1, high
velocities gained by inertial monomers promote collisions,
resulting in chain unwinding. Conformations of inertial chains
at higher levels of activity are more extended (see videos in
the SM [42]), resulting in a broader probability distribution
function of the end-to-end distance P(|R∗

e |), as can be inferred
from Figs. 2(a) and 2(b). For overdamped active chains, we
observed a slightly more peaked P(|R∗

e |) at high levels of ac-
tivity, reflecting a weak conformational shrinkage. This trend
is similar to the observation in Ref. [28], although the degree
of shrinkage is much stronger in that work. This is because
the model used in our simulations [27] is different from that in
Ref. [28], where a different tangential force rule was used [19]
and active forces on end beads are switched off. In contrast
to the results of Ref. [28], for polymers with overdamped
dynamics we do not observe a remarkable coil-globulelike
conformational transition upon an increase of activity.

In addition, high-activity inertial chains have more
anisotropy in their conformation as evidenced by their larger
asphericity, which is defined as [43]

A = 〈Tr2 − 3M〉
〈Tr2〉 , (2)

where Tr = λ1 + λ2 + λ3, M = λ1λ2 + λ2λ3 + λ3λ1, and
each λ is an eigenvalue of the 3 × 3 gyration tensor. As-
phericity ranges from 0 for a perfect spherical conformation
to 1 for a rodlike one. Figure 2(c) shows the asphericity A
of active polymers against f a∗

for chains in the underdamped
and overdamped regimes. While A of inertial chains exhibits
a striking increase for higher levels of activity, indicating
an elongated shape, the asphericity of overdamped chains
decreases slightly with f a∗

, akin to the trends observed in
Ref. [28], albeit much weaker.

To investigate the scaling behavior of active polymers, we
analyze the dependence of end-to-end distance on N for differ-
ent f a∗

. Assuming a scaling ansatz 〈R∗2
e 〉 = C∞( f a∗

)N2ν( f a∗
),

all the data for N � 100 can be collapsed onto a single master

curve (see Fig. 3). The dependence of the scaling exponent
ν on f a∗

is shown in Fig. 4(a). For f a∗
< 1, ν drops from

ν( f a∗ = 0.01) = 0.528 close to that of the self-avoiding walk
νSAW = 0.588 to the ideal chain exponent νideal = 1

2 for both
overdamped and underdamped dynamics. At higher levels
of activity, when τ ∗

m/τ ∗
adv = f a∗

> 1 the scaling exponent of
overdamped active polymers remains constant within the error
bars, whereas for inertial chains the scaling exponent keeps on
decreasing even further until f a∗ = 10 and remains constant
afterward, νinertial( f a∗ � 1) ≈ 0.44.

The C∞( f a∗
) in the scaling ansatz is a generalized

activity-dependent Flory constant which accounts for the con-
formational rigidity of the polymer backbone. Figure 4(b)
shows the extracted C∞ as a function of f a∗

for active poly-
mers with underdamped and overdamped dynamics. Here
C∞ ∼ 1 up to f a∗ = 1, whereas for f a∗

> 1 it remains con-
stant in the case of overdamped polymers; however, it rises
steeply for inertial ones. A Flory constant C∞ > 1 implies
an increased conformational rigidity compatible with the
straighter conformations found for inertial active polymers
[see the case of f a∗ = 100 in Fig. 1(a)]. A reduced ν combined
with an increased C∞( f a∗

) for high levels of activity means
that the average conformation of inertial active polymers re-
sembles that of compact globulelike polymers with a large
persistence length.

FIG. 3. Normalized R
∗2
e

C∞ ( f a∗ )
as a function of N2ν( f a∗

) for under-

damped chains. We exclude the outliers of R∗
e , which are (N, f a∗

) ∈
{(50, 50), (50, 100), (100, 100)}.
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FIG. 4. (a) Scaling exponent ν of end-to-end distance and
(b) generalized Flory constant C∞ as a function of f a∗

, assuming
R

∗2
e (N, f a∗

) = C∞( f a∗
)N2ν( f a∗

). The closed and open symbols corre-
spond to underdamped and overdamped chains, respectively.

