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Effective viscosity and elasticity in dense suspensions under impact:
Toward a modeling of walking on suspensions
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The elastic response of dense suspensions under an impact is studied using coupled lattice Boltzmann method
and discrete element method (LBM-DEM) and its reduced model. We succeed to extract the elastic force acting
on the impactor in dense suspensions, which can exist even in the absence of percolating clusters of suspended
particles. We then propose a reduced model to describe the motion of the impactor and demonstrate its relevancy
through the comparison of the solution of the reduced model and that of LBM-DEM. Furthermore, we illustrate
that the perturbation analysis of the reduced model captures the short-time behavior of the impactor motion
quantitatively. We apply this reduced model to the impact of a foot-spring-body system on a dense suspension,
which is the minimal model to realize walking on the suspension. Due to the spring force of the system and the
stiffness of the suspension, the foot undergoes multiple bounces. We also study the parameter dependencies of
the hopping motion and find that multiple bounces are suppressed as the spring stiffness increases.
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I. INTRODUCTION

The phenomenon of being able to walk on suspensions
has attracted the interest of both scientists and the general
public [1,2]. Such impact-induced hardening of dense suspen-
sions is often chosen as an example of discontinuous shear
thickening (DST) [1], but it has already been shown that the
underlying mechanism of impact-induced hardening is differ-
ent from that of DST [3]. In fact, impact-induced hardening is
a transient process in which only normal stress becomes large
and the system is heterogeneous, whereas DST is a steady
process in which both shear and normal stresses become large
and the system is homogeneous.

Most physical studies of impact-induced hardening use a
free-falling impactor or a constant-velocity penetrating in-
truder. Using a free-falling impactor, Ref. [4] reported the
existence of a localized rigid region under the impactor, called
the dynamically jammed region (DJR). As such a DJR grows
in size, Ref. [4] proposed the added-mass model, which treats
the impact as an inelastic collision between the impactor and
the DJR. Then, Ref. [5] visualized the flow field in the dense
suspension around the penetrating intruder, and found that the
strain rate peaked on the boundary of the DJR. Inspired by this
observation, Ref. [6] proposed a model based on the viscous
force acting on the boundary of the DJR. However, none of
the above models can explain the existence of elastic response
of dense suspensions under impacts such as fracture [7], high
stress near the boundary [8], and rebound of the impactor [9].
In Ref. [8], a constitutive model was proposed and the modu-
lus of elasticity was measured when the DJR spans from the
impactor to the boundary. Then, the viscoelastic response of
dense suspensions under an impact is captured using the float-
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ing + force chains model [10], where the elastic force is only
finite when the force chains of contacting suspended particles
percolate from the impactor to the bottom boundary. However,
such an analysis requires data on the position of the suspended
particles to resolve the force chains and calculate the number
of percolated force chains. Moreover, the prediction of the
floating + force chain model that percolating force chains
are needed to get elastic response is questionable, because
this denies the possibility of elastic response of suspensions
confined in a deep container.

The motion of a running or walking person on a suspension
liquid is more complicated than that of a free-falling impactor
or a penetrating intruder. An approach to study the walking
motion on the suspensions was described in Ref. [11]. They
discussed the maximum penetration depth of a foot for differ-
ent impact velocities corresponding to walking, jogging, and
running [8]. They also showed that the added mass model is
not sufficient to recover the response of the suspensions under
running motion. Some studies adopted mechanical models
for the locomotion of legged animals. One of the simplest
models is the spring-mass model inspired by biomechanical
observations [12]. In the spring-mass model, the human leg
is represented by a spring, and the human body is simply
represented by a mass point. Such a model has been realized
as a one-legged hopping robot [13]. Thus, the realization of
hopping, i.e., multiple bounces after the rebound is crucial
to describe walking or running on a liquid. However, little
is known about the dynamics of multiple bounces after an
impact on dense suspensions.

Based on the current situation of related studies, we have
two motivations for this study. The first motivation is to clar-
ify the role of elasticity in dense suspensions, and whether
such elasticity can exist even in the absence of percolating
clusters of suspended particles. Then, we propose a reduced
equation of motion for the impactor, which is sufficiently
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correct to reproduce the motion of the impactor by a full set
of equations of motions of the impactor and grains including
the hydrodynamic interactions among grains and rotations of
grains. We also verify the existence of elastic force acting on
an impactor even in the absence of percolating clusters of
suspended particles. Our second motivation is to extend the
motion of a single impactor to the motion of a body with in-
ternal degrees of freedom because hopping is not captured by
previous known models (e.g., added-mass model or viscous
model), nor by the model of the impactor without internal de-
grees of freedom used in our previous studies in Refs. [3,10].
Inspired by the previous models used in Refs. [12,13], this
paper studies the motion of a foot-spring-body system coupled
with the LBM-DEM model introduced in Refs. [3,10] on
dense suspensions to realize, at least, the hopping of the body
on the suspension fluid. We also apply the reduced model to
the foot-spring-body system and verify that the reduced model
captures the bouncing dynamics on the suspension.

This paper is organized as follows. In Sec. II, we ex-
plain our simulation setup and evaluate the viscosity and
elastic force acting on the impactor using the coarse-grained
technique during the impact process. Then, we propose an
empirical law for the elastic force. We illustrate that a per-
turbation theory in which the linear correction to the floating
model [10] is involved gives us a quantitatively correct result
for the short-time behavior of the impactor. In Sec. III, we
describe the simulation setup for the foot-spring-body model
and present the hopping motion of such a system in order
to clarify the criterion for the hopping motion. In Sec. IV,
we summarize our results and discuss the future prospects
of this study. In Appendix A, we describe the details of
the coupled lattice Boltzmann method and discrete element
method (LBM-DEM) used in our simulation. In Appendix B,
we compare our simulation results with relevant experiments.
In Appendix C, we describe the details of performing integrals
on the impactor surface. Finally, in Appendix D, we present
the details of the perturbation approach.

