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Generalization of Powell’s results to population out of steady state
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Since the seminal work of Powell, the relationships between the population growth rate, the probability
distributions of generation time, and the distribution of cell age have been known for the bacterial population in a
steady state of exponential growth. Here we generalize these relationships to include an unsteady (transient) state
for both the batch culture and the mother machine experiment. In particular, we derive a time-dependent Euler-
Lotka equation (relating the generation-time distributions to the population growth rate) and a generalization of
the inequality between the mean generation time and the population doubling time. To do this, we use a model
proposed by Lebowitz and Rubinow, in which each cell is described by its age and generation time. We show
that our results remain valid for a class of more complex models that use other state variables in addition to cell
age and generation time, as long as the integration of these additional variables reduces the model to Lebowitz-
Rubinow form. As an application of this formalism, we calculate the fitness landscapes for phenotypic traits
(cell age, generation time) in a population that is not growing exponentially. We clarify that the known fitness
landscape formula for the cell age as a phenotypic trait is an approximation to the exact time-dependent formula.
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I. INTRODUCTION

The properties of microbial populations, including their
temporal evolution, usually depend on the variability of quan-
tities describing individual cells. For example, the growth rate
of the population (the rate at which the total number of cells
increases) depends on how the values of generation time (the
duration of the cell cycle) are distributed among the cells.

Due to the complexity of population dynamics, it seems
reasonable to focus on populations in steady state [1–9]. By
“steady state” we mean either steady exponential growth in
batch culture (where the total number of cells in a population
increases exponentially with time) or a true steady state in
mother-machine experiments or continuous culture. In the
latter two cases, the increase in cell number is compensated
for by the removal of cells from the system, and the population
size remains constant.

But the opportunity for the study of many interesting phe-
nomena is lost if the focus is only on the steady state. For
this reason, cell populations that are out of the steady state
have been studied experimentally [10–12] and theoretically
[3,13–21] for decades. The desynchronization of an initially
nearly synchronous population (i.e., all cells are in nearly the
same phase of their cell cycle) of bacteria or cancer cells
and its evolution to the steady state can serve as an example
[15,16,20–22].

In recent years, there has been a renewed interest in pop-
ulation dynamics out of the steady state. In particular, the
oscillatory behavior of cell number and population growth
rate in a desynchronizing bacterial culture has been studied
[22–25] in the context of cell division timing strategies and
noise in the intrinsic parameters of individual cells.
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Thus, there seems to be a need for generalizing the results
obtained so far for the steady state to the unsteady case, that
is, to transient population dynamics. These results include
the relationships between the generation-time distributions
of mother cells (those just dividing), newborn cells (those
just after cell division), and extant cells (all cells present in
the population at a given time). These three generation-time
distributions should not be confused with each other, as is still
sometimes done; see discussion in [8]. Only the mother gener-
ation time can be observed experimentally. This is because the
generation time (also called “cell cycle time” or “interdivision
time”) is a “hidden variable”: Its value is not known until the
end of the cell cycle.

Relationships between various generation-time distribu-
tions, as well as between generation-time distributions, cell
age distribution (age structure), and population growth rate,
such as the Euler-Lotka equation, were found by Powell [1,2],
Lebowitz and Rubinow [3], and more recently others [5,6,9],
but only for bacterial cultures in steady state, for which all
probability distributions are time-independent. To the best of
our knowledge, the results derived decades ago by Powell and
others have not yet been generalized to the case of unsteady
state.

In order to make such a generalization, we use the model
proposed by Lebowitz and Rubinow [3]. Within this approach,
each cell is described by its age a and the generation time τ .
As a consequence, one can obtain both the age structure and
all of the generation-time probability distributions mentioned
above from a single quantity—the joint probability distribu-
tion of a and τ . Using this formalism, we find the relationships
between various time-dependent probability distributions of
interest, as well as the generalization of the Euler-Lotka
equation, for both the batch culture and the mother machine
experiment. We also derive inequalities linking averaged rates
of appearance and disappearance of cells of generation time τ ,
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which generalize known relations between mean generation
time and the population doubling time.

Most of our results for the population in the unsteady
state reduce to the known results for the steady exponential
growth in batch culture. However, we have also obtained some
new results for the steady state: The inequalities concerning
the moments of the two generation-time distributions: of the
mother cells and of the extant cells. These inequalities follow
from the stationary limit of the equations relating the time evo-
lution of the moments of different probability distributions.
Solutions of these equations are also given.

Although some probability distributions in Powell’s ap-
proach and the Lebowitz-Rubinow model are unobservable,
the present theoretical framework allows us to express them
in terms of experimentally observable quantities.

The results presented here may be useful in a variety of
contexts. For example, some of our results are needed to quan-
tify the strength of natural selection by the phenotypic fitness
landscape (here we use this term as defined in Ref. [26])
or by the growth rate of the subpopulation carrying a given
phenotypic trait [26–28]. Therefore, we show how to use our
results to calculate fitness landscapes for cell age and genera-
tion time. By “calculate” here we mean “express in terms of
observable quantities.”

Finally, we discuss possible generalizations of our ap-
proach. In particular, we show that any extension of the
Lebowitz-Rubinow model that includes additional variables
besides cell age and generation time (cell volume, individual
growth rate, or concentrations of different proteins) reduces to
the effective Lebowitz-Rubinow model when these additional
variables are integrated out. Thus, results derived within the
Lebowitz-Rubinow model are valid for a much broader class
of population models.

We have relegated some of our findings to Appendixes.
Appendix A contains a table of the most important quantities
that are used in the text.

II. THEORY

A. McKendrick–von Foerster model

We begin with a brief reminder of the McKendrick–von
Foerster model [29–32]. We need it here as a point of refer-
ence for a more general formalism of Lebowitz and Rubinow
[3], which is analyzed in the next section. Equations of the
McKendrick–von Foerster model read(

∂

∂t
+ ∂

∂a
+ γ (t, a) + D(t )

)
n(t, a) = 0, (1)

n(t, 0) = 2σ

∫ τl

0
γ (t, a)n(t, a) da, (2)

n(0, a) = n0(a). (3)

Equation (1) describes the time evolution of the number den-
sity n(t, a) of cells whose age is a; the boundary condition (2)
describes the influx of newborn cells, while (3) is the initial
condition. We neglect cell death. γ (t, a) is the cell division
rate and τl is the maximum possible cell age: n(t, a) = 0 for
a > τl .

The fermenter dilution rate D(t ) in (1) may vary with time,
but it does not depend on a. Equations (1)–(3) describe a batch

culture (D(t ) = 0, σ = 1), a continuous culture (D(t ) > 0,
σ = 1), or a mother machine experiment (D(t ) = 0, σ = 0).
(The mother machine device can be seen as an experimental
realization of the ensemble of cell lineages; see Appendix G).

The combination of (2) and (3) gives us the consistency
condition at t = a = 0:

n0(0) = 2σ

∫ τl

0
γ (0, a)n0(a) da. (4)

For both σ = 0 and σ = 1

N (t ) =
∫ τl

0
n(t, a) da (5)

is the total number of cells in the population at time t . Within
the framework of the McKendrick–von Foerster model, it is
possible to define both the age distribution of all cells in a
population

φ(t, a) = n(t, a)

N (t )
, (6)

and the age distribution of currently dividing cells (mothers),
for which age equals generation time [8]

f1(t, a) = γ (t, a)n(t, a)∫ τl

0 γ (t, a)n(t, a) da
= γ (t, a)φ(t, a)

�(t )
. (7)

�(t ), which appears in (7), is given by

�(t ) =
∫ τl

0
γ (t, a)φ(t, a) da. (8)

From (2), (6), and (8) we get

n(t, 0) = 2σ�(t )N (t ), (9)

and therefore �(t ) is proportional to the cell’s birth rate.
For the batch culture (σ = 1 and D(t ) = 0), �(t ) defined

by (8) is the instantaneous population growth rate. In a general
case, the population growth rate is given by σ [�(t ) − D(t )].
This quantity vanishes both for the mother machine (σ = 0)
and for the continuous culture if only �(t ) = D(t ), i.e., if the
dilution compensates for the increase in cell number.

However, the solution to (1) with σ = 1 and D(t ) �= 0 can
easily be obtained from the solution to the case where D(t ) =
0 (see Appendix B), so from now on we will put D(t ) = 0 in
(1). In this case, integrating (1) with respect to a and using (2),
(6), (8), and (9) we obtain

dN (t )

dt
= σN (t )�(t ), (10)

and therefore

N (t ) = N0eσ
∫ t

0 �(t ′ ) dt ′
, (11)

where N0 ≡ N (0).

