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Rotating hematite cube chains
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Recently a two-dimensional chiral fluid was experimentally demonstrated. It was obtained from cubic-shaped
hematite colloidal particles placed in a rotating magnetic field. Here we look at building blocks of that fluid by
analyzing short hematite chain behavior in a rotating magnetic field. We find equilibrium structures of chains
in static magnetic fields and observe chain dynamics in rotating magnetic fields. We find and experimentally
verify that there are three planar motion regimes and one where the cube chain goes out of the plane of the
rotating magnetic field. In this regime we observe interesting dynamics—the chain rotates slower than the
rotating magnetic field. In order to catch up with the magnetic field, it rolls on an edge and through rotation
in the third dimension catches up with the magnetic field. The same dynamics is also observable for a single
cube when gravitational effects are explicitly taken into account.
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I. INTRODUCTION

At room temperature hematite is a weak ferromagnetic
material with an unorthodox magnetization orientation: For
cubic-shaped hematite particles the magnetic moment with a
cube’s diagonal makes an angle 12◦ (see Fig. 1) in the plane
defined by two diagonals [1,2]. Thus, leading to interesting
physical effects. In static magnetic field and low concen-
trations cubic shaped hematite particles arrange in kinked
chains [1,2]. If concentration is increased [3,4], then swarms
are formed. If we let a lot of swarms interact, then we can
observe a two-dimensional (2D) chiral fluid in a rotating mag-
netic field [5]. The chiral fluid consists of individual cubes
and short hematite chains (usually two and three cube chains)
which are interacting in a rotating magnetic field [4].

In the scientific literature there are also other interesting
experiments with hematite colloids formed by cubic particles.
In Ref. [6] authors investigated application of cube-shaped
hematite microrobots for microblocks and impurities sweep in
blood vessels. There approximately 2-μm-large cube-shaped
hematite particles were guided by the rotating magnetic
field through introduced rolling motion. They showed that
hematite cubes can overcome obstacles and push small ob-
jects. Motile structures formed by microrollers which were
created by micron-sized polymer colloids with embedded
hematite cubes were demonstrated in Ref. [7]. In Ref. [8]
authors demonstrated targeted assembly and synchronization
of self-spinning microgears or rotors made of hematite cubes
and chemically inert polymer beads. In Ref. [9] was investi-
gated a potential application of hematite colloidal cubes for
the enhanced degradation of organic dyes. In Ref. [10] were
examined the formations of light activated two-dimensional
“living crystals.”

In this article we investigate the building blocks of chi-
ral fluid demonstrated in Ref. [5], i.e., individual cube and
short hematite chain behavior in a rotating magnetic field.
We perform analytical calculations and simulations which we
later confirm with experiments. To determine how important

gravity effects are two models were developed, one with ex-
plicit gravity treatment and one without.

The content of the paper is divided into five sections.
Section I is an introduction followed by Sec. II, where theoret-
ical methods are described. The theoretical and experimental
results are given in Sec. III and Sec. IV, respectively, and
conclusions in Sec. V. This article also contains an Appendix,
where equation of planar motion for a two-cube chain is
derived and Supplemental Material (videos) better illustrate
different motion modes.

II. THEORETICAL METHODS

To theoretically describe the behavior of hematite chains
in a rotating magnetic field we use a microscopic model
where motion of each hematite particle is described. The
equations of motion (EOMs) are derived using the Newton
mechanics approach. Only the essential forces are introduced
to keep the number of parameters minimal and ease interpre-
tation. For each hematite cube in an external homogeneous
magnetic field �B with magnetic moment �m, mass m, and
moment of inertia tensor I , the force and torque balance is
considered. From the force balance (two-particle forces are
shown in Fig. 2) we obtain that

m j
d

dt
�v j = �F HD

j +
∑

i

( �F mag
i j + �F steric

i j

)
, (1)

where �F HD
j is the hydrodynamics force acting on the particle

j, �F mag
i j is the magnetic force produced by particle i, and �F steric

i j
is the reaction force that ensure that particles do not overlap.
The corresponding equation obtained from torque T balance
then reads

I j
d

dt
�� j = �mj × �B + �T HD

j +
∑

i

( �T mag
i j + �T steric

i j

)
, (2)

where �mj × �B is magnetic torque produced by the external
field and �T HD, �T mag, and �T steric are corresponding torques
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FIG. 1. Orientation of magnetic moment in a hematite cube. The
angle φ = 12◦ is in the plane defined by two diagonals and the
magnetic moment μ points to the face.

of forces in Eq. (1). Later, in order to explicitly incorpo-
rate gravity effects in the model, we add the buoyancy force
�F b

j = (ρh − ρs)ga3
0, the reaction force �F wall

j , and torque �T wall
j

with the bottom of capillary acting on each particle. Here
g = 9.81 m/s2 is the gravitational acceleration, a0 ≈ 1.5 μm
is the edge length of a hematite cube, and ρh = 5.25 g/cm3

and ρs = 1.00 g/cm3 are densities of hematite and solvent,
which in our case is water. However, in this work we do
not consider any other forces like friction between cubes and
between a cube and capillary or thermal fluctuations.

Note that, in the general case, the knowledge of � at
a specific time point is not sufficient to determine the ori-
entation of the particle. Thus, for nonspherical objects, we
lack information to calculate reaction forces and torques that
ensure that particles do not overlap. To overcome this issue
rotational matrices or quaternions at each time step have to be
calculated [11,12]. Here we choose to use quaternions qi [13]
as this approach requires us to calculate time evolution of less

FIG. 2. Forces acting on a two-cube chain.

dimensional quantity and equation of motion,

d

dt
qi = 1

2

⎛
⎜⎜⎜⎝

0 −�i
z �i

y �i
x

�i
z 0 −�i

x �i
y

−�i
y �i

x 0 �i
z

−�i
x −�i

y −�i
z 0

⎞
⎟⎟⎟⎠qi = Q(�i )qi, (3)

is always stable [11,12], unlike the EOM for Euler an-
gles. The quaternion is a four-dimensional quantity that
satisfies the normalization condition and provides a conve-
nient representation of spatial orientations and rotations of
elements in three-dimensional space (corresponds to a rota-
tion matrix), e.g., rotation around the axis u = (ux, uy, uz )
by an angle θ can be expressed with quaternion q =
(ux sin θ

2 , uy sin θ
2 , uz sin θ

2 , cos θ
2 ). Note that the angular ve-

locities in the laboratory frame are used. Quaternions are
implemented using scalar last notation as internally stored in
a C++ template library for linear algebra Eigen [14].