II. EVALUATION OF VISCOSITY AND ELASTIC FORCE
AROUND THE IMPACTOR

In this section, we analyze a free-falling impactor on a
dense suspension. This section consists of five subsections.
In Sec. II A, we briefly explain the setup for a free-falling
impactor simulation. In Sec. II B, we derive a reduced equa-
tion of motion for the impactor. In Sec. II C, we explain
the technique to describe the local fields such as the stress
field, strain field, and strain rate field using a coarse-grained
method. This enables us to evaluate the force acting on the
impactor. In Sec. II D, we evaluate the elastic force acting
on the impactor, and propose an empirical expression of the
elastic force. In Sec. II E, inserting the obtained results into
the reduced equation of motion for the impactor, we obtain
the motion of the impactor, which recovers the results of a full
set of equations of LBM-DEM.

A. Setup for a free-falling impactor simulation

Let us consider an impactor falling into a suspension (see
Fig. 1), where z denotes the vertical direction and the gravity

FIG. 1. Illustration of our simulation setup.

acts along the negative z direction. Through this paper, we set
z = 0 on the surface of the suspension before the collision of
the impactor. This means that inside the suspension, z < 0 is
always satisfied.

As a basic set of equations, we adopt the coupled LBM-
DEM model as in Refs. [3,10]. This model assumes that the
fluid flow can be described by the Stokes equation. This means
that the diameters of the suspended particles are of the order
of 100 μm. This model includes equations of motion for
the impactor and suspended particles, where the forces acting
on the impactor and suspended particles include the contact
force, hydrodynamic interactions, lubrication, electrostatic re-
pulsive interactions, and gravity, as well as the torque balance
equations for the impactor and suspended particles as shown
in Appendix A. The simulation setup is as follows [10]. We
analyze a mixture of N suspended particles with a volume
fraction φ0 := (2π/3)N (a3

min + a3
max)/Vbox, where Vbox is the

volume of the container, Vbox := W × H × D with the width
W , the height H , and the depth D, and amin and amax are the
radii of the smaller and larger suspended spheres, respectively
(see Fig. 1). Here, we adopt amax = 1.2amin to avoid crystal-
lization in high density. We analyze only the case where the
number of smaller spheres is equal to the number of larger
spheres. Throughout this paper, we assume perfect density
matching between the solvent and the suspended particles,
where the densities of the particles ρp and the solvent ρ f sat-
isfy the relation ρp = ρ f . In this section, a spherical impactor
with diameter DI (radius aI ) and density ρI is released from
height H0, which corresponds to the impact velocity u0 =√

2gH0 with gravitational acceleration g. In our simulation,
ρI and DI satisfy ρI = 4ρ f and DI = 6amin, respectively. We
also introduce the time scale tg = √

aI/2g, the velocity scale
u∗ = √

2gaI , the force scale Fg = 4
3πρ f a3

I g, and stress scale
σ0 = Fg/a2

I . For most of the cases considered in this paper,
we use φ0 = 0.53, H = 3DI , W = D = 6DI , and N = 2200.

In Appendix B, we show that a full set of equations based
on the LBM-DEM model can reproduce the experimental
results [9], although the dimensionless time in experimental
data is not scaled by tg, but by a different time scale. This
discrepancy in the time scale between the experiment and sim-
ulation may originate from the finite-size effect as indicated
in Ref. [3]. It should be noted that we cannot get any physical
insight into the motion of the impactor by simulating a full set
of equations because the simulation is expensive and we need
to know the motions of grains in suspensions. Instead, if we
can obtain an equation of the motion of the impactor without
referring to the motion of suspended particles, its advantage
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is obvious because such an equation can be easily solved
and the analytical expression of the motion of the impactor
can be used in some limited situations as in Ref. [10]. Since
various useful results have already been obtained based on
such an approach in the previous studies [3,4,6,9,10], we also
adopt a reduced equation of motion of the impactor in this
paper.

B. Equation of motion of impactor

In the reduced model, the equation of motion for a free-
falling impactor along z direction for the lowest point of the
impactor z := zI − aI , where zI is the vertical position of the
center of mass of the impactor, onto dense suspensions can be
written as

mI z̈ = −mI g̃ − 3πηeff ż|z| − Fel(z), (1)

where mI is the mass of the impactor, and g̃ is the effective
gravity acceleration defined as g̃ := g(ρI − ρ f )/ρ f with the
densities of the impactorρI and the solvent ρ f . The second
term on the right-hand side (RHS) of Eq. (1) has been in-
troduced in Ref. [6], and its validity has been verified in
Ref. [10]. In order to propose a model that does not need
to refer to the simulation data, we need to determine two
unknown variables: (i) the effective viscosity ηeff and (ii) the
elastic force Fel. The previous studies [6,10] suggest that Fel is
not important in the early stage of the impact.

Before the explanation of the method of how to obtain
Fel(z) from Eq. (1), we briefly comment on the gravity ac-
celeration g̃ and the surface deformation of the suspension
after the impact. First, g̃ in Eq. (1) is an oversimplified
treatment, because this treatment is correct if the impactor
is completely inside the suspension but is not correct if the
impactor is partially inside the suspension. This means that
the time scale of our simulation might be different from
that in real experiments. Nevertheless, we have already ver-
ified that such a simplification gives us a reasonable result
as shown in Ref. [10]. Thus, we adopt this oversimplified
model. Second, the surface of the suspension liquid in the
LBM-DEM simulations is deformed after the impact as in
real experiments, and thus, the actual surface can be higher
or lower than z = 0 [3,10]. However, since the ripple on the
surface does not contribute to the force acting on the impactor,
such deformation of the suspension surface is ignored in our
coarse-grained procedure.

C. Local variables using coarse-grained method

In this section, we describe the method for obtaining local
variables within suspensions that are relevant for elucidating
the behavior of viscosity and elastic force on the impactor
during the impact process. The variables we use are (i) lo-
cal volume fraction, (ii) local strain rate, (iii) local strain,
and (iv) local stress. The approximate description of such
continuum fields from discrete particle data can be carried
out using the coarse-grained method, which has been used
for granular materials [14,15]. Here, all variables within sus-
pensions are calculated on a rectangular grid with a lattice
constant 0.5amin.