A growing C∞ also implies an increasing persistence
length with f a∗

. To obtain the persistence length, we compute
the orientational bond-bond correlation function 〈cos θ (s)〉
defined as the cosine of the angle between any two bonds
whose curvilinear distance is s. Figures 5(a) and 5(b) present
〈cos θ (s)〉 against curvilinear distance s along the polymer
backbone at different levels of activity for inertial and over-
damped chains, respectively. For both cases, the bond-bond
correlation function develops a negative dip at intermediate
s, indicating a local backfolding of active chains. For inertial
chains, the bond orientational correlation along the backbone
becomes larger upon an increase of activity and the negative
dip appears at larger s, whereas for overdamped active chains
the decay length is weakly affected by activity. The 〈cos θ (s)〉
does not decay exponentially. Nonetheless, we choose to de-
fine the persistence length �∗

p as the curvilinear distance at
which 〈cos θ (�∗

p)〉 = 1/e. The extracted persistence lengths �∗
p

for overdamped and inertial chains versus f a∗
are presented

in Fig. 5(c) and show identical trends for different N . For
overdamped polymers, �∗

p remains unity up to f a∗ ∼ 1 and
increases slightly beyond it, whereas for inertial polymers �∗

p

increases steeply with f a∗
when τ ∗

m/τ ∗
adv > 1.

The inertia-induced persistence length at high levels of
activity scales linearly with f a∗

and it can be interpreted as

the distance at which an active monomer travels by speed
va∗ = f a∗

/γ ∗ during the inertial timescale τ ∗
m giving rise to

�p ∼ f a∗
m∗/γ ∗2 yielding �∗

p ∼ f a∗
m∗. For N = 50 and 100,

�∗
p exhibits a decrease when the contour length becomes

comparable to the persistence length �∗
p ∼ N and it cannot

grow anymore; hence a new instability appears. Overall, we
recognize a similar trend for �∗

p and C∞ against the active
force, corroborating the surmise of an inertia-induced bending
rigidity in active polymers. We emphasize that locally straight
conformations arise due to the interplay between inertia and
activity. Neither the tangential driving force nor inertia alone
leads to locally straight chain conformations as evidenced by
the �∗

p plot in Fig. 5(c). To verify our suggested scaling for
the activity-dependent persistence length �∗

p ∼ f a∗
m∗ for high

levels of activity, we vary both the mass and active force for a
fixed chain length N = 500. Figure 6(a) shows the persistence
length as a function of m∗ f a∗

and confirms that �∗
p varies lin-

early with m∗ f a∗
when 1 � m∗ f a∗ � 100. For smaller values

of m∗ f a∗
the relation is nonlinear because τ ∗

m < τ ∗
adv and the

inertial effects are not dominant. On the other extreme of large
m∗ f a∗

, we observe a deviation from linear scaling because
the magnitude of the persistence length becomes comparable
to the chain length N = 500. At this range of activity and
mass the end-to-end distance reaches its largest possible value
(R∗

e = N = 500), as shown in Fig. 6(b) for the chains with
f a∗ � 50 and m∗ � 3.

B. Inertial effects on dynamics

Having explored the inertial effects on structural features
of active polymers, we examine the signatures of inertia
on the dynamics. We start by investigating the polymer
orientational dynamics. To this end, we compute the time-
autocorrelation function (TACF) of the end-to-end vector
normalized by its mean-square value in the steady-state limit
Ĉe(t ) = limt ′→∞〈Re(t + t ′) · Re(t ′)〉/〈R2

e (t ′)〉. As the total ac-
tive force Fa is proportional to the end-to-end vector Fa =∑N

i=1 fa
i = f a

�
Re, the relaxation time of Ĉe is identical to the

persistence time of the total active force. Figure 7(a) shows
Ĉe at different activity levels for inertial and overdamped
chains of length N = 500. Although for large f a∗

the Ĉe(t )
of inertial chains exhibits a decay with oscillatory behavior,
the overall decorrelation timescales of Ĉe(t ) of the two kinds
of dynamics are very similar, in contrast to the huge difference
in their chain conformations. This trend suggests that we have