For the experimental conditions [4,5] we are interested in,
it turns out that corresponding Reynolds numbers Re � 1
and inertial terms are negligible (m d

dt �v � �F HD). Thus, for
our calculation we neglect inertial terms and use the Stokes
approximation. For hydrodynamics forces and torques, to
keep equations analytically analyzable, we use a linear ve-
locity drag approximation which for a cubic shaped particle
reads [15]

�F HD
j = −ξv j ; ξ ≈ 3πηa0 · 1.384; (4)

�T HD
j = −ζ� j ; ζ = πηa3

0 · 2.552, (5)

where η = 1.0 mPa s is the viscosity of the solvent, which in
our case is water, and ξ and ζ are drag and rotational drag
coefficients respectively.

To calculate particle magnetic interactions as in Ref. [2] we
use the dipole approximation since qualitatively the results are
the same [2], despite the fact that quantitative differences in
specific arrangements are up to 18%. The magnetic-magnetic
particle interaction expressions for the force and torque read

�F mag
i j = 3μ0m2

4πr4
i j

F̃ mag
i j ; �T mag

i j = 3μ0m2

4πr3
i j

T̃ mag
i j ; (6)

F̃ mag
i j = r̂i j (m̂i · m̂ j ) + m̂i(r̂i j · m̂ j )

+ m̂ j (ri j · m̂i ) − 5r̂i j (r̂i j · m̂i )(r̂i j · m̂ j ), (7)

T̃ mag
i j = (r̂i j · m̂i )(m̂ j × r̂i j ) + 1

3
(m̂i × m̂ j ), (8)

where ri j is the vector between the ith and jth particle cen-
ters (shown in Fig. 2), μ0 = 4π · 10−7 H/m is the magnetic
permeability of vacuum and quantities with˜denoting dimen-
sionless variables apart from unit vectors, which are denoted
with ,̂ e.g., ri j = ri j r̂i j .

Already-mentioned reaction forces �F steric
i j and correspond-

ing torques �T steric
i j are added to avoid cube overlap. The results

do not depend on the choice of exact expression for reaction
forces whenever the model for reaction forces is reasonably
chosen. Therefore, here we use some power function which
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FIG. 3. Reaction forces between two cubes. The schematic view
of the two-particle chain from above. As a cube lies on an edge, the
projection to the base is a rectangle with sides a0 and

√
2a if the tilt

angle (the angle between the base and cube’s face) is 45◦.

has only a repulsive part

�F steric
i j = 3μ0m2

4πa4
0

F̃ steric
i j ; �T steric

i j = 3μ0m2

4πa3
0

T̃ steric
i j ; (9)

F̃ steric
i j = A

a2
0

{[
1

1 − 4θH ( a
a0

− 1)

]13

− 1

}
F̂ steric

i j ; (10)

T̃ mag
i j = �d

a0
× F̃ steric

i j , (11)

where θH is Heaviside step function, A is the area with which
cubes touch, and quantities a and �d are defined in Fig. 3. This
approach to calculate reaction forces and torques becomes,
however, computationally very demanding for nonplanar mo-
tion, especially if one takes into account that particles used in
experiments are with rounded corners, i.e., superballs [1–3].
Thus, to ease the computational task we reconstruct su-
perballs out of spheres and calculate reaction forces as in
Refs. [2,16]. Each cube we replace with 93 spheres as in
Ref. [2] and calculate repulsion forces for every sphere with
every sphere of other cube’s. For steric repulsion we are using
Weeks-Chandler-Anderson potential [17]. Also in a similar
way we calculate reaction forces with the bottom of capillary
for the model with gravity.

Combining all expressions the EOM for dimensionless
variables read

ṽ j = ks
∑

i

(
1

r̃4
i j

F̃ mag
i j + F̃ steric

i j

)
,

�̃ j = m̂ j × B̂ + s
∑

i

(
1

r̃3
i j

T̃ mag
i j + T̃ steric

i j

)
,

d

dt̃
q j = Q(�̃i )q j,

(12)

where nondimensionalization for time t̃ = ζ t
mB and distance

r̃i j = ri j

a0
is used leading to dimensionless variables ṽ = vζ

mBa0

and �̃ = �ζ

mB . The EOM has two controlparameters s and k,
from which only

s = 3μ0m

4πa3
0B

≈ 6.6
Bc

B
; Bc ≈ 0.1 mT (13)

FIG. 4. The magnetic moment in rotating magnetic field.

is adjustable in experiments by changing the magnitude of the
external magnetic field. The parameter

k = ζ

a2
0ξ

≈ 0.614 (14)

is drag coefficient ratio and thus is fixed in experiments.
In the case of gravity we have one additional parameter,

Gm = 4π (ρh − ρs)ga7
0

3μ0m2
, (15)

which is the ratio of buoyant forces to magnetic forces. The
EOMs in this case read

ṽ j = ks
∑

i

(
1

r̃4
i j

F̃ mag
i j + F̃ steric

i j

)

+ ks
(
Gmĝ + F̃ wall

j

)
,

�̃ j = m̂ j × B̂ + s
∑

i

(
1

r̃3
i j

T̃ mag
i j + T̃ steric

i j

)

+ sT̃ wall
j ,

d

dt̃
q j = Q(�̃i )q j . (16)

III. THEORETICAL RESULTS

A. Single particle

If we we assume that magnetic field rotates in the plane par-
allel to the boundary (in the xy plane), i.e., B̂ = cos(ω̃t̃ )ex +
sin(ω̃t̃ )ey with ω̃ = ωζ

mB , for a single cube (all other cubes
are sufficiently far away) and no gravity effects, then the
equations read

ṽ = 0, (17)

�̃ = m̂ × B̂. (18)

There is no dependence on control parameters s and k as well
as on the shape of the particle.

It is beneficial to introduce two angles θ and α (see Fig. 4)
to describe the motion of the cube; α is the angle the magnetic
moment makes with the plane of external magnetic field and
θ is the angle which the magnetic moment’s projection in the
plane of the rotating magnetic field makes with x axis. In
this case m̂ = cos(θ ) cos(α)ex + sin(θ ) cos(α)ey + sin(α)ez

and the angular velocity can be expressed as �̃ = m̂ × ˙̂m.
The EOMs, which previously were derived in Ref. [18], for
a single cube in this case reads

α̇ = cos(ω̃t̃ − θ ) sin(α), (19)

θ̇ = sin(ω̃t̃ − θ )/ cos(α). (20)
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FIG. 5. A phase portrait of single magnetic cube in rotating mag-
netic field calculated using Eqs. (21) and (22) with ω̃ = 0.5. The
time evolution of two particular trajectories (red and green) is plotted
below. Gravity effects are not taken into account.