B. Lebowitz-Rubinow model

Most of the results presented in this paper were obtained
using the theoretical framework of the Lebowitz-Rubinow
model. Therefore, we will now briefly discuss this model.

Starting with the McKendrick–von Foerster model (1)–(3),
one can derive the relationship between the two age distribu-
tions: φ(t, a) (6) for all cells in the population and f1(t, a) (7)
for mothers; see Appendix D.
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However, the generation time τ (duration of the cell cycle),
and thus its inheritance, is not explicitly present in (1)–(3). For
this reason, the McKendrick–von Foerster model is not the
preferred choice if one wants to obtain similar relationships
involving the remaining generation-time distributions: f0(t, τ )
(newborns) and f2(t, τ ) (extant cells, i.e., those present in a
population at any given time), or the joint probability distri-
bution of cell age and generation time, χ (t, a, τ ). Therefore,
we use the model proposed by Lebowitz and Rubinow [3]. In
this approach, the generation time τ becomes an additional,
nondynamic variable (dτ/dt = 0) besides the cell age.

n(t, a) in Eqs. (1)–(3) is now replaced by the number den-
sity n(t, a, τ ) of the cells whose age is a and whose generation
time is τ . These two densities are related by

n(t, a) =
∫ τl

a
n(t, a, τ ) dτ, (12)

so the number of cells in the population is given by

N (t ) =
∫ τl

0

∫ τl

a
n(t, a, τ ) dτ da =

∫ τl

τs

∫ τ

0
n(t, a, τ ) da dτ.

(13)

We assume that τ is bounded, 0 < τs � τ � τl < ∞; hence τl

is the longest possible generation time, and τs is the shortest
possible generation time:

0 � a � τ, a ≡ max(a, τs) � τ � τl , (14)

because τ must be greater than both a and τs. For E. coli
growing under optimal conditions τs ≈ 20 min [33].

1. Model equation and its boundary and initial conditions

Within the approach of Ref. [3], Eq. (1) of the
McKendrick–von Foerster model is replaced by

∂

∂t
n(t, a, τ ) + ∂

∂a
n(t, a, τ ) = 0, (15)

while the boundary and initial conditions are now

n(t, 0, τ ) = 2σ

∫ τl

τs

h(τ |τ ′)n(t, τ ′, τ ′) dτ ′ ≡ 	(t, τ ) (16)

and

n(0, a, τ ) = n0(a, τ ) ≡ 
(a, τ ). (17)

The consistency condition must be satisfied at a = t = 0:


(0, τ ) = 	(0, τ ). (18)

h(τ |τ ′) dτ in Eq. (16) is the probability that the generation
time of the two daughters is τ , provided that the generation
time of their mother was τ ′. (We assume that both daughter
cells inherit the same generation time but this assumption can
be relaxed; see Appendix I 1.)

When the mother-daughter generation-time correlations
vanish, h(τ |τ ′) = f (τ ). In such a case, the inherited gener-
ation time no longer depends on τ ′. The opposite extreme is
when daughters inherit the value of their mother’s generation
time at cell division: h(τ |τ ′) = δ(τ − τ ′) [3].

For continuous culture, the term D(t )n(t, a, τ ) responsible
for cell dilution should also be added to the l.h.s. of Eq. (15).
However, we omit this term because the solution to (15)

with D(t ) �= 0 can easily be obtained from the solution to
the case D(t ) = 0, just as in the McKendrick–von Foerster
model (see Appendix B). The same remark applies to the term
describing cell death, included in the original formulation of
the Lebowitz-Rubinow model [3].

As in the case of Eq. (2), in Eq. (16) we have σ = 0 for a
single cell lineage or the mother machine experiment (which,
as we will show in Appendix G, can be treated as a realization
of the ensemble of single cell lineages) and σ = 1 for the
batch culture. Note that most of the quantities of interest are
different for σ = 0 and σ = 1. Only the probability distribu-
tion of the inherited generation times h(τ |τ ′), which appears
in (16), and the initial condition 
(a, τ ) (17) are the same
for both cases. [If the Lebowitz-Rubinow model was derived
as an effective description from a more general model, then
h(τ |τ ′) can also depend on both σ and the observation time t ;
see Sec. III E and Appendix I.]

To distinguish between σ = 0 and σ = 1, we introduce an
index:

�(σ ) =
{

c for σ = 0,

r for σ = 1.
(19)

In the above, c refers to “chronological” or “forward,” and r
to “retrospective” or “backward”; these terms are related to
the two ways the population lineage tree can be sampled; see
[26–28]. That σ = 0 corresponds to chronological and σ = 1
to retrospective sampling of the lineage tree will be shown in
Appendix G. However, we explicitly distinguish between σ =
0 and σ = 1 mostly when the quantities with different values
of σ appear in the same formula (such as in Sec. III D and
Appendix G) or when we consider the steady-state situation.

2. Formal solution of the Lebowitz-Rubinow model

A solution to (15) has the form n(t, a, τ ) = F (t − a, τ ),
where F (x1, x2) is a function of two real variables. Taking into
account the initial and boundary conditions, we obtain [3]

n(t, a, τ ) =
{

(a − t, τ ) = n(0, a − t, τ ) if a � t,
	(t − a, τ ) = n(t − a, 0, τ ) if a � t,

(20)

where the initial condition 
(a, τ ) is defined by (17) and the
boundary condition 	(t, τ ) is defined by (16). The condition
(18) ensures that 
(a − t, τ ) = 	(t − a, τ ) for a = t .

From (16) and (20) we get the renewal equation:

	(t, τ ) = 2σ(τl − t )
∫ τl

t
h(τ |τ ′)
(τ ′ − t, τ ′) dτ ′

+ 2σ (t − τs)
∫ t

τs

h(τ |τ ′)	(t − τ ′, τ ′) dτ ′, (21)

where (x) is the Heaviside step function and

t ≡ min(t, τl ), t ≡ max(t, τs). (22)

We can now rewrite (18) as


(0, τ ) = 	(0, τ ) = 2σ

∫ τl

τs

h(τ |τ ′)
(τ ′, τ ′) dτ ′. (23)

By integrating (23) with respect to τ , we get (4).
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C. Reduction of the Lebowitz-Rubinow model
to the McKendrick–von Foerster model

Before proceeding, we want to clarify the connection
between the Lebowitz-Rubinow and the McKendrick–von Fo-
erster models. When the generation time τ is integrated out,
Eqs. (15)–(17) of the former model should reduce to Eqs. (1)–
(3) of the latter model. This should be the case not only for
the special form of the initial condition considered in Ref. [3],
i.e.,


(a, τ ) = n0(a)
f (τ )∫ τl

a f (τ ′) dτ ′ , (24)

but also in a general situation.
If a � τs, then if one integrates (15) with respect to τ from

a to τl and uses the Leibniz integral rule, one gets

∂

∂t
n(t, a) + ∂

∂a
n(t, a) + n(t, a, a) = 0, (25)

where n(t, a) is defined by (12). Similarly, integrate (16) with
respect to τ from τs to τl . Keeping in mind that for any τ ′ we
have

∫ τl

τs
h(τ |τ ′) dτ = 1, we get

n(t, 0) =
∫ τl

τs

	(t, τ ) dτ = 2σ

∫ τl

τs

n(t, τ ′, τ ′) dτ ′. (26)

Comparing (25) with (1) and (26) with (2), we see that if

n(t, a, a) = γ (t, a)n(t, a) = f1(t, a)N (t )�(t ), (27)

then n(t, a) defined by (12) satisfies Eqs. (1)–(3). f1(t, τ ) in
Eq. (27) is the mother age distribution, which is defined by
Eq. (7) in the McKendrick–von Foerster model, while for
σ = 1, �(t ) (8) is the instantaneous growth rate of the popula-
tion. For a < τs, a = τs and n(t, a, a) = γ (t, a) = 0; thus the
Lebowitz-Rubinow model reduces again to the McKendrick–
von Foerster model. If the condition (27) is satisfied, all the
results of Sec. II A remain valid. In particular, the time depen-
dence of the total number of cells is given by (11).

Finally, note that from the Lebowitz-Rubinow model one
can derive not only the McKendrick–von Foerster model, but
also the model formally identical to that proposed by Rubinow
in 1968 [34], see Appendix J.

D. Definitions of cell age and generation-time distributions

In this subsection, we introduce the probability distribu-
tions that will be used throughout the rest of this paper.