FIG. 5. Bond-bond orientational correlation function against curvilinear distance s for (a) inertial and (b) overdamped chains with N = 500
at different levels of activity. (c) Dependence of persistence length �∗

p on f a∗
for inertial (closed symbols) and overdamped (open symbols)

polymers of different lengths.
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FIG. 6. (a) Persistence length of active chains of length N =
500 with different masses and activity levels as a function of their
mass times their active force m∗ f a∗

. The solid line shows a fit
with a slope of 1 for the data within 1 � m∗ f a∗ � 100. (b) End-
to-end distance against mass for chains with N = 500 and various
activities.

a universal relaxation time τe(N, f a), which depends only on
the strength of the active force and the chain length and is
independent of the mass. We find that the initial decay of
Ĉe(t ) for both overdamped and underdamped polymers can
be approximately described by an exponential function (see
Fig. S2 in [42]). The extracted relaxation times τ ∗

e [shown in
Fig. 7(b)] follow the scaling relation

τ ∗
e (N, f a∗

) ≈ 0.6N/ f a∗
, (3)

verifying that activity reduces the relaxation time as 1/ f a∗
and

also the dependence of the relaxation time on the chain length
becomes linear, which is weaker than the N1+2ν dependence
for the self-avoiding Rouse model [44]. These findings are in
agreement with those reported in Ref. [28] for overdamped
active polymers.

We subsequently compute the TACF of the center-of-mass
velocity normalized by the long-time mean-square
velocity of the center of mass in the steady-state limit
Ĉv (t ) = limt ′→∞〈Vc.m.(t + t ′) · Vc.m.(t ′)〉/〈V2

c.m.(t
′)〉, where

FIG. 7. (a) Normalized end-to-end vector TACF Ĉe as a function
of time t for inertial (closed symbols) and overdamped (open black
symbols) chains of N = 500 at different levels of activity. (b) Cor-
responding relaxation times divided by chain length against active
force for inertial (closed symbols) and overdamped (open black
symbols) polymers, extracted from fitting the initial decay of Ĉe(t )
with the exponential function.

Vc.m.(t ) = 1
N

∑N
i=1 vi. Figures 8(a) and 8(b) show Ĉv for

underdamped and overdamped active polymers of N = 500
at different f a∗

, respectively. Unlike passive systems, we
observe a finite relaxation of Ĉv even for the overdamped
dynamics manifesting the contribution of active forces on
velocity correlations. For the underdamped active chains,
we recognize an initial fast decay with a relaxation time
τ ∗

m = 1 in addition to a longer decay time which is similar to
that of the overdamped chains. For both kinds of dynamics,
the characteristic relaxation times of Ĉv decrease with f a∗

,
similar to trends observed for Ĉe. In Figs. 8(c) and 8(d) we
have present 〈V∗2

c.m.〉 as a function of f a∗
for underdamped

and overdamped dynamics, respectively. For inertial chains,

FIG. 8. Normalized center-of-mass velocity TACF for (a) iner-
tial and (b) overdamped active polymers of N = 500 and different
activity levels. The closed symbols are obtained directly from simu-
lations, whereas open black ones are calculated using Eqs. (6) and
(7) with Ce as input from simulations. Also shown is the mean-
square velocity of the center of mass of different chain lengths as
given in the legends versus f a∗

for (c) inertial and (d) overdamped
active polymers. The lines show theoretical predictions of Eqs. (9)
and (10).
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FIG. 9. (a) Mean-square displacement of the center of mass for
chains of N = 500 and different levels of activity for underdamped
(closed) and overdamped (open) polymers. (b) Long-time diffusion
coefficient DL of the center of mass normalized by monomer diffu-
sion D0 against f a∗

for active polymers of chain lengths 50 � N �
1000 in the underdamped (closed circles) and overdamped (closed
triangles) regimes. The open circles and triangles show predictions
of Eqs. (11) and (12), receptively, using the end-to-end vector TACF
from simulations. The squares and pentagons display the predictions
of Eq. (13), assuming τ ∗

e = 0.6N/ f a∗
.

the mean-square velocity is almost independent of f a∗
for

f a∗
< 1, whereas for large active forces it grows steeper

than f a∗2. In the overdamped scenario, we observe a weak
decrease of 〈V∗2

c.m.〉 for small f a∗
but it grows as f a∗2 for higher

levels of activity. Nevertheless, the mean-square velocities
of inertial chains for high levels of activity are one order of
magnitude larger.