To analyze this equation it is beneficial to introduce the lag
angle β = ω̃t̃ − θ as for variable β unlike for θ there are fixed
points. The OEM for the lag angle reads

α̇ = − sin(α) cos(β ), (21)

β̇ = ω̃ − sin(β )/ cos(α). (22)

The Eqs. (21) and (22) has four stationary points
P(α, β ): P1 = {0, asin(ω̃)}, P2 = {0, π − asin(ω̃)} and P3 =
{acos(1/ω̃), π

2 }, P4 = {−acos(1/ω̃), π
2 }. The first two fixed

points exist if |ω̃| � ω̃c and the last two when |ω̃| � ω̃c, where
the critical frequency ω̃c = 1.

If |ω̃| < 1, then there are two stationary points, P1 and
P2. As one can see from Fig. 5, point P1 is stable and P2

unstable, thus acting as a sink and source. Independent of
initial conditions after some transition time stationary point P1

is reached. Any perturbation is suppressed. The cube rotates
synchronously with the frequency of the external magnetic
field and the magnetic moment is in the plane of the rotating
magnetic field. It lags the direction of the magnetic field by
an angle β j = asin(ω̃). By increasing frequency the points P1

and P2 move closer to each other and at |ω̃| = 1 coincide and
for |ω̃| > 1 disappear.

Situation gets more interesting when |ω̃| > 1. In this case
there are also two stationary points P3 and P4. However, both
points P3 and P4 are neutrally stable and act as centers for
rotation, as one can see from the Fig. 6. No stationary solution
is possible except points P3 and P4, and the system can reach

FIG. 6. A phase portrait of single magnetic cube in rotating mag-
netic field calculated using Eqs. (21) and (22) with ω̃ = 1.5. The
time evolution of two particular trajectories (red and green) is plotted
below. Gravity effects are not taken into account.

P3 and P4 only if it initially was there. Depending on the initial
condition, two scenarios are possible. One option is that both
angles periodically oscillate. The other option is that there
is rotation around one of the stationary points. This means
that in the first case the motion is not anymore synchronous
with the external magnetic field and we observe back-and-
forth motion [19] where the magnetic moment can be out of
the plane of rotation. In the second case we observe preces-
sion of the magnetic moment. The motion is asynchronous
except for stationary points P3 and P4. The motion modes
(synchronous rotation, precession of the magnetic moment,
and back-and-forth rotation arranged from left to right) are
shown in Video1 [20] in rotating frame, which is rotating with
the magnetic field (top row) and laboratory frame (bottom
row). Synchronous rotation and precession is easier identified
in the rotating frame but back-and-forth rotation in the labora-
tory frame. Note that cube can be rotated by an arbitrary angle
around an axis parallel to the magnetic field.

From Fig. 6 it follows that if the magnetic moment is
initially in the plane of the rotating magnetic field, then it will
always remain there. As this situation is analytically solvable
we examine it in more detail.

When one limits β j ∈ [−π, π ] then

β j = 2atan

[
1 + √

ω̃2 − 1 tan
(√

ω̃2 − 1 t̃−t̃0
2

)
ω̃

]
, (23)
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FIG. 7. The time evolution after transition period of orientation
angle θ and lag angle β for α = 0 calculated using Eqs. (21) and (22)
with ω̃ = 2/

√
3, which corresponds to Wn = 1.

with period T̃ = 2π√
ω̃2−1

. The cube oscillates forth and back
and during one period makes

Wn = 1

2π

∫ T̃

0
d θ j = 1

2π

∫ 2π

0

θ̇ j

β̇ j
d β j = |ω̃|√

ω̃2 − 1
− 1

(24)

winds around its axis of rotation which is perpendicular to
the plane of the rotating magnetic field. The particular tra-
jectory for the rotational field frequency ω̃ = 2/

√
3, which

corresponds to Wn = 1, can be seen in Fig. 7. When Wn > 1,
then lag angle β increases faster than orientation angle θ . The
opposite is observed if Wn < 1.

Gravitation

Due to an unorthodox orientation of magnetic moment in
a hematite cube, if the magnetic moment is in the plane of
the rotating magnetic field, then cube lies on an edge [2].
Thus, it is not the minimum of potential gravitational energy.
Therefore, if maximal gravitational torque T max

g = (ρh−ρs )ga4

2

is larger than maximal magnetic torque T max
m = MBa3, then

the cube lies on a face and the magnetic moment is al-
ways out of the plane of the rotating magnetic field. For
hematite cube with a ≈ 1.5 μm, density ρh = 5.25 g/cm3,
solvent density ρs = 1.00 g/cm3, and permanent magnetiza-
tion M = 2.2 × 103 A/m (m = Ma3) one finds that T max

g >

T max
m if B < 15 μT. This is much smaller magnetic field than

those used both here and in earlier experiments [4,5]. We
use Bexp ∈ [0.3; 3] mT. However, as gravitational effects may
change dynamics, especially of neutrally stable points P3 and
P4, we examine them in detail.

To do so we add to our model the buoyancy force F b and
the reaction force F wall and torques T wall with the bottom of
capillary and solve Eq. (16) with fixed values k = 0.614 and
s = 0.94. Note that even for a single cube to calculate reac-
tion forces and torques we solve the equation for quaternion
Eq. (12), and thus we are evolving in time a seven-dimensional
object (three coordinates and four components of quaternion).
Although, only five of them change in time as (x and y) remain
fixed as we do not have friction nor vertical walls.

Gm

edge

corner

face

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5
=0.1
=0.9

FIG. 8. Stationary solutions for angle α at ω̃ = 0.1 and ω̃ = 0.9
for increasing gravity parameter Gm, obtained from long-time solu-
tions of Eq. (16) with k = 0.614 and s = 0.94 and for fixed gravity
parameter Gm. In synchronous rotation cube with rounded corners
can rotate on a corner, face, or edge.