The local volume fraction φ(r) can be expressed with a
coarse-grained function �(r) as

φ(r, t ) :=
∑

i

�[r − ri(t )], (2)

where r and ri are the field position and the position of ith
particle, respectively. Here, we adopt

�(r − ri ) := 1

(w
√

2π )3
exp

[
− (r − ri )2

2w2

]
. (3)

For all the results presented here, we adopt a width of w =
6amin. To satisfy the boundary conditions on the wall, mir-
rored copies of the particle configurations are required on
each side of the wall before applying the coarse-grained meth-
ods [16]. In Fig. 2(b), we visualize the local volume fraction
φ in a region below the impactor [see Fig. 2(a)].

The coarse-grained momentum density p(r, t ) is written as

p(r, t ) =
∑

i

miui(t )�[r − ri(t )], (4)

where ui and mi is the velocity and mass of particle i, re-
spectively. The velocity field u(r, t ) is defined by u(r, t ) =
p(r, t )/ρ(r, t ) with ρ(r, t ) := ∑

i mi�[r − ri(t )]. The stress
tensor ←→σ consists of the contact stress ←→σ c and the hydro-
dynamic stress ←→σ h

←→σ := ←→σ c + ←→σ h. (5)

Here, the contact stress is expressed as

←→σ c(r) = −1

2

∑
i, j

Fc
i j ⊗ ri j�(r − ri ) (6)

where Fc
i j and ri j are the pairwise contact force and the inter-

particle distance between particles i and j, respectively. Here
⊗ denotes the tensor product. Meanwhile, the hydrodynamic
stress is given by

←→σ h(r) =
∑

i

←→σ h
i �(r − ri ), (7)

where ←→σ h
i is the hydrodynamic stress tensor on each particle,

obtained from the LBM and the lubrication stresslet [3].
The displacement field U (r) is defined by the particle dis-

placement U i(ri ) from the equilibrium position as

U (r) =
∑

i

U i�(r − ri ). (8)

Here, U i is calculated as follows: For each time t , an addi-
tional equilibration step is introduced where we freeze the
motion of the impactor and allow the suspended particles to
equilibrate. Thus, the particle configuration from the LBM-
DEM simulation at each time t , ri(t ), is considered as the
initial condition in the equilibration process, i.e., ri(t, s = 0).
During the equilibration process from s to s + �s, ri(t, s)
is updated considering only the hydrodynamic lubrication,
normal, and tangential contact forces until the equilibrium
condition is reached where the average overlap between par-
ticles 〈δi

n〉 is less than a threshold δth at s = sth. Then, the
displacement from the equilibrium of particle i at time t is
defined as

U i(t ) := ri(t ; s = 0) − ri(t ; s = sth ), (9)
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FIG. 2. Visualizations of coarse-grained variables for φ = 0.53, u0 = 4.5u∗, t = 0.06tg, where we present (a) selected region for visual-
ization (cylindrical region below the impactor), (b) local volume fraction φ, (c) local scalar strain rate ε̇, (d) local scalar strain ε, and (e) local
stress σ , respectively.

where the second term on the RHS of Eq. (9) is the equili-
brated position.

Once the flow field is obtained, the symmetric part of the
local strain rate tensor can be obtained

←→
D (r).

←→
D (r) := 1

2 (∇u + ∇uT ). (10)

Meanwhile, the local strain tensor
←→
L (r) is defined as

←→
L (r) := 1

2 (∇U + ∇UT ). (11)

Let us introduce the scalar local viscosity η(r) defined
as [17,18],

η(r) := 1

2

←→σ (r) :
←→
D (r)

←→
D (r) :

←→
D (r)

, (12)

where : is the scalar or double inner product. The local strain
rate ε̇ is defined as

ε̇(r) :=
√

2
←→
D (r) :

←→
D (r). (13)

A snapshot of the local strain rate field ε̇(r) right after an
impact is shown in Fig. 2(c). It can be seen that the position
of the high rate region in our simulation is reminiscent of
that observed experimentally in Ref. [5], although they used
a constant penetrating intruder. Then the local viscous stress
σ (vis) is simply given by [17,18]

σ (vis)(r) = η(r)ε̇(r). (14)

Finally, similar to the strain rate, the local scalar strain fields
ε(r) are defined as

ε(r) :=
√

2
←→
L (r) :

←→
L (r). (15)

A snapshot of the local strain field ε(r) right after the impact
is shown in Fig. 2(d). Similar to Eq. (12) the local rigidity can
be expressed as

G(r) := 1

2

←→σ (r) :
←→
L (r)

←→
L (r) :

←→
L (r)

. (16)

The local elastic stress is then given by

σ (el)(r) = G(r)ε(r). (17)

In Fig. 2(e), we visualize the total scalar stress σ = σ (el) +
σ (vis) after the impact.

Once we have computed the local variables within the
suspensions, delineating the submerged impactor surface S
with normals n (see Appendix C for details), one can evaluate
the effective volume fraction around the impactor φeff defined
as

φeff :=
∫

S φ(r)dS∫
S dS

. (18)

where dS is the surface integration on S. Similarly, the effec-
tive viscosity around the impactor ηeff is defined as

ηeff :=
∫

S η(r)dS∫
S dS

. (19)
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FIG. 3. (a) A plot of the time evolution of effective volume fraction φeff on S for φ = 0.53 and u0 = 4.5u∗. (b) A plot of the time evolution
of effective viscosity ηeff on S for φ = 0.53 and u0 = 4.5u∗.