Finally, we investigate the mean-square displacement
(MSD) of the center of mass as presented in Fig. 9(a) for
the active chains of length N = 500 with overdamped and
underdamped dynamics at different activity levels. For low
levels of activity f a∗

< 1, the MSDs of the two scenarios
at times t∗ > 1 coincide. After an initial short-time diffusive
(overdamped) or ballistic (underdamped) regime, the MSDs
exhibit a superdiffusive regime induced by activity, followed

by a long-time diffusion in agreement with the results reported
in [28] for overdamped active polymers. However, at higher
levels of activity f a∗ � 5, the MSDs of two scenarios start
to depart and we observe a remarkably faster dynamics for
underdamped chains. At high levels of activity the MSDs of
both underdamped and overdamped chains exhibit a crossover
from ballistic regime directly to diffusive regime. We extract
the long-time diffusion coefficient of center of mass DL from
the slope of mean-square displacement at large times, i.e.,
t∗ > τ ∗

e . Figure 9(b) shows DL versus f a∗
for inertial and

overdamped chains. Intriguingly, two distinct sets of curves
for inertial and overdamped chains emerge and the long-time
diffusion of inertial chains at high levels of activity is two
orders of magnitude larger. Notably, DL is almost independent
of chain length, in contrast to passive polymers for which
DL ∼ 1/N [45], depending mainly on f a∗

and mass. Our
results in the overdamped limit are consistent with an earlier
reports of reference [28] but clearly show that inertia leads to
additional enhancement of the long-time dynamics of active
polymers and raise questions about its origin. To rationalize
the remarkable enhancement of dynamics, we put forward
analytical calculations which illuminate the relationship be-
tween TACFs of the center-of-mass velocity and the total
active force Fa in the steady-state limit for any active polymer
model as presented in the following subsection. Then, we will
compare theoretical predictions with our simulation results for
the tangentially driven polymers.

C. Analytical calculations of center-of-mass dynamics

The dynamics of the center-of-mass velocity Vc.m.(t ) is
obtained by summing the equations of motions of all the beads
given by Eq. (1). As contributions from the internal forces
cancel out, the equation for Vc.m.(t ) simplifies to

mV̇c..m = −γ Vc.m. + 1

N
(Fa + Fr ), (4)

in which Fr = ∑N
i=1 f r

i is a sum of all the random forces with
a zero mean and 〈Fr (t ) · Fr (t ′)〉 = 6ND0γ

2δ(t − t ′). Integrat-
ing this first-order differential equation yields

Vc.m.(t ) = V(t0)e−(γ /m)(t−t0 )

+ 1

Nm

∫ t

t0

dτ [Fa(τ ) + Fr (τ )]e−(γ /m)(t−t0−τ ). (5)

Using this solution, we calculate the velocity TACF in the
steady-state limit, defined as Cv (t ) = limt ′→∞〈Vc.m.(t + t ′) ·
Vc.m.(t ′)〉, yielding

Cv (t ) = 3γ D0

Nm
e−t/τm

+ 1

2mγ N2

∫ +∞

0
[Cf (u − t ) + Cf (u + t )]e−u/τm du,

(6)

in which Cf (t ) = limt ′→∞〈Fa(t + t ′) · Fa(t ′)〉 is the TACF of
the total active force. The first term in Eq. (6) represents the
passive diffusive contribution from random forces, which de-
cays exponentially with the relaxation time τm [37], whereas
the second term entangles the correlation of the total active
force with the inertial relaxation. This term reflects memory
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effects induced by active forces and accounts for the emergent
inertial effects. We emphasize that Eq. (6) is derived without
making any assumption about the form of the active force
distribution along the polymer backbone in terms of both
magnitude and orientation, i.e., being tangential, transverse, or
random. Hence, this result is applicable to any active polymer
model.