For the shape of hematite cubes used in experiments
(superballs—cubes with rounded corners) one finds that dy-
namics gets more complicated. From our simulations we see
that an individual cube with rounded corners rotates on an
edge, face, or corner or undergoes a complicated 3D motion
(will be discussed later in this section). The critical value
of ω̃, which separates the synchronous motion of cube from
asynchronous, changes to ω̃c = | cos(α)| in the case when a
cube rotates on the face and magnetic torque cannot overcome
gravitational one. Note that here we neglect stationary points
P3 and P4, as starting from random initial conditions the prob-
ability to reach them is zero.

For ω̃ < ω̃c there are three possibilities: a cube rotates on
the edge, face, or corner (see Video2 [20]). The magnetic mo-
ment is in the plane of the rotating field only if the cube rotates
on the edge. The stationary solutions for angles α and β with
increasing gravity parameter Gm are shown in Figs. 8 and 9.
From Fig. 8 one finds that for weak gravity there are two
stationary solutions of synchronous rotation. Cube as before
can rotate on an edge with magnetic moment in the plane of
rotations or on a corner with magnetic moment pointing out
of the plane of rotating magnetic field. Whether a cube rotates
one a corner or edge depends on the initial conditions and ω̃.

Gm
0.0 0.2 0.4 0.6 0.8 1.0

1.125

1.150

1.175

1.200

1.225

1.250
=0.9

edgecorner

face

FIG. 9. Stationary solutions for lag β at ω̃ = 0.9 for increasing
gravity parameter Gm for the same parameter values as Fig. 8.
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FIG. 10. Four different long time periodic solutions of Eq. (16)
for ω̃ > ω̃c, k = 0.614, s = 0.94, and Gm = 0.01 of the asyn-
chronous motion projected in the α-β plane. The top row correspond
to back-and-forth motion and precession obtained by solving
Eq. (12) with Gm = 0.01 and ω̃ = 1.5 with the same initial con-
ditions as in Fig. 6. In the bottom row the long-time solution’s of
Eq. (12) with ω̃ = 0.9, Gm = 0.86, and Gm = 0.94 projection to α-β
plane are shown. Note as we present projections, trajectories can
cross themselves. The motion of the cube for these modes can be
seen in Video3 [20].

At some point the rotation on the edge becomes unstable and
the cube starts to rotate on the corner. This happens faster the
larger is the rotational frequency. The momentum goes out
of the plane of the rotating magnetic field. The angle α for
fixed gravity parameter depends on the shape of the cube (how
much corners are rounded) and rotation frequency ω̃. If the
gravity parameter is increased, then the cube starts to rotate on
the face. For ω̃ > 0.81 there is again a region where rotation
on the edge becomes the only stable solution. The reason
is that in this interval, the magnetic moment can no longer
balance the gravitational moment when the cube rotates on a
face but can when the cube rotates on an edge. This is the
case because the magnetic torque is smaller when the cube
rotates on a face. For ω̃ = 0.9 and Gm > 0.83 synchronous
motion is no longer observed. There the motion, which is a
blend of back-and-forth motion and precession, is observed.
This motion is described in the next paragraph.

In the case when ω̃ > ω̃c there are no new stationary points
except P3 and P4, which as follows from Fig. 6 still remain
neutrally stable. This is a bit unexpected as a small parasitic
static magnetic field which is perpendicular to the rotating
magnetic field leads to a situation where neutrally stationary
points become stable [18]. As one can see in Fig. 10, back-
and-forth motion and precession are still observable (top row)
as in the case without gravity. However, the oscillation ampli-
tude for angle α is now larger as figures on the top row are
obtained from the same initial conditions as the red and green
trajectory in Fig. 6. There only values of gravity parameter
Gm from Gm = 0 to Gm = 0.01 were changed. Increasing the
parameter Gm even more leads to a larger amplitude for α.
At some point precession becomes unstable and we observe
more complicated 3D motion instead (bottom row in Fig. 10).

Initially a cube rotates on the face. The lag increases, but
instead of back motion to catch up with the magnetic field,
the cube rolls and trough rotation in third dimension catches
up with the magnetic field. In fact this motion is a blend of
back-and-forth motion and precession (to better understand
different modes, see Video3 [20]). There are two different
modes of this complicated dynamics where the magnetic mo-
ment rotates around both fixed points or only around one (left
and right figures in the bottom row of Fig. 10, respectively).
The left mode is observed for smaller values of Gm.

B. Two particles

For the two-particle case the full system of equations has
to be solved Eq. (16) and the solution depends on control
parameters s, k, and Gm. A 14-dimensional quantity has to
be evolved in time. There are four different long-time-limit
scenarios possible. If the hematite particles are sufficiently
far, then they rotate independently as described in previous
subsection. The other possibilities are that cubes form a stable
chain or an asymmetric-chain where particles have different
types of motion, e.g., one particle rotates on an edge, but other
on a face (see Video4 [20]). The fourth possibility is that
particles undergo motion, where at times a chain is formed
which then breaks. The long-time trajectories, in the last two
cases, strongly depend on initial conditions.

In a static external magnetic field two hematite cubes form
a straight chain [2]. If the external magnetic field is larger than
≈0.1 mT (magnetic field is perpendicular to the gravity), then
the magnetic moments of cubes are parallel to the external
magnetic field. In this case cubes lie on an edge and the tilt
angle (the angle between the base and cube’s face) is close to
45◦ [1,2]. In a very slowly rotating magnetic field such a chain
should rotate with almost no lag. By increasing the rotational
frequency the configuration changes and the lag increases.
Unlike a single cube, a two-cube chain cannot rotate on a
corner, due to geometric restrictions. Note that for a two-cube
chain, if it rotates on an edge, then the magnetic moment
does not have to be in the plane of the magnetic field, as the
reaction torque between particles can balance a component of
the magnetic torque. However, for values of gravity parameter
Gm used in our experiment the magnetic moment is in the
plane of the rotating magnetic field. For a two-cube chain
also asynchronous motion is observed. But there may exist a
frequency interval where the chain undergoes disassembly and
reassembly motion. This is the case when chain breaks with
increase of rotation frequency before back-and-forth motion
can happen.