The time evolution of φeff can be seen in Fig. 3(b), where
φeff increases right after the impact. We have also plotted the
time evolution of ηeff in Fig. 3(c), where it also increases right
after the impact. This suggests that the effective viscosity ηeff

satisfies the constitutive law for viscosity [19,20]

ηeff

η0
=

(
φeff (φJ − φ0)

φ0(φJ − φeff )

)2

, (20)

where φJ is the volume fraction at the jamming point, φeff

is the effective volume fraction around the impactor, and φ0

is the initial volume fraction. Note that φeff is larger than φ0

because the impactor makes DJR right below it. In Fig. 3(c),
we also plot Eq. (20) as dashed lines, where the measurement
[Eq. (19)] agrees with the empirical expression [Eq. (20)].

D. Force acting on the impactor

The force acting on the impactor can be obtained by in-
tegrating the stress field on the surface S, where the viscous
force and elastic force are, respectively, given by

Fvis =
∫

S
σ (vis)ndS, (21)

Fel =
∫

S
σ (el)ndS, (22)

In Fig. 4(a), we plot the total force obtained by Eqs. (21)
and (22) (blue solid line) and compare it with the force
measured directly on the impactor using LBM-DEM simula-
tion (black dashed line). Although the coarse-grained method
cannot be used for sharp impulses in a short time, the agree-
ment between the two methods is reasonable. As reported in
Ref. [10], the viscous force dominates, in particular, in the
early stage, but the elastic force plays an important role after
the time to take the peak of the force. Although percolating
force chains of suspended particles do not exist for this pa-
rameter setup (see the time evolution of the force chains in
the movie in the Supplemental Material [21]), it is noteworthy
that the elastic force still exists.

To get a better understanding of the elastic force, we plot
Fel against the normalized depth |z|/DI for various u0 with

φ0 = 0.53 in Fig. 4(b). As can be seen, the onset depth zon of
the elastic force Fel little depends on u0. Then Fel increases
linearly with |z| until reaching the maximum value at certain
zme which depends on u0. For |z| > |zme|, Fel likely decreases
almost linearly with |z| for |z| < |zcut|, at least, for small u0,
and Fel suddenly drops to zero.

Based on these observations, we propose the following
empirical expression for the elastic force Fel:

Fel(z) =

⎧⎪⎪⎨
⎪⎪⎩

0, |z| < |zon|,
k(z − zon), |zon| � |z| � |zme|,
−k′(z− zme)+ k(zme− zon), |zme|< |z|� |zcut|,
0, |z| > |zcut|,

(23)
where zon, zme, zcut are the position of the onset of elastic force,
the position of maximum elastic force, and the cutoff position
of the elastic force, respectively. Here, k and k′ are fitting
parameters that are related to the stiffness of the suspended
particles. We treat zon as a fitting parameter and based on
Fig. 4(b), we choose zon = −0.18DI . Then, k can be estimated
by fitting the data with a linear function, i.e., the second
equation of Eq. (23), where we estimate k = 260m0/(amint2

g ).
Similarly, with the third equation of Eq. (23), we estimate
k′ = 110m0/(amint2

g ).

E. Reduced equation of motion

The next task is to determine zme and zcut. Using the second
expression for Fel(z), Eq. (1) can be rewritten as

mI z̈ = −mI g̃ − 3πηeff ż|z| − k(z − zon) ton � t < tme.

(24)

It is obvious that the maximum elastic force occurs when
the sign of impactor velocity switches (ż = 0). Because the
full solution of Eq. (24) is complicated, it is impossible to
determine zme (z position corresponding to ż = 0) analytically.
Thus, we solve Eq. (24) numerically and obtain tme with
zme = z(tme) as the time satisfying ż = 0. Note that the elastic
force is continuous at zme.
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(a) (b)

FIG. 4. (a) Plots of the time evolution of the force acting on the impactor by LBM-DEM (black dot-dashed line), the viscous force expressed
as Eq. (21) (blue dashed line), the elastic force expressed as Eq. (22) (blue dotted line), and their summations (blue solid line). (b) Plots of
elastic force against depth for various impact velocities, where the dashed lines express Eq. (23) with numerically evaluated zme and zcut by
setting zon = −0.18DI .

For |zme| < |z| < |zcut|, the equation of motion can be writ-
ten as

mI z̈ = −mI g̃ − 3πηeff ż|z| − k(zme − zon) + k′(z − zme).
(25)

The mechanical energy of the system E , consisting of kinetic
and elastic energy is given by

E = 1
2 mI ż

2 + 1
2 k′(z − zme)2. (26)

Multiply Eq. (25) with ż, one gets

dE

dt
= −ż(mI g + k(zme − zon)) − 3πηż2|z| + 2k′ż(z − zme).

(27)

The restoring potential energy Eme := E (t = tme) = 1
2 kz2

me is
completely dissipated at tcut and zcut := z(t = tcut ). Thus, zcut

and tcut are determined by

1

2
kz2

me =
∫ t=tcut

t=tme

{ż(t )(mI g + k(zme − zon))

+ 3πηż2(t )|z(t )| − 2k′ż(t )(z(t ) − zme)}dt . (28)

Figure 4(b) displays both the empirical expression Eq. (23) for
Fel acting on the impactor and that by LBM-DEM with the aid
of numerically evaluated zme and zcut with fitting parameters
zon, k, and k′. This indicates that our empirical expression is a
reasonable one for the elastic force Fel.

Once we estimate all parameters in Eq. (23) and the effec-
tive viscosity as in Eq. (20), one can solve Eq. (1) numerically
with the Adams-Bashforth method with the time increment
�t = 10−3tg and the local error rtol = 10−8 [22]. As can be
seen in Fig. 5, we get a good agreement between the solution
of the full LBM-DEM simulation and the solution of Eq. (1)
with Eq. (23). We also compare the perturbation solution of
Eq. (24) in which the elastic force is treated as a perturba-
tion to the dominant viscous force (details in Appendix D)
with the results obtained by the other methods. It seems the
perturbation works well for τ := 3πηeffaIt/mI < 0.4. After
the impactor reaches the minimum velocity, it starts to sink
due to the relaxation of the suspensions. Indeed, the sinking
and relaxation process is currently ignored in our perturbation
approach.