One can obtain all the generation-time probability distribu-
tions: fi(t, τ ), i = 0, 1, 2 and the cell age distribution φ(t, a)
as either conditional or marginal probabilities from a single
quantity—the joint probability distribution χ (t, a, τ ) of age
and generation time. The latter distribution is the cell number
density n(t, a, τ ) normalized by the total number of cells N (t ):

χ (t, a, τ ) ≡ n(t, a, τ )

N (t )
. (28)

We also define

χ0(a, τ ) ≡ χ (0, a, τ ) = 
(a, τ )

N0
. (29)

With χ (t, a, τ ) we get the age distribution of all cells in the
population (extant cells)

φ(t, a) ≡
∫ τl

a
χ (t, a, τ ) dτ = n(t, a)

N (t )
, (30)

as well as the generation-time distribution of extant cells,

f2(t, τ ) ≡
∫ τ

0
χ (t, a, τ ) da. (31)

Next, define the following conditional distribution:

χ (t, τ |a) ≡ χ (t, a, τ )

φ(t, a)
. (32)

The generation-time distribution of the newborns is then given
by

f0(t, τ ) ≡ χ (t, τ |0) ≡ χ (t, 0, τ )

φ(t, 0)
= χ (t, 0, τ )

2σ�(t )
. (33)

The identity

φ(t, 0) = 2σ�(t ) (34)

used in (33) follows from (9) and (30).
The mother age distribution f1(t, τ ) (called “carrier distri-

bution” by Powell [1,2]) has already been defined by (27),

f1(t, a) ≡ χ (t, a, a)∫ τl

τs
χ (t, a, a) da

= χ (t, a, a)

�(t )
. (35)

Note that the above definition of f1(t, τ ) is consistent with its
definition (7) within the McKendrick–von Foerster model.

Not only f0(t, τ ), but also f1(t, τ ) is a conditional distribu-
tion. To see it, define

χ (t, a, θ ) ≡ χ (t, a, a + θ ), θ ≡ τ − a, (36)

and the corresponding conditional distribution

χ (t, a|θ ) = χ (t, a, θ )∫ al (θ )
as (θ ) χ (t, a, θ ) da

, (37)

where as(θ ) = max(0, τs − θ ), al (θ ) = τl − θ . For mothers,
θ = 0, so f1(t, a) = χ (t, a|0). Note that f1(t, a) �= χ (t, a|a)
since the latter is not a probability distribution of a. From (27),
(28), and (32) it follows that χ (t, a|a) = γ (t, a).

As mentioned in the introduction, f1(t, τ ) is an experimen-
tally observable quantity. Therefore, it makes sense to express
other probability distributions using f1(t, τ ).

E. Definition of steady state

In this subsection, we give the definition of a steady state.
For mother-machine experiments (σ = 0), “steady state”
means that all quantities are independent of time (station-
ary), i.e., n(t, a, τ ) = nc(a, τ ), n(t, a) = nc(a), N (t ) = N0,
χ (t, a, τ ) = χc(a, τ ), �(t ) = �c, and so on. This is therefore
a true steady state. Note that for the mother machine we
always have N (t ) = N0, not only in the steady-state limit.

For batch culture (σ = 1), by “steady state” we mean
steady exponential growth, for which we have

n(t, a, τ ) = χr (a, τ )N0e�r t , (38)

024405-4



GENERALIZATION OF POWELL’S RESULTS TO … PHYSICAL REVIEW E 108, 024405 (2023)

so we also have

N (t ) = N0e�r t . (39)

Equation (38) explains why steady exponential growth is
sometimes called “self-similar growth.” This term derives
from the fact that the shape of the plot of the cell number
density as a function of its variables other than the observation
time t (here a and τ ) does not depend on t . From (29), (38),
and (39) it is clear that not only χ (t, a, τ ) (28) but also the
remaining probability distributions do not depend on t .

III. RESULTS

A. Relationships between probability distributions
of cell age and generation time

In this subsection, we present our main results, which are
the relations between the probability distributions defined in
the previous subsection, χ (t, a, τ ), φ(t, a), f0(t, τ ), f1(t, τ ),
and f2(t, τ ). We also derive two forms of the generalized
Euler-Lotka equation for a transient population dynamics.

We will present here the relationships between different
probability distributions for the same values of σ . In other
words, we consider two different experimental situations sep-
arately: the mother machine experiments (σ = 0) and the
batch culture (σ = 1). The answer to another question, How
is a given distribution for batch culture expressed in terms of
the same distribution for the mother machine experiment, is
given in Appendix G.

1. Relationships between generation-time probability
distributions of mother and daughter cells

Using (20), (27), and (33), we rewrite (16) as

n(t, 0, τ ) = 2σ N (t )�(t )
∫ τl

τs

h(τ |τ ′) f1(t, τ ′) dτ ′

= 2σ N (t )�(t ) f0(t, τ ) = 	(t, τ ), (40)

where the generation-time distribution of newborn cells
f0(t, τ ) is defined by (33). In this way, we obtain

f0(t, τ ) ≡
∫ τl

τs

h(τ |τ ′) f1(t, τ ′) dτ ′. (41)

One can think of Eq. (41) as another definition of f0(t, τ ),
alternative to (33). If there are no mother-daughter generation-
time correlations, we have h(τ |τ ′) = f (τ ) = f0(t, τ ). [Fol-
lowing Refs. [1,2,5], we denote the uncorrelated generation-
time distribution of newborns as f (τ ) instead of f0(t, τ ).]
At the opposite extreme, where daughters inherit exactly the
same generation time as their mother had, i.e., h(τ |τ ′) =
δ(τ − τ ′) we have f0(t, τ ) = f1(t, τ ). For t � τ , from (16),
(20), (27), (35), and (40), we get

N (t )�(t ) f1(t, τ ) = 2σ N (t − τ )�(t − τ ) f0(t − τ, τ ). (42)

N (t )�(t )dt is the total number of cell divisions in the pop-
ulation at time t , and the factor 2σ accounts for the number
of daughter cells remaining in the population after each cell
division. Therefore, the interpretation of the identity (42) is
simple: The cells that divide at the time t are those that were
born at the time t − τ , and that inherited the generation time τ

at birth to divide when they reach the age a = τ . Using (11),
we rewrite (42) as

f1(t, τ ) = 2σ�(t − τ )e− ∫ t
t−τ

σ�(t ′ ) dt ′

�(t )
f0(t − τ, τ ). (43)

For σ = 1 (batch culture, corresponding to the retrospective
probabilities and retrospective sampling [26]) in the steady-
state limit, we obtain from (43) the well-known relationship
between generation-time distributions of newborn and mother
cells [1,5,6,34]

f1r (τ ) = 2e−�rτ f0r (τ ). (44)

For σ = 0, i.e., for the mother machine experiment (cor-
responding to chronological probabilities and chronological
sampling), in the steady-state limit we get

f1c(τ ) = f0c(τ ). (45)

Now let us return to the case of the transient state. For t � τl ,
we get the generalization of Eq. (18) of Ref. [1] (Eq. (32) of
Ref. [3]) by combining (41) and (43),

f0(t, τ ) = 2σ

∫ τl

τs

h(τ |τ ′)L(t, τ ′) f0(t − τ ′, τ ′) dτ ′, (46)

where we introduced the shorthand notation

L(t, τ ) ≡ �(t − τ )eσ
∫ t−τ

0 �(t ′ ) dt ′

�(t )eσ
∫ t

0 �(t ′ ) dt ′ . (47)

Similarly, from (41) and (43) we get the analogous equation
for f1(t, τ ), valid for t � τ ,

f1(t, τ ) = 2σL(t, τ )
∫ τl

τs

h(τ |τ ′) f1(t − τ, τ ′) dτ ′. (48)

Equation (48) can help find the functional forms of h(τ |τ ′)
that are consistent with the measured values of observable
quantities: instantaneous population growth rate �(t ) and
generation-time distributions of mothers, f1(t, τ ), determined
from the experiment.

2. First form of the Euler-Lotka equation

For the population at the state of steady exponential
growth, the Euler-Lotka equation [1,3,5] is the normalization
condition for f1r (τ ) (44),

1 = 2
∫ τl

τs

e−�rτ f0r (τ ) dτ. (49)

In order to generalize (49) to the case of transient population
dynamics we can use (43), (46) or (48). Integrating both sides
of (43) and remembering that τ � t we get∫ t

τs

f1(t, τ ) dτ = 2σ

∫ t

τs

L(t, τ ) f0(t − τ, τ ) dτ, (50)

where L(t, τ ) has been defined by (47) and t ≡ min(t, τl ) by
(22). For t � τl we have t = τl . The r.h.s. of (50) is then equal
to one, and we get

1 = 2σ

∫ τl

τs

L(t, τ ) f0(t − τ, τ ) dτ

= 2σ

∫ τl

τs

∫ τl

τs

L(t, τ )h(τ |τ ′) f1(t − τ, τ ′) dτ ′ dτ. (51)
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By using the normalization of f0(t, τ ) given by (46) we do not
get a new form of the Euler-Lotka equation, but we come back
to Eq. (51).