For two-cube chains also in asynchronous regime not all
modes of a single cube motion are present due to geometric
restrictions. We do not observe precession of the magnetic
moment. Due to the same reason for back-and-forth mo-
tion the oscillations of the angle α are suppressed whenever
magnetic moments of individual cubes are synchronized. Sur-
prisingly, we still observe complicated 3D dynamics where
initially the chain rotates and lag increases, but instead of
back motion to catch up with the magnetic field, the chain
rolls and catches up with the magnetic field through rotation
in the third dimension. But unlike for a single cube this mode
is only stable for small values of Gm < 0.15. For this mode
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a

b

FIG. 11. Schematic view of two-particle chain from above.

not only the magnetic moment goes out of plane, but cubes are
periodically on top of each other (see Video5 [20]). We call it
asynchronous out-of-plane rotation. This mode also should be
experimentally easily distinguishable as the chain’s length vis-
ible in a microscope changes significantly (ratio of maximal to
minimal length is almost two). For Gm > 0.15 this mode is no
longer observable. Then one observes back-and-forth motion
of the asymmetric chain where one cube rotates more on an
edge but the other more on a face (see Video4 [20]).

If we consider only experimental conditions (Bexp ∈
[0.3; 3] mT and a0 ≈ 1.5 μm), then for a two-cube chain there
are four regimes of motion. Cube motion for those modes
is shown in Video6 [20]. Three of them are planar motion
regimes: solid-body motion, back-and-forth motion, and peri-
odic chain disassembly and reassembly. For the fourth regime
the cube-chain goes out of the plane of magnetic field. During
motion the chain rotates slower than the rotating magnetic
field and, in order to catch up with the magnetic field, it
rolls on an edge and through rotation in the third dimension
catches up with the magnetic field. This mode is a blend of
back-and-forth motion and precession. To give insight into
how this motion should look from an experimental perspective
the reader can examine Video7 [20], where cubes have been
lifted to make shadows better visible.

Planar motion with α = 0

For planar motion, the results are independent of the value
of Gm, unless chain rotates on the face. As long as two cubes
form a chain, moments of cubes are synchronized θ1 = θ2 =
θ . Therefore, the chain can be effectively described with two
parameters: angle θ and horizontal displacement of cube’s
centers—shift b which are defined in Fig. 11.

The EOM for this case is derived in the Appendix. The
actual expressions are quite complicated, but in the case when
there exists a stable stationary solution for b, from Eq. (A10)
one obtains that there is a stationary solution for the lag
β = ω̃t̃ − θ ,

β̇ = ω̃

(
1 + 1 + b̃2

4k

)
− sin(β ), (25)

where b̃ = b/a0.
The critical frequency ω̃c above which no stationary solu-

tion for the lag angle may exist is

ω̃c = 4k

4k + 1 + b̃2
< 1. (26)

FIG. 12. The horizontal cube center displacement b̃ vs. rotation
frequency ω̃ for a two-cube chain, calculated using Eq. (12). The
shape of the curve is determined by the product of s and k; however,
the ω̃c according to Eq. (26) depends on both parameters s and k.
Thus, red and blue curves overlap, but the blue curve extends further
as |ω̃c| is larger for the blue curve. The positive value of ω̃ means
counterclockwise rotation while negative corresponds to clockwise
rotation.

Note that below critical frequency there still may exist a
region where a chain disassembly and reassembly motion is
observed. Thus, two additional frequencies ω̃s and ω̃a are
introduced. The ω̃s is the maximal frequency until which the
chain rotates synchronously with the external magnetic field
and ω̃a is the minimal frequency when asynchronous back-
and-forth motion is observed. When ω̃s �= ω̃a this means that
there is a region where a chain disassembly and reassembly
motion is observed. If ω̃s = ω̃a ⇒ ω̃s = ω̃c = ω̃a.

For a particular cube chain the critical frequency differs for
a clockwise and counterclockwise rotational direction of the
magnetic field (depends on the sign of ω̃). If, for the configura-
tion visible in Fig. 11, the rotation speed is increased when the
two-particle chain rotates clockwise, then the shift b̃ reduces.
The opposite, however, happens when the two-particle chain
rotates counterclockwise as one can see Fig. 12. This means
that for clockwise rotation shift b̃ is smaller than for counter-
clockwise rotation. Therefore, as follows from Eq. (26), the
critical frequency is larger for the clockwise case. This breaks
the symmetry. However, there exists the other two-particle
configuration (see Fig. 13), which is observable with the same
probability [2]. For this configuration the critical frequency
is larger for the counterclockwise case. This guarantees that
on average the observations are the same for both directions
of the rotations. Therefore, without loss of of generality, only
the configuration shown in Fig. 11 is analyzed. For the second
configuration, which is shown in Fig. 13, one obtains the same
dynamics as for the first if rotation direction (the sign of ω̃) is
reversed.

Overall, if two particles are not too far apart, then there are
three regimes for long-time dynamics. For the value of k =
0.614 they are shown in Fig. 14. There in region I (|ω̃| < |ω̃s|),
chain rotates as a solid object with the frequency of rotating
field. In region II (|ω̃| > |ω̃a|) the back-and-forth motion is
observed. In this case the shift b̃ is no longer constant but
periodically oscillates. The trajectories in the case of s = 0.94,
k = 0.614, and |ω̃| = 0.8 are shown if Fig. 15. The oscil-
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a

b

FIG. 13. Schematic view from above of the second two-particle
chain chain configuration. There is a 50% chance that cubes arrange
in this configuration.

FIG. 14. Borders of long-time dynamics regimes of Eq. (12) for
k = 0.614 using dimensionless variables (top row) and dimensional
variables for comparison with experiment (bottom row). Regions
I, II, and III correspond to the solid body rotation, back-and-forth
motion, periodic chain disassembly and reassembly motion regimes,
respectively. The positive value of ω̃ denotes counterclockwise rota-
tion while negative corresponds to clockwise rotation.

FIG. 15. The time evolution after transition time of horizontal
cube center displacement b̃ calculated using Eq. (12) with s = 0.94,
k = 0.614, and |ω̃| = 0.8. The positive value of ω̃ denotes counter-
clockwise rotation while negative corresponds to clockwise rotation.

FIG. 16. Dependence of maximal rotation frequency |ω̃s| when
chain rotates as solid object vs number of hematite particles in a
chain. The points are calculated from Eq. (12) with s = 0.94 and
k = 0.614. The positive value of ω̃ means counterclockwise rotation
while negative corresponds to clockwise rotation.

lation amplitude for b̃ is always larger for counterclockwise
rotation of magnetic field and, in general, reduces by increas-
ing rotational frequency. In region III (|ω̃s| < |ω̃| < |ω̃a|) of
parameters the chain breaks. After some time the chain can
reassemble, but it will break again. We observe a periodic
disassembly and reassembly of a chain, and thus the long time
trajectory is periodic; however, it strongly depends on initial
conditions. In the case of positive ω̃ as thermal fluctuations
are present in the experiment, it can happen that during this
motion cubes rearrange in the second configuration (Fig. 13)
as in this case the second configuration is energetically
favorable.