(a) (b)

FIG. 5. Plots of the time evolutions of (a) ζ = z/aI and (b) dζ/dτ with τ := 3πηeff aIt/mI . Here, the solid lines, dot-dashed lines and
dashed lines correspond to the solution of the perturbative equation, the solution of the reduced model [Eqs. (1) and (23)] with zon = −0.18DI

and numerically evaluated zme and zcut), and the LBM-DEM simulation results, respectively.
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(a) (b)

(d) (e)

(c)

FIG. 6. (a) A schematic of the simulation setup of the foot-spring-body system. The body (circle) is connected with the foot (rectangle)
by a massless spring (tube). (b) Time evolution of the velocities of the foot (squares) and body (diamonds) in z−coordinate, where the black
dashed line expresses uz = 0, the solid lines express the solutions of Eq. (29), and the symbols express the results of the simulations. (c) Time
evolution of the positions of the foot (squares) and body (diamonds) in z coordinate, where the black dashed line expresses the suspension
surface, the solid lines express the solutions of Eq. (29), and the symbols express the results of the LBM-DEM simulations. All results here
are obtained with ks = 100m0/(amint2

g ) and u0 = 4u∗. (d) Time evolution of the foot position in z direction zp with various spring stiffness ks at
u0 = 4u∗. (e) Time evolution of the foot position in z−direction zp with various initial velocity u0 at ks = 100m0/(amint2

g ).

Our results help us to understand the origin of elastic-
ity in suspensions without percolating clusters of contacted
particles. From the method to evaluate the elastic force,
the restoring force from the displacement of the suspended
particles, Eq. (9), induced by an impact process to a sta-
ble configuration can be regarded as the elastic force.
Indeed, the suspended grains under a finite speed impact
are moved in unstable configurations, and they are relaxed
to the stable configuration as time goes on. In other words,
the elasticity in dense suspensions disappears in quasistatic
processes.

III. FOOT-SPRING-BODY DYNAMICS IN DENSE
SUSPENSIONS

The motivation of our study is to mimic walking processes
on dense suspensions using a simple model. For this pur-
pose, we introduce the foot-spring-body model as a model
for expressing the bouncing motion on a suspended liquid.
In this section, we explain the model to examine whether
the model can reproduce multiple bounces after dropping

it on the suspensions based on the LBM-DEM simulation.
We also adopt a reduced model as in the previous sec-
tion and demonstrate that the model can mimic walking on the
suspension.

The foot in the foot-spring-body model is represented by a
rectangular plate impactor with volume Vp := Wp × Hp × Dp

and mass mp = ρpVp, where ρp is the density of the footplate.
We adopt ρp = 1.2ρ f and Wp = Dp = 5amin and Hp = 2amin.
The body is represented by a sphere with diameter Db and
mass mb. We take the density of the body ρb as ρb = 2ρp =
2.4ρ f . The body and the foot are then connected by a massless
spring with stiffness ks and natural length L0. The schematic
of this setup is shown in Fig. 6(a). Even for a high-volume
fraction, the impactor sinks eventually over a long time limit.
Such sinking can be avoided if we introduce an internal degree
of freedom on the impactor, such as a spring introduced here.
In order to reduce the simulation time for sinking processes,
we adopt a slightly lower volume fraction φ0 = 0.51 than that
in the previous section for the analysis. Here we use H = 2Db,
W = D = 4Db, and N = 618. Note that we are only interested
in the vertical (z direction) motion of the system.
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Thus, a reduced set of equations for the foot-spring-body
model corresponding to Eq. (1) is given by

mbz̈b = −mbg − ks(zb − zp − L0) − ζsżb

mpz̈p = −mpg − 3πηeffzpżp + Fel(zp)

+ ks(zb − zp − L0) − ζsżp, (29)

where mb and zb are the mass and the vertical position of the
body, respectively. zp is the vertical position of the base of
the plate impactor, and ζs := √

ks(mp + mb)/2 is the damping
constant. Typical motions of the foot-spring-body system are
shown in Figs. 6(b) and 6(c). To solve Eq. (29), ηeff is es-
timated for the short time using Eq. (20) as in the previous
section, while Eq. (23) with a new set of parameters is used to
recover the elastic force Fel(zp). Here, we adopt zon = 0.25Wp,
k = 214m0/(amint2

g ), and k′ = 114m0/(amint2
g ). Then, zme and

zcut are obtained using a parallel procedure in the previous
section. We then solve Eq. (29) numerically. As can be seen,
the solution of Eq. (29) agrees well with the simulation results.
Thus, our reduced model Eq. (29) is a reasonable model to
analyze the motion of the foot-spring-body model. Initially,
the foot experiences a strong deceleration as in the free-falling
impactor due to the interaction between the foot and the sus-
pensions. Meanwhile, the body continues to accelerate due to
gravity. Then, the system exhibits a damped oscillation. Due
to the spring force and the stiffness of the suspensions, the foot
undergoes multiple bounces (up < 0) and also multiple jumps
(zp > 0). This result suggests that composites with elastic
springs inside the body can maintain their position above the
liquid surface for a while.

Now, let us investigate the multiple bounces of the foot in
detail. First, we check how the motion of the foot depends on
the stiffness of the spring ks. The simulation results for various
ks are shown in Fig. 6(d). Here, one can see a lower tendency
to multiple bounces for higher ks. Furthermore, the foot only
bounces once and then sinks in a rigid limit (ks → ∞). This is
similar to the prediction of the added mass model in Ref. [11],
where running on suspensions is impossible for a perfectly
stiff leg. We also examine the dependence of the initial veloc-
ity (u0) in Fig. 6(e). As expected, the foot sinks and does not
hop at low u0, since the impact-induced hardening is stronger
at high u0 [3,4,6,9].