Strictly speaking, if τl = ∞, then (51) is satisfied only in
the limit t → ∞, where we get Eq. (49) for σ = 1 and the
normalization of f0c(τ ) for σ = 0. However, it is reasonable
to expect that there is an intermediate time scale for which
replacing t by ∞ in (50) gives a satisfactory approximation,
even though the system is still far enough from the steady
state.

Both �(t ) and f1(t, τ ) can be determined directly from the
experiment. But since neither h(τ |τ ′) nor f0(t, τ ) is experi-
mentally measurable, Eq. (51) does not provide an alternative
way to determine �(t ) from other measurable quantities. Nev-
ertheless, with experimentally determined values of �(t ) and
f1(t, τ ) one can check whether the form h(τ |τ ′) postulated by
a given theoretical model is not excluded by (51).

In Sec. III A 5 we will derive another form of the Euler-
Lotka equation which is valid for all values of the observation
time t and is expressed only in terms of experimentally ob-
servable quantities.

3. Joint distribution of cell age and generation time expressed by
the generation-time distributions of the mothers or of the newborns

Our task now is to express the probability distribution
of cell age and generation time: χ (t, a, τ ) (28) in terms of
observable quantities: f1(t, τ ) and �(t ). For the sake of com-
pleteness, we will also give formulas expressing χ (t, a, τ ) in
terms f0(t, τ ).

First, we will express the cell number density n(t, a, τ )
using the generation-time distribution f1(t, τ ) of mothers or
f0(t, τ ) of newborns. In what follows, we assume that t � a.
From (20), (40), (42), and (43), we obtain

n(t, a, τ ) = �(t − a + τ )N0eσ�(t−a+τ ) f1(t − a + τ, τ )

= 2σ�(t − a)N0eσ�(t−a) f0(t − a, τ ) (52)

and therefore

χ (t, a, τ ) = �(t − a + τ )eσ�(t−a+τ )−σ�(t ) f1(t − a + τ, τ ),

= 2σ�(t − a)eσ�(t−a)e−σ�(t ) f0(t − a, τ ), (53)

where we define

�(t ) ≡
∫ t

0
�r (t ′) dt ′. (54)

Note that although the r.h.s. of both (52) and (53) is defined for
all τ ∈ [τs, τl ], the l.h.s. of each of these two formulas makes
sense only for τ > a. For σ = 1 in the steady-state limit (t →
∞), we have �(t ) = �r , f0(t − a, τ ) = f0r (τ ), �(t ) = �rt
and (53) reduces to

χr (a, τ ) = 2�r f0r (τ )e−�r a = �r f1r (τ )e�r (τ−a). (55)

In this limit, n(t, a, τ ) (52) is indeed of the form (38), as it
should be. For σ = 0 (�(σ ) = c) we get [6]

χc(a, τ ) = �c f0c(τ ) = f0c(τ )∫ τl

τs
τ ′ f0c(τ ′) dτ ′ . (56)

4. Generation-time distribution of extant cells expressed in terms
of generation-time distributions for mothers and newborns

First, we want to express the unobservable generation-
time distribution of extant cells, f2(t, τ ), by the observable
generation-time distributions for mothers, f1(t, τ ). Using (31)
and the properties of the solution of the Lebowitz-Rubinow
model, it can be shown that for both t � τ and t � τ we have

f2(t, τ ) =
∫ t+τ

t
eσ

∫ t ′
t �(t̃ )dt̃�(t ′) f1(t ′, τ ) dt ′; (57)

see Appendix E. Note that the value of f2(t, τ ) at time t is ex-
pressed by f1(t ′, τ ) at later times: t ′ ∈ [t, t + τ ]. This means
that we cannot determine f2(t, τ ) using only observations
made at time t . Nevertheless, (57) has a simple and intuitive
interpretation, which is best seen when it is rewritten in terms
of the number density

ν(t, τ ) ≡
∫ τ

0
n(t, a, τ ) da = N (t ) f2(t, τ ). (58)

of the cells whose generation time is τ at time t . Now multiply
both sides of (57) by N (t ) to get

ν(t, τ ) =
∫ t+τ

t
�(t ′)N (t ′) f1(t ′, τ ) dt ′. (59)

Equation (59) expresses the fact that all cells assigned with a
given generation time τ that were present in the population at
the observation time t (and only such cells) will divide during
the time interval [t, t + τ ]. In contrast, the cells born within
this time interval and inheriting the generation time τ will
divide at t ′′ > t + τ .

Using (31) and (53) we can also get the expression that
connects f2(t, τ ) and the generation-time distribution for new-
borns f0(t, τ ):

f2(t, τ ) = 2σ e−σ�(t )
∫ t

t−τ

�(t̃ )eσ�(t̃ ) f0(t̃, τ ) dt̃ . (60)

Equation (60) tells us that all those cells present in the pop-
ulation at observation time tobs = t , whose generation time is
τ , must have been born between t − τ and t , because the cells
assigned to generation time τ and born earlier have already
divided.

For t � τ we can deduce another relationship between
f2(t, τ ), f1(t, τ ) and f0(t, τ ). Our starting point now is the
equation for the time evolution of ν(t, τ ) (58). To obtain it,
we integrate Eq. (15) with respect to a, as in (58), and we use
the boundary condition (16). Then, using Eqs. (27) and (40),
we obtain

dν(t, τ )

dt
= n(t, 0, τ ) − n(t, τ, τ )

= [2σ f0(t, τ ) − f1(t, τ )]N (t )�(t ). (61)

It is easy to identify the gain and loss terms in Eq. (61): the
influx of newborns with generation time τ and the loss of such
cells through division. equation (61) can be written simply by
counting the number of cells whose generation time is τ that
enter and leave the population at any given time. Finally, from
(11), (58), and (61), we obtain the time-evolution equation for
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f2(t, τ ) that we are looking for

df2(t, τ )

dt
+ σ�(t ) f2(t, τ ) = �(t )[2σ f0(t, τ ) − f1(t, τ )].

(62)

Equation (62) is easy to solve; we get

f2(t, τ ) = e−σ
∫ t

t0
�(η)dη

[
f2(t0, τ ) +

∫ t

t0

[2σ f0(t̃, τ )

− f1(t̃, τ )]�(t̃ )eσ
∫ t̃

t0
�(η) dη dt̃

]
. (63)

It may seem that only the cells born not earlier than at t −
τ can affect the value of f2(t, τ ), and therefore 0 � t − τ �
t0 � t . However, since (63) is derived from accounting for all
cells entering and leaving the population (61), the value of t0
is arbitrary.

For t � τ we now have three seemingly different equations
relating f2(t, τ ) to the remaining two generation-time distri-
butions [ f1(t, τ ) or f0(t, τ )]: (57), (60), and (63). But with
(43) one can show that for t � τ all these three expressions
are equivalent. However, only (57) is defined for both t � τ

and t � τ .
Now let us consider the case of steady exponential growth.

First, for σ = 1 we get from (62) the well-known formula
[2,3,5,6]

f1r (τ ) + f2r (τ ) = 2 f0r (τ ). (64)

For σ = 0, Eq. (62) in the steady-state limit yields only the
condition f1c(τ ) = f0c(τ ) (45), but not the explicit form of
f2c(τ ). We can get the latter by using (57) or (60):

f2c(τ ) = �cτ f1c(τ ) = τ f1c(τ )∫ τl

τs
τ ′ f1c(τ ′) dτ ′ . (65)

The second equality follows from the normalization of f2c(τ ).
Note also that in Eq. (65) f1c(τ ) can be replaced by f0c(τ )
because of (45). An alternative way to get (65) was given in
Ref. [6].

5. The second form of the Euler-Lotka equation

The time-dependent generalization of the Euler-Lotka
equation can also be formulated as a normalization condition
for f2(t, τ ). Integrating both sides of (57) with respect to τ ,
we get

1 =
∫ τs

τs

∫ t+τ

t
�(t ′)eσ

∫ t ′
t �(t̃ ) dt̃ f1(t ′, τ ) dt ′ dτ. (66)

In contrast to (51), now there are no restrictions for t , as
(57) is valid for both τ � t and τ � t . Moreover, (57) is
expressed only by quantities that can be measured experi-
mentally. Note that the normalization condition for χ (t, a, τ )
(53) 1 = ∫ τl

τs

∫ τ

0 χ (t, a, τ ) da dτ gives (66) by changing the
integration variables from a to t ′ = t − a + τ .