C. More than two particles

In this case, depending on how particles are distributed,
several chains may be formed which undergo more or less
independent motion. When a single chain is formed there are
the same three planar motion regimes. The regime where the
cube chain goes out of the plane of rotation magnetic field is
observable for chains consisting of up to four particles. For
planar motion qualitatively we obtain the same diagram as
in Fig. 14 only region III increases and both region I and
region II become smaller with increasing number of parti-
cles. For the fixed values of s and k the |ω̃s| decreases with
increasing number of particles N in the chain, as shown in
Fig. 16. For maximal chain length which is observed we
obtain that N ∝ 1√|ω̃| . This is the same relation as for paramag-
netic spherical particles with and without anisotropy [21–23].
Concerning chain shape a similar effect to bending of chains
of spherical paramagnetic particles [21–26] is observed, but
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FIG. 17. Configuration of 10 particle chains (from left to right),
which is in a counterclockwise rotating magnetic field, a static
magnetic field, and a clockwise rotating magnetic field. The config-
urations are obtained from Eq. (12) with s = 0.94 and k = 0.614. In
the case of the rotating magnetic field, the frequency |ω̃| is just below
|ω̃s|. If |ω̃| is increased, then the chains break.

the shape is quite different and depends on rotation direction
(see Fig. 17).

The opposite behavior is observed for |ω̃a|, and thus also
region II becomes smaller with increasing number of particles
in a chain N . The value of |ω̃a| for larger N becomes very
large. Therefore it is expected that for larger chains the asyn-
chronous regime is not observed experimentally as we are far
away from the validity region of our model.

As for two-particle chains, also here we observe that for
a particular chain the behavior depends on rotation direction.
For a 10-particle chain shown in Fig. 17 we observe that crit-
ical frequency |ω̃a| is more than two times larger in the case
of clockwise rotation. Visually, the configuration also looks
different. However, when a chain breaks, it always breaks in
the middle. If there are an even number of particles in the
chain, then the chain breaks into two chains with N

2 particles
in each. If there is an odd number of particles in the chain,
then it breaks into three parts with N−1

2 , 1, and N−1
2 particles

in each. The long-time solution, as for two-particle chains, is
a periodic disassembly and reassembly of chain and trajectory
is strongly initial condition dependent. However, for particle
concentrations and the frequency range of the rotating mag-
netic field used in experiment, we do not observe formation of
small agglomerates (4–10 particles) after a chaotic transition
period as for paramagnetic particle chains [27].

IV. EXPERIMENTAL RESULTS

Behavior of two hematite cube chains in a rotating mag-
netic field is measured experimentally. For this, hematite
cubes are synthesized and characterized following the meth-
ods described in Ref. [4]. The cubes were found to have
edge length a ≈ 1.5 μm and shape factor q ≈ 2.0. The same
sample of hematite cubes was used in all experiments. Mixing
of the sample and restoration of chemical composition needed
for pH level and suspension stability was done before each
experiment.

The hematite samples were contained in glass capillaries
with 100-μm thickness filled with liquid. The observation
was done with a microscope (Leica DMI3000B) equipped
with a camera (Basler ac1920-155um, up to 250 frames
per second) using an oil immersion objective with 100×
magnification. Image acquisition was done with the

FIG. 18. Coil system and microscope setup used in experimental
work. A, coil system; B, placement of field sensor or sample; C,
objective; D, light source (raised).

proprietary camera software while image processing and
analysis was performed with MATLAB. In general terms,
image analysis relied on cross correlating an image of a
single hematite cube to the experimental image, with the
two correlation maximums corresponding to the two cubes
of the dimer. After thus identifying the individual cubes,
information about their distancing and angle between the
axis of the cube chain and the magnetic field could be
obtained. These parameters were then used to classify the
chain configuration (such as planar motion, periodic chain
breakup and reassembly, or out-of-plane motion) and motion
characteristics (correspondence between rotation frequencies
of the chain and magnetic field) as belonging to one of the
rotation regimes as described in Sec. III.

The magnetic field was generated by three pairs of coils,
powered by dc current sources (KEPCO) that are controlled
by a NI DAQ card using LabView code. The glass capillary
was placed near the point of crossing of the three coil pair
axis (see the scheme of the layout in Fig. 18). To compensate
for parasitic magnetic field sources, such as the Earth or those
associated with laboratory equipment, the field was mea-
sured at the location of the capillary within the microscope.
This was done prior to each experiment, using a mag-
netic sensor (HMC5883 GY-271 3V-5V Triple Axis Compass
Magnetometer Sensor Module for Arduino), obtaining back-
ground field values via Arduino and then accounting for them
in the LabView code. Such a method allows us to define the
magnetic field with a precision B ∈ (0.01; 0.03) mT.

Hematite cube chain rotation was captured as a sequence
of images and accompanying coil current measurements, pro-
viding information about the magnetic field. A sequence of
measurements for one hematite cube chain would involve an
increase or decrease of field rotation frequency at a constant
field magnitude, a change of magnitude at a constant rotation
frequency, or both. Several such sequences are measured for
each pair of particles. Magnetic field was increased and de-
creased continuously to avoid a stepwise supply of energy to
the system. Experimental data presented here was gathered
from 49 dimers and a total of 845 measurements.

Several aspects connected to cube chain rotation analysis
have to be noted. First, experimentally, it is impossible to
measure the angle between the external field and magnetic
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FIG. 19. Relation between angle of rotation for a hematite cube
chain to angle of rotation for magnetic field, in the four regimes of
rotation. For a motion out of the field rotation plane, the curve is not
continuous as when particles are exactly on top of each other chain
rotation angle is not defined.

moment. Instead, we use the lag angle between the external
field and the axis of the cube chain. Second, initial configura-
tion of the cube chain cannot be set, and therefore it has to be
determined. We find it by applying a stationary magnetic field
and observing the angle between the external field and the axis
of the cube chain (see Ref. [2] for more details on the cube
chain orientation in stationary magnetic fields). Due to the
limited frame rate and optical resolution, this configuration
control is repeated not only at the start and end of the mea-
surement series but also during it. We only use measurements,
where the chain configuration has not changed between two
control measurements. Third, in experiments we use rotating
magnetic fields rotating both in clockwise and counterclock-
wise directions, regardless of initial configuration of cube
chains. This is simpler for the experimental sequence control
and allows us to check if there are differences in results de-
pending on the initial configuration and rotation direction.