IV. CONCLUSIONS AND DISCUSSIONS

Using the coarse-grained method and the virtual deforma-
tion of the suspended particles from unstable to equilibrium
positions, we evaluate the viscous and elastic forces acting
on the impactor. We found increases in viscosity and density
around the impactor right after impact. We confirmed that
the elastic force acting on the impactor Fel exists even in the
absence of percolating clusters of suspended particles. The
behavior of Fel, which depends on depth z, can be expressed
as an empirical equation with five fitting parameters (onset
of elastic force zon, position of maximum elastic force zme,
position zcut where the initial mechanical energy E becomes
completely dissipated, spring constants k and k′). Using this
Fel with Fvis = −3πηeff ż|z| we obtain the reduced equation.
The solution of the reduced equation is almost equivalent to
that for the full set of equations of LBM-DEM.

Finally, to mimic walking on a liquid, we studied the
impact of the foot-spring-body system on the top of dense
suspensions. Our reduced model for this system agrees well
with the results of the LBM-DEM simulation. We confirmed
that multiple bounces are suppressed as the spring stiffness ks

between the body and foot increases and the initial velocity u0

decreases.
We expect that our method is applicable to the sinking

process of an intruder in dense suspensions, where oscillations
and slip-stick motions have been observed [23]. However,
such a sinking process is beyond the scope of this paper. Relat-
edly, little is known about the relaxation process of hardening
suspensions after impact [24–26]. Future studies should focus
on this relaxation phenomenon of dense suspensions under
impact.
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APPENDIX A: LBM-DEM WITH FREE SURFACE

We employ the LBM involving suspensions and the free
surface of the fluid. The details of the LBM are explained in
Ref. [3]. The suspended particles in LBM are represented as
a group of solid nodes, while the surrounding fluids are rep-
resented by fluid nodes. The hydrodynamic field is calculated
from the time evolution of the discrete distribution function
at each fluid node. We select the lattice unit �xlb = 0.2amin,
where it gives sufficient accuracy but is still not computation-
ally expensive as shown in the previous LBM for suspensions
literature [27–29]. In addition, to simulate the free surface of
the fluid, it is necessary to introduce interface nodes between
the fluid and gas nodes [3,30–32].

Equations of motion and the torque balance of particle i
are, respectively, given by

mi
dui

dt
= Fc

i + Fh
i + F lub

i + Fr
i (A1)

Ii
dωi

dt
= T c

i + T lub
i + T h

i . (A2)

Here, ui, ωi, mi, and Ii = (2/5)mia2
i (with ai the radius of par-

ticle i), are the translational velocity, angular velocity, mass,
and the moment of inertia of particle i, respectively.

Note that our LBM accounts for both the short-range lubri-
cation force F lub

i and torque T lub
i , as well as the long-range

hydrodynamic force Fh
i and torque T h

i as in Ref. [29,33].
The long-range parts (Fh

i and T h
i ) are calculated using the

direct forcing method [3,32], while the lubrication force F lub
i

and torque T lub
i are expressed by pairwise interactions as
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F lub
i = ∑

j �=i F lub
i j and T c

i = ∑
j �=i T lub

i j , respectively [29,33–
35]. The explicit expressions of F lub

i j and T lub
i j can be found in

Ref. [33].
We adopt the linear spring-dashpot version of the

DEM [36] for the contact interaction between particles, which
involves both the normal and the tangential contact forces.
Note that we omit the dissipative part for the tangential contact
force. For the particle i, the contact force Fc

i and torque
T c

i are, respectively, written as Fc
i = ∑

i �= j (F
nor
i j + F tan

i j ) and
T c

i = ∑
i �= j aini j × F tan

i j , where ai is the radius of particle i.
The normal force is explicitly expressed as

Fnor
i j = (

knδ
n
i j − ζ (n)u(n)

i j

)
ni j, (A3)

where kn is the spring constant, δn
i j is the normal overlap, ni j

is the normal unit vector between particles, u(n)
i j is the normal

velocity difference of the contact point u(n)
i j = u(n)

i − u(n)
j , and

ζ (n) = √
m0kn is the damping constant, where m0 is the aver-

age mass of the suspended particles. If the tangential contact
force is smaller than a slip criterion, the tangential contact
force is represented as

F̃
tan
i j = ktδ

t
i jT i j, (A4)

where kt , assumed to be 0.2kn, is the tangential spring con-
stant, δt

i j is the tangential compression and T i j is the tangential
unit vector at the contact point between particles i and j. We
adopt the Coulomb friction rules as∣∣F tan

i j

∣∣ = μ
∣∣Fnor

i j

∣∣ if
∣∣F̃ tan

i j

∣∣ � μ
∣∣Fnor

i j

∣∣ (slip), (A5)

∣∣F tan
i j

∣∣ = ∣∣F̃ tan
i j

∣∣ if
∣∣F̃ tan

i j

∣∣ � μ
∣∣Fnor

i j

∣∣ (stick), (A6)

whereas δt
i j is updated each time with relative tangential ve-

locity [36].
Finally, Fr

i is the electrostatic repulsive force, also ex-
pressed by pairwise interactions as F r

i = ∑
j �=i Fr

i j . The
explicit expression of Fr

i j is expressed by the Derjaguin-
Landau-Verwey-Overbeek (DLVO) theory [37–39] for the
double layer electrostatic force as

Fr
i j = F0 exp(−h/λ)ni j, (A7)

where F0 = kBT λBẐ2(eamin/λB/(1 + amin/λB))2/h2 with the
charge number Ẑ , the Bjerrum length λB and the Debye-
Hückel length λ. Note that λB can be expressed as λB =
e2/(4πε0εrkBT ) where e, ε0, εr , and kB are the elementary
charge, the vacuum permittivity, the dielectric constant, and
the Boltzmann constant, respectively [39]. Here, we adopt the
Debye length λ = 0.02amin. Our simulation ignores the Brow-
nian force. Thus, the electrostatic repulsion force is important
to prevent the suspended particles from clustering [33,35].

The equation of motion and torque balance for the impactor
with mass mI , velocity uI , moment of inertia II , and angular
velocity ωI in the LBM-DEM simulation reads

mI
duI

dt
= Fh

I + F lub
I + Fc

I + Fg
I , (A8)

II
dωI

dt
= T h

I + T c
I + T lub

I . (A9)

Fg
I = −mI g̃ẑ is the gravitational force acting on the impactor.