The time-independent Euler-Lotka equation for the expo-
nentially growing population in batch culture (44) usually
has many solutions for �r . In the simplest case, we have a
finite number of complex roots, but only one of them—the
one with the largest real part and an imaginary part equal to

zero—has an interpretation of the population growth rate �r .
Here the solution(s) �(t ) of the time-dependent generaliza-
tions of Euler-Lotka equation (66) or (51) are not numbers, but
functions of the observation time t . Our interest here is in this
�(t ), which for σ = 1 can be determined from observations
using Eq. (10), �(t ) = Ṅ (t )/N (t ), and for both values of σ

can be determined using Eq. (9). However, we are not able to
say whether this is the unique solution to Eq. (67), or whether
there are multiple solutions. equation (66) can be treated not
so much as an equation to determine �(t ), but rather as a
consistency condition that must be satisfied by both �(t ) and
f1(t, τ ).

For the steady exponential growth in batch culture we get
from (66)

1 =
∫ τs

τs

(e�rτ − 1) f1r (τ ) dτ, (67)

which is equivalent to (49) due to (44).
On the other hand, for the mother machine experiment, it

follows from (65) that in the stationary limit �c is inversely
proportional to the average generation time of the mothers [or,
equivalently, to the average generation time of the newborns,
since f1c(τ ) = f0c(τ )],

�c = 1∫ τl

τs
τ ′ f1c(τ ′) dτ ′ = 1/〈τ 〉1c. (68)

Thus, we can treat (68) as the Euler-Lotka equation for the
mother machine setup at the steady state.

6. Age structure expressed in terms of generation
times for mothers or newborns

As in the case of the generation-time distribution of extant
cells f2(t, τ ), the age distribution φ(t, a) can also be expressed
by generation-time distributions for mothers f1(t, τ ) or new-
borns f0(t, τ ).

If a � t , then using (11), (20), (28), (29), (30), and (54),
we obtain

φ(t, a) = φ0(a − t )e−σ�(t )

−
∫ t−a+a

t−a+a−t
�(t̃ )eσ�(t̃ )−σ�(t ) f1(t̃, t̃ − t + a) dt̃ .

(69)

For a � t , we have

φ(t, a) = 2σ�(t − a)eσ�(t−a)e−σ�(t )

−
∫ t−a+a

t−a+τs

�(t̃ )eσ�(t̃ )−σ�(t ) f1(t̃, t̃ − t + a) dt̃ .

(70)

The details of the derivations of (69) and (70) are given in
Appendix E. The second term on the r.h.s. of both (69) and
(70) vanishes for a < τs, and we get the age distribution of
cells that are too young to divide:

φ̃(t, a) =
{

φ0(a − t )e−σ�(t ) for a � t,

2σ eσ�(t−a)e−σ�(t )�(t − a) for a � t .
(71)

With the help of (30) and (53) we can also derive the following
expression:

φ(t, a) = 2σ�(t − a)eσ�(t−a)e−σ�(t )F̄0(t − a, a), (72)
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where

F̄0(t, a) ≡
∫ τl

a
f0(t, τ ) dτ. (73)

If there are no mother-daughter generation-time correlations,
we have f0(t, τ ) = f (τ ), F̄0(t, a) = F̄ (a), and (72) takes the
simple form

φ(t, a) = 2σ�(t − a)eσ�(t−a)e−σ�(t )F̄ (a). (74)

At steady state (72) for σ = 1 equals

φ(a) = �e−�a

(
2 −

∫ a

0
f1(ã)e�ã dã

)
(75)

= 2�e−�a

(
1 −

∫ a

0
f0(ã) dã

)
(76)

= 2�e−�aF̄0(a). (77)

Equation (75) is Eq. (16) of Ref. [8], (76) is Eq. (9) of [1],
whereas in (77), following Powell [1], we have introduced the
quantity

F̄0(a) ≡ 1 −
∫ a

0
f0(ã) dã =

∫ τl

a
f0(ã) dã, (78)

which is the stationary counterpart of (73). For σ = 0, at the
steady state we get from (72) Eq. (D6) of Ref. [6],

φc(a) = �cF̄0c(a) = F̄0c(a)∫ τl

τs
τ ′ f0c(τ ′) dτ ′ . (79)

B. Time-dependent generalization of inequalities between
mean generation time and population doubling time

For a population in the steady state of exponential growth,
it can be shown [4,8,35] that

〈τ 〉1r �
ln 2

�r
� 〈τ 〉0r, (80)

where ln 2/�r is the population doubling time, 〈τ 〉0r ≡∫ τl

τs
τ f0r (τ )d τ and similarly for 〈τ 〉1r . There is no correspond-

ing inequality for σ = 0, and in this case we have f0c(τ ) =
f1c(τ ); see Eq. (65).

The double inequality (80) can be derived by using the fact
that for any two probability distributions p(t, x), q(t, x) we
have

D[p(t, x)||q(t, x)] ≡
∫

p(t, x) ln

[
p(t, x)

q(t, x)

]
dx � 0. (81)

The D[p(t, x)||q(t, x)] appearing in the above formula is a
Kullback-Leibler divergence (or relative entropy). In particu-
lar, (80) follows from nonnegativity of both D[ f1r (τ )|| f0r (τ )]
and D[ f0r (τ )|| f1r (τ )] [4,35].

What is the time-dependent counterpart of (80)? First, con-
sider the case of batch culture (σ = 1). Using (81), (43), and
(40) one can show that the condition D[ f1r (t, τ )|| f0r (t, τ )] �
0 implies that 〈

ln

[
	(t, τ )

	(t − τ, τ )

]〉
1r

� ln 2, (82)

where now 〈(. . .)〉1r ≡ ∫ τl

τs
(. . .) f1r (t, τ ) dτ . In a similar way,

from the inequality D[ f0r (t, τ )|| f1r (t, τ )] � 0 one gets

ln 2 �
〈
ln

[
	(t, τ )

	(t − τ, τ )

]〉
0r

, (83)

where 〈(· · · )〉0r ≡ ∫ τl

τs
(· · · ) f0r (t, τ ) dτ . Combining (82) and

(83) we obtain double inequality generalizing (80).
From (10) and (40) we get

	(t, τ ) = 2
dN (t )

dt
f0(t, τ ). (84)

Therefore, the numerators of the expressions under the log-
arithm in (82) and (83) are proportional to the number of
cells born at observation time t and inheriting generation time
τ [since this number is equal to 	(t, τ ) dt dτ ], while the
denominators are proportional to the number of cells born at
time t − τ and inheriting generation time τ . The latter cells
divide at time t . Thus, in both (82) and (83) we have the
average of the logarithm of the ratio of the number of cells
born at time t and inheriting the generation time τ to the
number of the mother cells dividing at time t at the age τ .
In other words, we average the logarithms of the ratio of the
number of cells appearing in the population at time t with
the inherited generation time τ to the number of such cells
disappearing from the population. At steady state, from (82)
and (83) we recover (80).

Both (82) and (83) become equations for h(τ |τ ′) = δ(τ −
τ ′) as then f0(t, τ ) = f1(t, τ ). In this case, each cell division
increases the number of cells with generation time τ by one:
one such cell disappears and two are born.

We can repeat the same reasoning for σ = 0, that is, for the
mother machine experiments. We get〈

ln

[
	(t, τ )

	(t − τ, τ )

]〉
1c

� 0 �
〈
ln

[
	(t, τ )

	(t − τ, τ )

]〉
0c

. (85)

Again, 	(t, τ ) dt dτ is the number of cells born between
t and t + dt that inherit generation time τ , but now we
have 	(t, τ ) = N0�(t ) f0(t, τ ). The mean values that ap-
pear in (85) are defined as 〈(· · · )〉0c ≡ ∫ τl

τs
(· · · ) f0c(t, τ ) dτ ,

〈(· · · )〉1c ≡ ∫ τl

τs
(· · · ) f1c(t, τ ) dτ .

The stationary limit of (85) is trivial: 0 � 0 � 0. As with
the batch culture, the inequality (85) also becomes equality
for transient dynamics if h(τ |τ ′) = δ(τ − τ ′).

C. Time evolution of the moments of χ(t, a, τ )

From Eqs. (10), (15), (16), and (28), we obtain the time-
evolution equation for χ (t, a, τ ),

∂χ (t, a, τ )

∂t
+ ∂χ (t, a, τ )

∂a
+ σ�(t )χ (t, a, τ ) = 0, (86)

and the boundary condition,

χ (t, 0, τ ) = 2σ

∫ τl

τs

h(τ |τ ′)χ (t, τ ′, τ ′) dτ ′ = 2σ�(t ) f0(t, τ ).