An insight into the different regimes of rotation as seen
from experimental measurements is provided in Fig. 19. There
the relation for angle of rotation for the magnetic field and
for the hematite cube chain is provided. Based on exper-
imental videos and angle measurements we find the same
four different regimes as in theory (see Sec. III), of which
three are planar rotation and one which is associated with
asynchronous rotation where the chain goes out of the plane
of the rotating magnetic field. From them only the solid-body
regime follows the magnetic field, while rotation frequency
and therefore the rotation angle is lower for all the other
regimes. The solid-body regime is the only one where the
chain rotates synchronously with the magnetic field. Example
pictures of the chain, along with illustrations of chain axis and
field direction, in each of the regimes are given in Fig. 20.

To have a better comparison with theoretical results, the
measurements can be split in two groups, corresponding to
the two directions of rotation for a cube chain configuration
shown in Fig. 11, as was done in Sec. III. In practice it
means that the measurements of the first initial cube chain
configuration with a subsequently applied clockwise field are

FIG. 20. Example images from the four rotation regimes. Cube
motion measured experimentally can be seen in Video8 [20].

combined with the measurements of the second initial position
and a rotating field rotating counterclockwise (the combined
set of data points further referred to as “clockwise equivalent”)
and the opposite (the combination called “counterclockwise
equivalent”).

Using experimental data from angle measurements (as
shown in Fig. 19), we can calculate the average rotation
frequency for a chain and show its dependence on magnetic
field frequency. In Fig. 21 we present experimental results for
four different two cube chains at a fixed B = 1 mT, indicated
by different markers and tracer lines, along with theoretical
predictions. Although the measurement series for each of
the chains look similar to classical rotating rod [28], behav-
ior is more diverse. In particular, more rotation regimes are
present—out-of-plane motion (red symbols) and periodic dis-
and reassembly (not observed for these four chains) comple-
ment solid-body (green) and back-and-forth (blue) rotation
(same colors as in Fig. 20).

The data represented in Fig. 21 provide some insight
into discrepancies between our theoretical understanding and
experimental observations. Data points clearly show that,
although cube chains were selected as similar as visually
possible, there are notable differences in both characteristic
values and rotation regimes. And it is not possible to explain
them with clockwise equivalent (+ and ×) and counterclock-
wise equivalent (triangles) division. Moreover, chains not only
have different critical frequencies at which they stop follow-
ing the solid body rotation regime but also follow different
regimes at the same field and frequency values or change the
regimes several times.

These observations hint that particle size differences within
the known limits for our sample, surface effects, and thermal
fluctuations can cause significant differences in quantitative
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FIG. 21. Experimentally measured average chain (N = 2) rota-
tion frequencies for four different two cube chains at various field
rotation frequencies, B = 1 mT (top figure) compared to the simula-
tion results (bottom figures). Experimental data points for each chain
are marked with one marker and connected with tracer line. Pluses
and crosses are clockwise equivalent and triangles counterclockwise
equivalent. For theoretical calculations in the counterclokwise equiv-
alent case in the frequency range, where there is no solid body
and back-and-forth rotation, periodic dis- and reassembly of chain
is observed. The black line is drawn for comparison purposes and
shows back-and-forth motion in the clockwise equivalent case. Col-
ors represent different rotation regimes as in Fig. 20.

measurements among the different chains, which also goes to
explain the discrepancies from theoretical predictions. Calcu-
lations indicate that a difference in size of 10% between cubes
of the same chain would lead to considerable differences in the
chain’s behavior and critical frequency, compared to a chain
of equally sized cubes. We know the distribution of cube sizes
to exceed that and, while the cube pairs are selected on a basis
of visual inspection to be as similar as possible, it is very
likely that differences in size between cubes of the same dimer
are in many cases significant enough to contribute to differ-
ences in dimer behavior, both comparing several dimers and
experimental results to theoretical. Note that measurements of
out-of-plane regime rotation frequencies should be considered
less reliable than for the other regimes, due to difficulties of
defining an angle when the chain is in near vertical position.
Several points belonging to the out-of-plane regime in Fig. 21
coinciding with the curve of back-and-forth regime data points
is a result of one dimer displaying behavior characteristic of
both regimes at the same field magnitude and frequency. In
such a case, the dimer would rotate as in the back-and-forth

FIG. 22. A phase diagram of the rotation regimes for the counter-
clockwise equivalent (top figure) and clockwise equivalent (bottom
figure) orientation with N = 2 cubes per chain. The areas corre-
sponding to each rotation regime are defined by the extreme points
of that regime.

regime but at a point transition into out-of-plane rotation. This
transition could be driven by thermal fluctuations.

Another reason for discrepancies between theory and ex-
periment in Fig. 21 is that mechanical friction between cubes
is neglected in the theoretic model. When mechanical friction
is taken into account, it is harder for cubes to slide along other
cubes’ faces. This most probably is the reason why in theoret-
ical calculations the out-of-plane motion can be observed for
higher frequencies than in the experiment.

As a result, the information from particle pair rotation
experiments, which can be summarized in two phase dia-
grams, shown in Fig. 22, involve overlapping areas. For better
readability, as a frequency-field pair can correspond to several
measurements, the data points have been offset. The areas cor-
responding to each rotation regime are defined by the extreme
points of that regime.

The phase diagrams reveal that chain breakup in examined
magnetic fields occurs predominantly when rotation hap-
pens in counterclockwise equivalent conditions, as would be
expected from theoretical considerations (Fig. 14). In exper-
imental diagrams one observes that back-and-forth motion,
particle disassembly and reassembly and asynchronous out
of plane rotation slightly overlap with the solid-body rotation
regime. This overlap makes direct quantitative comparison be-
tween experimental phase diagrams and those seen in Fig. 14
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impossible. While there is an overlap between all rotation
regimes, the border between solid body and back-and-forth
regimes are in the vicinity of those for entry into disassembly
and reassembly and asynchronous out-of-plane rotation mo-
tion regimes. In both orientations, a particle chain can only be
reliably expected to remain in planar rotation and not enter
3D motion at high field–low frequency or, conversely, low
field–high frequency conditions.

V. CONCLUSIONS

In the current work we examine a single cube and a short
hematite chain dynamics in rotating magnetic fields. The
investigation is mainly theoretical, but results for two-cube
chains are verified also experimentally. To determine how
important gravity effects are, two models were developed, one
with gravity and one without.