Note that the time dependence of the effective gravitational

acceleration acting on the impactor is simply ignored in our
analysis. This is one of the error sources in our analysis.
The contact force Fc

I and torque T c
I , which arise from the

interactions with the suspended particles, are also calculated
by the DEM. The lubrication force F lub

I and torque T lub
I are

also calculated in a similar manner as used in suspended par-
ticles. The long-range hydrodynamic force Fh

I and torque T h
I

are calculated using the bounce-back rule, which satisfies the
no-slip boundary condition between the fluid and the surface
of the impactor [27,28]. In the bounce-back rule, the LBM
discrete distribution function that streams from fluid nodes
to the boundary nodes is reflected. Then, the hydrodynamic
force on each node is calculated from the momentum trans-
ferred in this reflection process. In our implementation, the
bounce-back rule is implemented by treating the surface of
the impactor as boundary nodes.

APPENDIX B: COMPARISON WITH EXPERIMENTS

In this section, we compare the results of LBM-DEM
simulations for the velocity of a free-falling impactor into
dense suspensions with a corresponding experiment in the
same setup [9]. The experimental data is obtained from Fig. 4
in Ref. [9], which corresponds to impact velocity u0 = 1.62
m/s, impactor diameter DI = 8 mm, impactor density ρI =
8 × 103 kg m−3 and suspensions thickness H = 20 mm. In
Fig. 7(a), we plot the time evolution of dimensionless veloci-
ties uz/u∗ for the same dimensionless impact velocity u0/u∗.
Here, one can see that the impact dynamics in the experiment
is faster than that in the simulation. When we introduce an-
other timescale t∗, which is equal to tg for the experiment and
tg/2 for the simulation, the scaled plot of the simulation per-
fectly agrees with that of the experiment as shown in Fig. 7(b).

The timescale discrepancy between the simulation and
experiment originates from the finite size effect in our sim-
ulation, i.e., t∗ ∼ N0.35 as shown in Ref. [3]. Needless to say,
our simulation size is much smaller than the experimental
counterpart. We also note that our simplified treatment F g

I in
Eq. (A8) is an error source.

In addition to the discrepancy in timescale, the LBM-DEM
simulation requires a higher volume fraction than that in the
experiments. This may be from the following: Our LBM-
DEM does not consider the rolling friction, which must exist
in the actual consider cornstarch particles. It is known that the
rolling friction lowers the critical volume fraction of discon-
tinuous shear thickening [40].

APPENDIX C: EVALUATION OF THE SURFACE
INTEGRALS

In this section, let us describe the method to delineate
the surface of submerged impactor S and perform surface
integrals on it. First, we triangulate the surface of the impactor
into a mesh. The resolution for the triangulation is 30 points in
the latitude and the longitude directions. Then, one can get the
submerged surface by clipping the impactor surface mesh with
the rectangular grid of the suspensions. The clipping process
is done by keeping the impactor mesh polygons that intersect
with the suspensions rectangular grid. During this clipping
process, the polygonal mesh of the surface is persisted.
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(a)

(b)

FIG. 7. (a) Plots of the time evolution of the dimensionless im-
pactor velocity for experiment [9] and LBM-DEM simulation with
the scaled time (a) tg and (b) with t∗, where t∗ = tg for the experiment
and t∗ = tg/2 for the simulation, respectively.

Finally, the submerged impactor surface mesh S with normals
n and element dS can be obtained. Note that each element also
contains the variables from the intersecting suspensions grid.
The illustration of this procedure can be seen in Fig. 8.

Once the submerged surface mesh is obtained, the surface
integral can be performed by treating each polygon on the

mesh as the integration element. Since each polygon in the
surface mesh is planar, one can calculate the area of each
element and the integration can be done in a straightfor-
ward manner (no quadrature required). These calculations
are performed using PYVISTA, an interface for VISUALIZATION

TOOLKIT (VTK) in PYTHON [41].

APPENDIX D: PERTURBATION APPROACH

In this section, we analytically solve Eq. (1) by using
a perturbation method in which we assume that the elastic
force is much smaller than the viscous force. Let us introduce
the dimensionless depth ζ = z/aI and the dimensionless time
τ := 3πηeffaIt/mI . Thus, the equation of motion is given by

d2ζ

dτ 2
= −G − dζ

dτ
ζ − εζ , (D1)

where G = m2
I g̃/9πη2

eff a
3
I and ε = mI k/(3πηeffaI )2. The per-

turbation solution of Eq. (D1) is expressed as

ζ = ζ0 + εζ1 + O(ε2), (D2)

where ζ0 is the solution of the floating model, i.e., without
consideration of elastic force acting on the impactor [10].
Plugging Eq. (D2) into Eq. (D1), ignoring higher order terms,
and rearranging, one can get up to the first order in ε

d2ζ0

dτ 2
+ G + dζ0

dτ
ζ0 = 0, (D3)

d2ζ1

dτ 2
+ ζ0

dζ1

dτ
+ dζ0

dτ
ζ1 + ζ0 = 0 (D4)

The solution of Eq. (D3) under the initial conditions ζ0(0) =
0 and ζ ′

0(0) = ũ0, with dimensionless impact velocity ũ0 :=
u0mI/3πηa2

I , can be written in terms of Airy functions [10]:

ζ0(τ ) = κ[−Ai′(�)Bi′(�) + Ai′(�)Bi′(�)]

γ [Bi(�)Ai′(�) − Ai(�)Bi′(�)]
, (D5)

where γ = −G2/3, κ = 22/3G, � = (−Gτ + ũ0)/(21/3

(−G)2/3), and � = (ũ0)/(21/3(−G)2/3). Here, Ai(x) is
the Airy function of the first kind, which is defined as
Ai(x) = ∫ ∞

0 cos(t3/3 + xt )dt/π , and Ai′(x) is its derivative.
Bi(x) is the Airy function of the second kind, which is defined
as Bi(x) = ∫ ∞

0 [exp(−t3/3 + xt ) + sin(−t3/3 + xt )]dt/π ,
and Bi′(x) is its derivative.