(87)

The initial condition follows from (17) and (28). By inte-
grating (86) with respect to a one obtains (62). Similarly,
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by integrating (86) with respect to τ one obtains the time-
evolution equation for φ(t, a) as given by (D1). From (86)
we can also get the time-evolution equations for the moments
of χ (t, a, τ ):

dUkm(t )

dt
= −σ�(t )Ukm(t ) + kUk−1m(t )

−�(t )Tk+m(t ) + δk02σ�(t )Zm(t ), (88)

where δkl is Kronecker delta and

Zk (t ) =
∫ τl

τs

τ k f0(t, τ ) dτ,

Tk (t ) =
∫ τl

τs

τ k f1(t, τ ) dτ,

Ukm(t ) =
∫ τl

τs

∫ τ

0
akτmχ (t, a, τ ) da dτ. (89)

Before solving (88), we first consider its steady-state solution,
dUkm(t )/dt = 0. Then (88) becomes a system of algebraic
equations. For σ = 0 the solution is simple:

Ukm = �c

k + 1
Tk+m+1, k � 1. (90)

The same result can be obtained by using the explicit form of
χc(a, τ ) given by (56). For σ = 1 we get

Ukm = �−1
r kUk−1m − Tk+m + 2δk0Zm. (91)

For k � 1 the solution of (91) is given by

Ukm = k!

�k
r

⎛
⎝U0m −

k∑
j=1

�
j
r

j!
T j+m

⎞
⎠, (92)

where U0m ≡ Wm is the steady-state value of the mth moment
of f2(t, τ ):

Wm(t ) =
∫ τl

τs

τm f2(t, τ ) dτ = U0m(t ). (93)

In particular, for m = 0 we get Eq. (D13) derived in a different
way in Appendix D:

Ak = k!

�k
r

⎛
⎝1 −

k∑
j=1

�
j
r

j!
T j

⎞
⎠. (94)

Ak = Uk0 is the steady-state value of the kth moment of the
cell age distribution φ(t, a) (30),

Ak (t ) =
∫ τl

0
akφ(t, a) da = Uk0(t ). (95)

Equation (91) can also be obtained directly from χr (a, τ )
(55), but solving the moment equations seems to be a more
convenient way to get it.

Since Ukm � 0, from (92) one obtains series of inequalities
involving moments of f2(τ ) and those of f1(τ ). In particular,
for k = 1, 2, 3 we have for any m

Wm − �rTm+1 � 0, (96)

2Wm − 2�rTm+1 − �2
rTm+2 � 0, (97)

6Wm − 6�rTm+1 − 3�2
rTm+2 − �3

rTm+3 � 0. (98)

Now let us return to the case of unsteady state and to Eq. (88).
To solve this system of equations, we first consider its two spe-
cial cases. For k = 0, Eq. (88) reduces to the time-evolution
equation for the moments of f2(t, τ ):

dWm(t )

dt
+ σ�(t )Wm(t ) + �(t )Tm(t ) − 2σ�(t )Zm(t ) = 0,

(99)

where Wm(t ) is defined by (93), while Tm(t ) and Zm(t ) are
defined by (89). equation (99), which can also be derived from
Eq. (62), is easy to solve; one gets

Wm(t ) = e−σ�(t )

{
Wm(0)

+
∫ t

0
[2σZm(t̃ ) − Tm(t̃ )]�(t̃ )eσ�(t̃ ) dt̃

}
. (100)

Similarly, to get the time-evolution equation for the moments
of φ(t, a), we substitute m = 0 in (88). Assuming k � 1, we
get

dAk (t )

dt
+ σ�(t )Ak (t ) − kAk−1(t ) = −�(t )Tk (t ). (101)

where Ak (t ) is defined by (95). equation (101) is solved in
Appendix D [see Eq. (D14)]; the solution is

Ak (t ) = e−σ�(t )

{
k∑

l=0

(
k

l

)
t k−lAl (0)

−
k∑

l=0

(
k

l

) ∫ t

0
�(t ′)eσ�(t ′ )(t − t ′)k−lTl (t

′) dt ′

+ 2σ

∫ t

0
�(t ′)eσ�(t ′ )(t − t ′)k dt ′

}
. (102)

Finally, to find the solution of (88), we observe that for k �
1 Eq. (88) has the same form as Eq. (101) if we identify
Ukm(t ) ←→ Ak (t ), Tk+m(t ) ←→ Tk (t ). So (102) immedi-
ately gives us

Ukm(t ) = e−σ�(t )

{
k∑

l=0

(
k

l

)
t k−lUlm(0)

−
k∑

l=0

(
k

l

) ∫ t

0
�(θ )eσ�(θ )(t − θ )k−lTl+m(θ ) dθ

+ 2σ

∫ t

0
�(θ )eσ�(θ )(t − θ )k dθ

}
. (103)

D. Application of our formalism:
Fitness landscapes for phenotypic traits

Nozoe et al. [26] proposed a formalism to quantify the
fitness of the phenotype s within a growing population com-
posed of multiple phenotypes. These authors introduced the
concept of the fitness landscape H (t, s), defined as [26–28]

H (t, s) ≡ �r (t ) + 1

t
ln

[
Pr (t, s)

Pc(t, s)

]
. (104)
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�r (t ) (denoted as �t in Ref. [28]) is the time-averaged instan-
taneous population growth rate �r (t ):

�r (t ) = 1

t

∫ t

0
�r (t ′) dt ′ = 1

t
�(t ). (105)

In Eq. (104), Pr (t, s) is the retrospective (backward) probabil-
ity for the phenotype s,

Pr (t, s) = n(t, s)

N (t )
, (106)

where n(t, s) is the number of cells carrying s and N (t ) is the
total cell number. Pr (t, s) is the share of the phenotype s at
time t in the batch culture experiment (σ = 1) that has been
initiated from N (0) = N0 cells at time t = 0. Pc(t, s), called
the chronological or forward probability, is the probability that
we get to the cell carrying the phenotype s at time t if we
start a random walk from one of the N0 lineage tree roots at
time t = 0 (the random walk along the lineage involves some
number m of random choices between two branches):

Pc(t, s) = 1

N (0)

∑
m

n(t, s; m)

2m
. (107)

Here n(t, s; m) denotes the number of cells carrying the phe-
notype s at time t, which have divided m times since t = 0.
Pc(t, s) corresponds to the share of the phenotype s at time t
in the mother machine experiment (σ = 0) that have started at
t = 0 with N0 cells.

We see that, in order to calculate H (t, s) (104), we have
to know both the chronological (forward) and retrospective
(backward) time-dependent probability distributions of the
phenotypic traits and the instantaneous population growth rate
�r (t ). The fitness landscape is flat in the long-time limit:
H (t, s) (104) approaches a constant, equal to the steady-state
population growth rate,

lim
t→∞ H (t, s) = �r = lim

t→∞ �r (t ). (108)

1. Cell age as a phenotypic trait

The concept of the fitness landscape (in the sense of
Ref. [26]) for cell age a as a phenotypic trait may be slightly
counterintuitive, because a increases linearly in time and does
not directly carry the information about the cell’s fitness based
on its generation time. However, a is correlated with the gen-
eration time: If we find a cell at time t whose age is a, then we
can be sure that the cell’s generation time will be larger than a.
Therefore, the fitness landscape Hφ (t, a) measures how much
the current phenotypic state of the cell, being its age a, affects
the relative difference in the statistics of finding cells of age a
in the batch culture compared to the statistics of finding cells
of age a in the mother machine experiment.

In Ref. [27] the following formula has been given for
H (t, a) in the case of vanishing mother-daughter correlations
of generation time [Eq. (45) of that reference, rewritten in our
notation]:

Hφ (t, a) = �r + 1

t
ln

[
φr (a)

φc(a)

]

= 1

t

[
(t − a)�r + ln

(
2�r�

−1
c

)]
. (109)

The above expression can be treated only as an approxi-
mation of the true fitness landscape, since it includes the
time-independent probability distributions and steady-state
values of �r (t ) and �c(t ): �r and �c = limt→∞ �c(t ), i.e.,
�r = ∫ τl

0 γr (a)φr (a) da, �c = ∫ τl

0 γc(a)φc(a) da; see Eq. (8).
However, if one calculates the fitness landscape using the
time-dependent quantities, one obtains

Hφ (t, a) = �r (t ) + 1

t
ln

[
φr (t, a)

φc(t, a)

]

= �r (t ) + 1

t
ln

[
φ̃r (t, a)

φ̃c(t, a)

]
+ 1

t
ln

[
F̄0r (t − a, a)

F̄0c(t − a, a)

]

= 1

t

∫ t−a

0
�r (t ′) dt ′ + 1

t
ln

[
2�r (t − a)

�c(t − a)

]

+ 1

t
ln

[
F̄0r (t − a, a)

F̄0c(t − a, a)

]
, (110)

where F̄0(t, a) = ∫ τl

a f0(t, τ ) dτ is defined by (73) and the age

distribution φ̃(t, a) of cells which are too young to divide is
defined by (71).