For a single cube one finds that at low frequencies a cube
rotates synchronously with the magnetic field and for higher
frequencies asynchronous motion is observed. During syn-
chronous motion one finds that a cube with rounded corners
can rotate on the edge, corner, or face. The magnetic moment
is in the plane of the rotating magnetic field only if the cube
rotates on an edge. Whether a cube rotates on an edge, corner,
or face depends on the magnetic field strength, frequency, and
initial conditions. In an asynchronous regime without explicit
gravity effects there are two neutrally stable fixed points.
Two modes of motion are observed: precession of magnetic
moment and back-and-forth motion. Including explicit gravity
effects one finds that a new mode of complicated 3D motion
appears. In this motion the cube rotates slower than the mag-
netic field, the lag increases, but instead of back motion to
catch up with the magnetic field, the cube rolls and trough
rotation in the third dimension catches up with the magnetic
field. This mode has two subtypes where a cube rotates around
one fixed point or around both of them.

For a two-cube system some of the motion modes which
were observable for single cube disappear. This happens due
to geometric restrictions. No rotation on an edge and pre-
cession is possible. There appear, however, new scenarios:
two-cube chains can break or asymmetric-chain is formed
where cubes undergo different motion types, e.g., one cube
rotates on a face while other on an edge. If the chain breaks,
then periodic chain disassembly and reassembly is observed.
For an individual chain dynamics depends on the clockwise
or counterclockwise rotation direction of the magnetic field.
However, when averaged over many chains, there is no de-
pendence. The reason for this is that in a large sample there
are with the same probability two chain types. They behave
differently at a given clockwise and counterclockwise rota-
tion direction of the magnetic field. But the first chain’s type
dynamics in a clockwise rotating magnetic field is equal to
the second chain’s type dynamics in an counterclockwise ro-
tating magnetic field. Thus, they balance out this effect and on
average there are no differences.

In the case of small frequencies, the two-cube chain rotates
synchronously with the magnetic field. Chain’s configuration
does not change for a fixed rotation frequency, thus the chain
rotates as a solid body. With increase of the frequency of
the rotating magnetic field two scenarios can happen. Either

chain breaks and enters the mode where we observe periodic
disassembly and reassembly of chain or asynchronous motion
of chain is observed.

The transition to the asynchronous regime for a two-cube
system happens at lower rotational frequencies of the rotating
magnetic field compared to a single cube. For asynchronous
motion depending on initial conditions three modes can be
observed. One is the back-and-forth motion of the chain where
the magnetic moment remains in the plane of the rotating
magnetic field. The second is back-and-forth motion of the
chain with periodical disassembly and reassembly. The third
one is one of two modes: back-and-forth motion of asymmet-
ric chain or motion where the cube chain goes out of the plane
of the rotating magnetic field. There the chain, to catch up
with the magnetic field, rolls on an edge and through rotation
in the third dimension catches up with the magnetic field. The
last mode to our knowledge has not been described before in
scientific literature.

For experimental conditions (Bexp ∈ [0.3; 3] mT and a0 ≈
1.5 μm) for a two-cube chain four regimes of motion are
possible. Three of them are planar motion regimes: solid-body
motion, back-and-forth motion, and periodic chain disassem-
bly and reassembly, and motion where the cube chain goes
out of the plane of the rotating magnetic field. All four modes
were observed, identified in our experiments. Also there was
no indication that there should exist another mode. In ex-
periments, as predicted in the theory part of this paper, one
observes that there are two chain types for which motion
differs for a given clockwise or counterclockwise rotation of a
magnetic field. But the motion dynamics for the first chain
type in case of a clockwise rotation of the magnetic field
is equal with the second chain type’s dynamics in counter-
clockwise rotation. Thus, in a large sample there is no global
dependence on rotation direction as in equilibrium there is an
equal number of particles in each configuration. Theoretical
consideration predicts that an applied field rotating in one
direction could change the balance between configurations;
however, no experimental indications of that are observed.
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APPENDIX: EOM FOR PLANAR TWO-CUBE CHAIN

When two cubes form a chain, moments synchronize and
for sufficiently strong external magnetic fields individual mag-
netic moments align: m1 = m2 = m and thus θ1 = θ2 = θ ,
v1 = v2 = v, and �1 = �2 = �. Planar chain in this case can
be effectively described with two parameters: angle θ and
horizontal displacement of cube’s centers (shift b), which are
defined in Fig. 11.

To derive EOM in this case we are using the Lagrangian
mechanics approach:

d

dt

∂L
∂ ḃ

= ∂L
∂b

− ∂G
∂ ḃ

, (A1)

d

dt

∂L
∂θ̇

= ∂L
∂θ

− ∂G
∂θ̇

, (A2)
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with Lagrangian L and Rayleigh dissipation function
G(v,�) = 1

2

∑
i(ξvi · vi + ζ�i · �i ) = ξv2 + ζ�2. As we

neglect the inertial terms, the Lagrangian reads:

L = −2m · B + μ0

4π

[
m2

r3
− 3

(m · r)2

r5

]
, (A3)

where, following Fig. 11,

B̂ = cos(ωt )ex + sin(ωt )ey, (A4)

m̂ = cos(θ )ex + sin(θ )ey, (A5)

r = D(ḃex + aey), (A6)

�2 = θ̇2, (A7)

v2 = (ḃ − aθ̇ )2 + b2θ̇2, (A8)

where D = (cos(θ − φ0 ) − sin(θ − φ0 )
sin(θ − φ0 ) cos(θ − φ0 ) ) with φ0 ≈ 0.4058.

Thus, the EOM reads:

ξ (ḃ − aθ̇ ) = μ0m2

4π
f1(a, b, φ0), (A9)

ζ θ̇ + ξb2θ̇ − ξa(ḃ − aθ̇ ) = −mB sin(ωt − θ ), (A10)

with

f1(a, b, φ0) = 15b[a sin(φ0) + b cos(φ0)]2

(a2 + b2)7/2

− 6 cos(φ0)[a sin(φ0) + b cos(φ0)] + 3b

(a2 + b2)5/2 .

(A11)

Combining Eq. (A9) and Eq. (A10) it is possible to write also
explicit equations for ḃ and θ̇ .

(ζ + ξb2)θ̇ = −mB sin(ωt − θ )

+ μ0m2

4π
a f1(a, b, φ0), (A12)

ξ ḃ =μ0m2

4π
f1(a, b, φ0) + ξaθ̇ . (A13)
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