In the limit of vanishing mass, Cv simplifies to

lim
m→0

Cv (t > 0) =
(

1

Nγ

)2

Cf (t ). (7)

Concerning tangentially driven polymers, for which the to-
tal active force Fa = f aRe/� is directly coupled to the
chain conformation, the total force correlation is Cf (t ) =
( f a2〈R2

e〉/�2) Ĉe(t ). The predictions of Eqs. (6) and (7) when
normalized by their values at t∗ = 0 show excellent agree-
ment with velocity correlations computed from simulations,
as demonstrated in Figs. 8(a) and 8(b).

For an active force TACF with exponential decay Cf =
A f e−t/τ f , Eq. (6) simplifies to

Cv (t ) = 3γ D0

Nm
e−t/τm

+ A2
f

(Nm)2

(
τ 2

mτ f

τ 2
f − τ 2

m

)
(τ f e−t/τ f − τme−t/τm ), (8)

which consists of exponential decays at two timescales: the
inertial time τm and the decay time of the active force TACF
τ f . In this case, the center-of-mass velocity TACF of ac-
tive polymers becomes identical to that of the inertial active
Ornstein-Uhlenbeck model [11,16]. The approximation of the
exponential decay of the active force TACF becomes exact
in the case of an active Brownian polymer model [32,46]
with only translational inertia (see Sec. III in the SM [42]).
As discussed earlier, Ĉe(t ) approximately follows an expo-
nential decay. Thus, Eq. (8) also provides a good description
of tangentially driven active polymers provided we consider
an activity-dependent amplitude A f which is coupled to the
polymer mean conformation.

We can also obtain the steady-state mean-square center-of-
mass velocity for tangentially driven polymers from Eq. (6),
yielding

lim
t→∞

〈
V2

c.m.(t )
〉

= 3γ D0

Nm
+ f a2

mγ N2

〈
R2

e

〉
�2

∫ +∞

0
Ĉe(u)e−u/τm du, (9)

which for small f a is dominated by the diffusive term,

whereas when f a2

3Nγ 2D0

〈R2
e 〉

�2 > 1 it is determined by the active
contribution. For sufficiently large f a such that the relax-
ation time τe < τm,

∫ +∞
0 Ĉe(u)e−u/τm du ≈ τe. In this limit,

〈V2
c.m.〉( f a � 1) = f a2

mγ N2
〈R2

e 〉
�2 τe. Using Eq. (3) and the scaling

behavior of 〈R2
e〉, it becomes proportional to f a2N2ν( f a )−1.

Equation (9) in the limit of vanishing mass simplifies to

lim
m→0

〈
V2

c.m.(t � 1)
〉 = f a2

〈
R2

e

〉
(�2Nγ )2

. (10)

A comparison of Eqs. (9) and (10) with 〈V∗2
c.m.(0)〉, presented

in Figs. 8(c) and 8(d), shows very good agreement.
The explicit form of the TACF of velocity given by Eq. (6)

allows us to predict the long-time diffusion of the center of
mass by integrating it over time: DL = 1

3

∫ ∞
0 dt Cv (t ). For

inertial tangentially driven polymers, this yields

DL = D0

N
+ f a2

〈
R2

e

〉
6mγ N2�2

×
∫ +∞

0
dt

∫ +∞

0
[Ĉe(u − t ) + Ĉe(u + t )]e−u/τm du.