If there are no mother-daughter generation-time correla-
tions [this is the case that should be compared with (109)],
then h(τ |τ ′) = f (τ ) = f0(t, τ ). In consequence, f0r (t, τ ) =
f0c(t, τ ) = f (τ ), F̄0r (t, a) = F̄0c(t, a) = F̄(a), and the last
term in (110) vanishes. [Note that hr (τ |τ ′) = hc(τ |τ ′).] The
resulting expression is similar but not identical to (109). It
seems, therefore, that formula (109) obtained by Genthon and
Lacoste [27] is an approximation to the exact time-dependent
formula (110). There may exist a timescale short enough that
H (t, s) is still not to equal to �r (108) but long enough
for ln[φr (t, a)/φc(t, a)] to be approximately constant in time.
In such a case, Eq. (110) will be equivalent to Eq. (109)
[27].

2. Generation time as a phenotypic trait

One can also treat the second variable of the Lebowitz-
Rubinow model, the generation time τ , as a phenotypic trait.
This choice seems more intuitive than the cell age a because
τ is more directly related to the volume growth rate of a
single cell and the population growth rate. The distribution
of τ that should be used in (104) is f2(t, τ ) because only
this generation-time distribution is defined for all cells. In
addition, the fitness landscape for the generation time is not
uniquely defined if we use f0(t, τ ) or f1(t, τ ) instead of
f2(t, τ ); see Appendix G for details.

Using Eq. (57), valid for both t � τ and t � τ , we get

Hf2 (t, τ ) = �r (t ) + 1

t
ln

[
f2r (t, τ )

f2c(t, τ )

]

= 1

t
ln

[∫ t+τ

t e�r (t ′ )�r (t ′) f1r (t ′, τ ) dt ′∫ t+τ

t �c(t ′) f1c(t ′, τ ) dt ′

]
. (111)

Equation (111) contains only experimentally observable quan-
tities. However, as in the case of Eqs. (57) and (66), to calcu-
late the value of Hf2 (t, τ ), we need to know f1r (t, τ ), f1c(t, τ ),
�r (t ) and �c(t ) over the entire time interval [t, t + τ ].
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As in the case of s = a and Hφ (t, a) (110), one would need
to use the results of Appendix F to exactly calculate (111)
for arbitrary t [i.e., to express Hf2 (t, τ ) using only h(τ |τ ′)
and the initial condition 
(a, τ ) (17)]. Such a calculation
requires knowledge of the functional forms of h(τ |τ ′) and

(a, τ ) (both of which are unobservable) and evaluation of
the integrals in the series solution of Appendix F (which is
probably not analytically feasible, but could perhaps be done
numerically for the specific systems).

3. Cell age and generation time as a two-dimensional
phenotypic trait

Besides one-dimensional phenotypic traits, s = a and s =
τ , one can also consider two-dimensional trait, s = (a, τ ).
Once again, our task is to express the fitness landscape in
terms of observable quantities only. Using Eqs. (53), (54),
(104), and (105) we get

Hχ (t, a, τ ) = �r (t ) + 1

t
ln

[
χr (t, a, τ )

χc(t, a, τ )

]

= 1

t
ln

[
�r (t − a + τ )

�c(t − a + τ )

]
+ �(t − a + τ )

t

+ 1

t
ln

[
f1r (t − a + τ, τ )

f1c(t − a + τ, τ )

]
. (112)

E. Generalization of the Lebowitz-Rubinow model

Population dynamics are often described by the population
balance models [6–8,17,27,35,36]. In this approach, each cell
is characterized by its age and possibly some additional vari-
ables. These could be, for example, the cell volume (mass,
size), the volume growth rate, or the copy number (or concen-
tration) of protein molecules of a particular type.

Population balance models are based on first-order partial
differential equations describing the deterministic time evolu-
tion of the cell number density, supplemented by appropriate
boundary and initial conditions. However, various probability
distributions can be constructed from the cell number density.

The word “balance,” which refers to “accounting” for the
number of cells of a given age, volume, etc., may be mis-
leading here, since such models can just as well describe
the system that is not in steady state. Other terms such as
“structured population models” or “continuous rate models”
are sometimes used, each referring to a different aspect of
such a theoretical framework.

The simplest population balance model is the
McKendrick–von Foerster model (1)–(3), proposed almost a
century ago by McKendrick [29]; see also [30–32]. However,
from our point of view, the McKendrick–von Foerster
model has a serious limitation: It does not contain explicit
information about the generation time τ and its inheritance.
Therefore, one cannot use this model to determine the
dynamics of all generation-time distributions of interest:
f0(t, τ ) for cells whose age a is zero (newborns), f1(t, τ ) for
just dividing cells for which a = τ (mothers), and f2(t, τ )
for all cells present in the population at a given time (extant
cells).

The same remarks apply to any generalization of the
McKendrick–von Foerster model that has a form of the pop-

ulation balance equation in which we have some variables in
addition to cell age, but in which generation time τ does not
explicitly appear as an independent variable. Such models can
be found, e.g., in [7,8,17,27,35,36] and will be referred to here
as “generalized McKendrick–von Foerster models.”

On the other hand, models that include τ as an independent
variable belong to the same class as the Lebowitz-Rubinow
model, and we will simply call them “generalized Lebowitz-
Rubinow models.” In the following, we will show how to
define the most important probability distributions that ap-
pear in the generalized Lebowitz-Rubinow models. We will
also show that each of these models reduces to the original
Lebowitz-Rubinow model when the variables other than a and
τ are integrated out, so that all the results obtained in this
paper remain valid within a rather broad class of population
balance models. But before we move on to the generalizations
of the Lebowitz-Rubinow model, let’s stop for a moment at
the generalized McKendrick–von Foerster models.

1. Generalized McKendrick–von Foerster model

The McKendrick–von Foerster model (1)–(3) can be ex-
tended to the more complex population balance model, where
each cell is characterized not only by its age but also by other
state variables [8]:

(ξ1, ξ2, . . . , ξd ) ≡ �ξ ∈ � ⊂ Rd . (113)

Some of the ξi may have nontrivial dynamics, the most ob-
vious example being cell volume V or cell length. However,
some variables may remain constant during the cell cycle, e.g.,
the cell volume growth rate λ. Nevertheless, the time evolution
of �ξ is assumed to be deterministic,

�̇ξ = �g(t, a, �ξ ), (114)

or ξ̇i = gi(t, a, ξ1, ξ2, . . . , ξd ), i = 1, 2, . . . , d . The dot de-
notes the derivative with respect to the observation time t or
the cell age a, depending on the sign of a − t . For example,
the cell volume V is often assumed to grow exponentially:

V̇ = λV, (115)

where λ is a constant, λ̇ = 0. [More generally, gi(t, a, �ξ ) = 0
for all nondynamic variables.] We also exclude state variables
such as generation time τ or cell volume of dividing cells Vd ,
which are the values of the dynamic variables at cell division.
The models in which such variables are present belong to
the same class as the Lebowitz-Rubinow model and will be
discussed in the next subsection.