FIG. 8. Illustration of the procedure to delineate the surface mesh of the submerged impactor S. From left to right: Triangulation of
the surface impactor, clipping the impactor surface mesh with the grid of coarse-grained suspensions, resulting surface of the submerged
impactor S.
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The solution for Eq. (D4) can be written in terms of the complementary and particular solutions

ζ1(τ ) = ζ1,c(τ ) + ζ1,p(τ ). (D6)

The complementary solution ζ1,c(τ ) can be solved by first solving the homogeneous equation

d2ζ1

dτ 2
+ ζ0

dζ1

dτ
+ dζ0

dτ
ζ1 = 0. (D7)

Then, the complementary solution can be written as

ζ1,c(τ ) = caζa(τ ) + cbζb(τ ), (D8)

ζa(τ ) = 2
1
3 γ�1(�,�) + (Gt − u0)�2(�,�) − 2

4
3 γ�3(�,�) + 2

1
3 γ�4(�,�)

G[Ai′(�)Bi(�) − Ai(�)Bi′(�)]2
, (D9)

�1(�,�) = Ai′(�)2Bi′(�)2,

�2(�,�) = [Ai′(�)Bi′(�) − Ai(�)Bi′(�)]2,

�3(�,�) = Ai′(�)Ai′(�)Bi′(�)Bi′(�),

�4(�,�) = Ai′(�)2Bi′(�)2,

ζb(τ ) = 1

[Ai′(�)Bi(�) − Ai(�)Bi′(�)]2
, (D10)

where ca and cb are coefficients that will be determined later from the initial conditions. Then, the particular solution ζ1,p can be
obtained when we have finite Wronskian, W [ζa(τ ), ζb(τ )] �= 0 defined as

W [ζa(τ ), ζb(τ )] := ζa(τ )ζ ′
b(τ ) − ζb(τ )ζ ′

a(τ ). (D11)

Plugging Eqs. (D9) and (D10), one can obtain

W (ζa(τ ), ζb(τ )) = − 1

[Ai′(�)Bi(�) − Ai(�)Bi′(�)]2
. (D12)

The particular solution can be written as

ζ1,p(τ ) = ζa(τ )
∫

ζb(τ )ζ0(τ ′)
W [ζa(τ ′), ζb(τ ′)]

dτ − ζb(τ )
∫

ζa(τ )ζ0(τ ′)
W [ζa(τ ′), ζb(τ ′)]

dτ ′, (D13)

= ζa(τ ){log [ζb(τ )] + C} − ζb(τ )
∫

ζa(τ )ζ0(τ ′)
W [ζa(τ ′), ζb(τ ′)]

dτ ′. (D14)

Note that the integral in the second term of the RHS in Eq. (D14) cannot be calculated analytically. Plugging Eqs. (D14) and (D8)
to Eq. (D6), one can get

ζ1(τ ) =ζa(τ ){log[ζb(τ )] + C1} + ζb(τ )

[
C2 −

∫
ζa(τ )ζ0(τ ′)

W [ζa(τ ′), ζb(τ ′)]
dτ ′

]
, (D15)

where C1 and C2 are constants that will be determined from the initial conditions. Since the integral in the second term in the
RHS of Eq. (D15) cannot be calculated analytically, a numerical evaluation for this equation is necessary.

Let us discuss the appropriate initial conditions for this perturbation problem. Note that the perturbative solution only exists
(ε �= 0) when elastic force exists after τon

ζ (τ ) =
{
ζ0(τ ), 0 � τ < τon,

ζ0(τ ) + εζ1(τ ), τ � τon.
(D16)

Thus, the initial conditions for Eq. (D1) are ζ (τon) = ζon and dζ

dτ
(τon) = ũon. Currently, τon = 3πηeffaIton/mI is another fitting

parameter and the value that correspond to ζon = zon/aI used in Fig. 3(b) is chosen. Then, ũon = uonmI/3πηa2
I can be obtained

from the solution of the floating model after specifying τon. Then, after ignoring the higher-order terms

ζ0(τon) + εζ1(τon) = ζon (D17)

dζ0

dτ
(τon) + ε

dζ1

dτ
(τon) = ũon. (D18)
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Equation (D18) must be valid for all ε close to zero. Nevertheless, assuming some fluctuations in Fel one can allow dζ1(τon)/dτ

to have some finite but small value u1,on. Therefore, the initial conditions can be written as

ζ0(τon) = ζon, ζ1(τon) = 0, (D19)

dζ0

dτ
(τon) = ũon,

dζ1

dτ
(τon) = u1,on. (D20)

With this initial condition, C1 and C2 in Eq. (D15) can be expressed as

C1 = 1

ζa(τon)

[
−ζb(τon)

∫ τ

τon

ζa(τ )ζ0(τ ′)
W [ζa(τ ′), ζb(τ ′)]

dτ ′ − C2ζb(τon) − ζa(τon) log ζb(τon)

]
, (D21)

C2 =
ζb(τon)

[
ζa (τon )ζ0(τon )

W (ζa(τon ),ζb(τon )) + ∫ τ

τon

ζa(τ )ζ0(τ ′ )
W (ζa (τ ′ ),ζb(τ ′ )) dτ ′] + log ζb(τon)

[
ζ ′

a(τon) − ζa(τon)
]

ζb(τon) − ζ ′
b(τon)

+
ζ ′

b(τon)
[

ζa(τon )
ζb(τon ) − ∫ τ

τon

ζa(τ )ζ0(τ ′ )
W [ζa(τ ′ ),ζb(τ ′ )] dτ ′] − u1,on

ζb(τon) − ζ ′
b(τon)

, (D22)

where ζ ′
a = dζa/dτ and ζ ′

b = dζb/dτ . Then, we can solve Eq. (D3) with ũ0 as its initial condition (τ = 0). Then at τon we solve
Eq. (D2) with Eqs. (D19) and (D20) as initial conditions and stitch this with the solution of Eq. (D3).
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