(11)

For the overdamped chains, in the limit of m → 0, Eq. (11)
simplifies to

DL = D0

N
+ f a2

〈
R2

e

〉
3γ 2N2�2

∫ +∞

0
dt Ĉe(t ), (12)

yielding results identical to the calculations in Ref. [28]. The
predictions of Eqs. (11) and (12) are shown in Fig. 9(b) by
open circles and triangles, respectively, demonstrating excel-
lent agreement with simulation results. Approximating Ĉe(t )
with an exponential function Ĉe(t ) = e−t/τe and using Eq. (3)
for the relaxation time, Eqs. (11) and (12) yield an identical
approximate equation for inertial and overdamped systems

DL ≈ D0

N
+ f a2

〈
R2

e

〉
τe

3N2γ 2�2
. (13)

This equation clarifies that the inertia-induced enhancement
of DL originates from extended chain conformations generat-
ing an overall larger 〈R2

e〉. Assuming τe ∼ N/ f a, the long-time
diffusion scales as DL ∼ N2ν−1, which weakly depends on
N . Hence, this equation shows that at sufficiently high lev-
els of activity the dominant contribution in DL comes from
activity. We note that in the overdamped limit, 〈R2

e〉 becomes
independent of activity for large active forces [see Fig. 1(b)]
and given that ν ≈ 0.5, DL becomes independent of N and
varies linearly with f a in agreement with prior simulation
results of a similar model [28] and analytical calculations for
tangentially driven Gaussian polymers [33,47]. A comparison
of simulation results with Eq. (13) is also included in Fig. 9(b),
revealing good agreement and verifying the approximate rela-
tion between DL, 〈R2

e〉, and τe.

IV. CONCLUSION

We have combined bead-spring simulations and analytical
theory to provide insights into the fundamental interplay be-
tween inertia, activity, and flexibility in tangentially driven
active filaments. For this model, active forces are coupled
to polymer conformations and inertia conspicuously affects
both conformational and dynamical features. Inertial effects
become significant when the inertial timescale of a monomer
(active unit) τm = m/γ become longer than the timescale
of its advection by an active force τadv = σγ / f a = σ/va

causing a delay between the end-to-end vector and center-
of-mass velocity. Inertial collisions of high-speed monomers
cause extended conformations, hence increasing the persis-
tence length of polymers. The chain unwinding in turn result
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in an enhanced mean velocity and diffusion of the center of
mass, as elucidated by our theoretical analysis. The analyt-
ical calculations show that for tangentially driven polymers,
the key quantity determining the enhanced dynamics in ac-
tive polymers was the ratio of the end-to-end distance to
contour length.

Having determined the conditions under which inertial
effects become dominant, we conclude that for active biopoly-
mers such as molecular-motor-driven actin and myosin the
inertial effects are negligible even for the highest activity
levels f a∗ ∼ 100. However, for sufficiently heavy robotic fila-
ments moving in a low-friction medium, e.g., a chain of small
self-propelling robotic toys or drones, inertial effects become
important and should be taken into account. As an illustration,
consider a robotic filament made of small self-propelling toys
[26]. According to Ref. [48], the measured inertial relaxation
time for a unit is τm ≈ 0.1 s and each bot of length σ = 0.04 m
has a self-propulsion velocity of va = f a/γ ≈ 0.2 m/s, lead-
ing to an active advection timescale τadv = σ/va ≈ 0.2 s. For
a robotic filament made from these bots, τm/τadv ∼ 5 is signif-
icantly large and inertia influences the mean conformation and
long-time dynamics of filaments. As such, our study provides
a guideline for the design of active robotic filaments.

It is worth mentioning that although we focused on a flex-
ible, active, tangentially driven polymer model, our analytical
calculations are applicable to any force-driven active polymer
model. As such, these results give the conditions under which
inertia affects long-time dynamics. For example, for the ac-

tive Brownian polymer model [32], our analysis reveals that
inertial effects on long-time dynamics become relevant when
rotational inertia is sufficiently large. Moreover, the results of
our study should inspire investigation of a deeper link between
memory effects and inertia in the collective dynamics of active
filaments and more generally other active systems with inter-
nal degrees of freedom. We conclude our paper with a final
remark. Given the significant effects of inertia on the confor-
mation and long-time dynamics of tangentially driven active
filaments, the ratio of the mass to the damping coefficient in
simulations of active polymers with inertial terms [40,49,50]
should be chosen carefully to ensure that they capture the
correct inertial or overdamped regime.
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