The basic quantity is now the cell number density
n(t, a, �ξ ), which obeys the following time-evolution equation
[8]:

[∂t + ∂a + γ (t, a, �ξ ) + D(t )]n(t, a, �ξ )

= −�∇�ξ [�g(t, a, �ξ )n(t, a, �ξ )], (116)

where �∇�ξ = (∂ξ1 , ∂ξ2 , . . . , ∂ξd ), and ∂x = ∂/∂x. equation (116)
must be supplemented with the boundary condition

n(t, 0, �ξ ) = 2σ

∫ τl

0

∫
�

K(�ξ |a, �ζ )γ (t, a, �ζ )n(t, a, �ζ ) d �ζ da

(117)
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and

�0 = �g(t, a, �ξ )n(t, a, �ξ )|�ξ∈∂� (118)

(∂� denotes the boundary of � ⊂ Rd [8]) as well as with the
initial condition

n0(a, �ξ ) = n(0, a, �ξ ). (119)

The kernel K(�ξ |a, �ζ ) describing the inheritance of �ξ is the
probability distribution of �ξ parameterized by a and �ζ . There-
fore, for arbitrary t, a and �ζ , we have

1 =
∫

�

K(�ξ |a, �ζ ) d�ξ . (120)

The cell number density of the general population balance
model (116)–(119) normalized by the total cell number,

N (t ) =
∫ τl

0

∫
�

n(t, a, �ξ ) d�ξ da, (121)

has a natural interpretation of the probability density:

φ(t, a, �ξ ) ≡ n(t, a, �ξ )∫ τl

0

∫
�

n(t, a, �ξ ) d�ξ da
. (122)

The φ(t, a, �ξ ) defined above is a generalization of the cell age
distribution φ(t, a) of the McKendrick–von Foerster model.
However, following [8] we can also define another probability
distribution,

f1(t, a, �ξ ) = γ (t, a, �ξ )n(t, a, �ξ )∫ τl

0

∫
�

γ (t, a, �ξ )n(t, a, �ξ ) d�ξ da
, (123)

which generalizes the mother age distribution f1(t, a) given
by (7):

f1(t, a) =
∫

�

f1(t, a, �ξ ) d�ξ . (124)

The denominator of Eq. (123) is equal to �(t )N (t ); thus
we can replace γ (t, a, �ξ )n(t, a, �ξ ) with N (t )�(t ) f1(t, a, �ξ ) in
(116) and (117).

We are now ready to show that the general population
balance model defined by (116)–(119) can be reduced to the
McKendrick–von Foerster model. Let

n(t, a) =
∫

�

n(t, a, �ξ ) d�ξ, (125)

where n(t, a, �ξ ) is the solution of (116) satisfying (117),
(118), and (119). The term −�∇�ξ [�g(t, a, �ξ )n(t, a, �ξ )], appear-

ing on the r.h.s. of (116) integrated with respect to �ξ , vanishes
due to the Ostrogradsky-Gauss theorem and due to (118). We
obtain

[∂t + ∂a + γe(t, a) + D(t )]n(t, a) = 0, (126)

where we define the effective rate of division to be

γe(t, a) =
∫
�

γ (t, a, �ξ )n(t, a, �ξ ) d�ξ∫
�

n(t, a, �ξ ) d�ξ . (127)

Note that γe(t, a) may depend on σ . That is, it may be different
for the mother machine and batch culture scenarios.

Next, integrating (117) with respect to �ξ and using (120),
(125), and (127), we get

n(t, 0) = 2σ

∫ τl

0
γe(t, a)n(t, a) da. (128)

Equation (126) is identical to (1), whereas (128) is identical
to (2), provided we identify γe(t, a) with γ (t, a). The initial
condition (119) reduces to (3). In this way, we obtain the
McKendrick–von Foerster model (1)–(3) from the general
population balance model given by (116)–(119). Obviously,
many models may yield the same effective McKendrick–von
Foerster model.

2. From the generalized McKendrick–von Foerster model
to the generalized Lebowitz-Rubinow model

Any generalized McKendrick–von Foerster model as de-
fined by (116)–(119) can be extended in the way Lebowitz
and Rubinow extended the original McKendrick–von Foer-
ster model by adding generation time τ as an independent,
nondynamic variable. By integrating out τ , such an extended
model can be reduced to the original population balance equa-
tion. It can also be reduced to the original Lebowitz-Rubinow
model by integrating the remaining variables, and to the
McKendrick–von Foerster model by integrating all variables
except cell age. This is discussed below.

As in the case of the general population balance model
analyzed above, we assume that the time evolution of �ξ is
deterministic and can be described by a system of ordinary
differential equations:

�̇ξ = �g(t, a, τ, �ξ ). (129)

The presence of τ in the above equation may be caused by
the dependence of the dynamics of some quantities (e.g., cell
volume) on the fraction of the cell cycle, a/τ .

Instead of (116), (117), and (118) we now have

∂t n(t, a, τ, �ξ ) + ∂an(t, a, τ, �ξ )

+ �∇�ξ [�g(t, a, τ, �ξ )n(t, a, τ, �ξ )] = 0, (130)

n(t, 0, τ, �ξ ) = 2σ

∫ τl

0

∫
�

K(τ, �ξ |a, �ζ )n(t, a, a, �ζ ) d �ζ da,

(131)

�0 = �g(t, a, τ, �ξ )n(t, a, τ, �ξ )|�ξ∈∂� (132)

[we put D(t ) = 0 in (116)], while the initial condition is


(a, τ, �ξ ) = n(0, a, τ, �ξ ). (133)

Note that we have

1 =
∫ τl

0

∫
�

K(τ, �ξ |a, �ζ ) d�ξ dτ. (134)

a. Reduction of the generalized Lebowitz-Rubinow model to
the generalized McKendrick–von Foerster model. Following
essentially the same line of reasoning as in Sec. II C, in this
subsection we show how the generalized Lebowitz-Rubinow
model can be reduced to the generalized McKendrick–von
Foerster model.
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First, the cell number densities of these two models are
related by an expression analogous to Eq. (12):

n(t, a, �ξ ) =
∫ τl

a
n(t, a, τ, �ξ ) dτ, (135)

Next, we integrate (130) with respect to τ . We get

∂t n(t, a, �ξ ) + ∂an(t, a, �ξ ) + n(t, a, a, �ξ )

+ �∇�ξ [�ge(t, a, �ξ )n(t, a, �ξ )] = 0, (136)

with n(t, a, �ξ ) defined by (135) and �ge(t, a, �ξ ) by

�ge(t, a, �ξ ) ≡
∫ τl

a �g(t, a, τ, �ξ )n(t, a, τ, �ξ ) dτ∫ τl

a n(t, a, τ, �ξ ) dτ
. (137)

If �g(t, a, τ, �ξ ) does not depend on τ , then �ge = �g. Note that
n(t, a, a, �ξ ) = 0 for a < τs. Next, we integrate the boundary
conditions (131) and (132) and obtain

n(t, 0, �ξ ) = 2σ

∫ τl

0

∫
�

Ke(�ξ |a, �ζ )n(t, a, a, �ζ ) d �ζ da (138)

and

�0 = �ge(t, a, �ξ )n(t, a, �ξ )|�ξ∈∂�, (139)

where �ge(t, a, �ξ ) is defined by (137), and where

Ke(�ξ |a, �ζ ) =
∫ τl

a
K(τ, �ξ |a, �ξ ) dτ. (140)

If Eqs. (136), (138), and (139) are to be identical to the
corresponding equations, (116), (117), and (118), then the
following conditions must be satisfied:

n(t, a, a, �ξ ) = γ (t, a, �ξ )n(t, a, �ξ ), (141)

�ge(t, a, �ξ ) = �g(t, a, �ξ ), (142)

Ke(�ξ |a, �ζ ) = K(�ξ |a, �ζ ). (143)

In the above, �ge(t, a, �ξ ) is given by (137) and Ke(�ξ |a, �ζ )
by (140). The first of these three conditions is an obvious
generalization of Eq. (27).

Finally, by integrating the boundary condition (133) with
respect to τ we obtain (119). Thus, we have shown that the
generalized Lebowitz-Rubinow model as defined by (116)–
(133) can be reduced to an effective model of the same form
as the population balance model defined by Eqs. (116)–(119).

b. Definitions of generalized cell age and generation-time
distributions in the generalized Lebowitz-Rubinow model.
Analogous to the case of the original Lebowitz-Rubinow
model, we define

χ (t, a, τ, �ξ ) ≡ n(t, a, τ, �ξ )

N (t )
, (144)

where

N (t ) =
∫ τl

0

∫ τl

a

∫
�

n(t, a, τ, �ξ ) d�ξ dτ da

=
∫ τl

τs

∫ τ

0

∫
�

n(t, a, τ, �ξ ) d�ξ da dτ (145)

is the total number of cells in the population. In direct analogy
to what was done in Sec. II D, we can now define natural
generalizations of all three generation-time probability distri-
butions: f0(t, τ ), f1(t, τ ), and f2(t, τ ), as well as the cell age
distribution φ(t, a). These can be obtained from χ (t, a, τ, �ξ )
(144) as either conditional or marginal probabilities.

First, we define the joint distribution of cell age a and �ξ of
all cells in the population,

φ(t, a, �ξ ) ≡
∫ τl

a
χ (t, a, τ, �ξ ) dτ = n(t, a, �ξ )

N (t )
. (146)

We also define the joint distribution of τ and �ξ for extant cells,

f2(t, τ, �ξ ) ≡
∫ τ

0
χ (t, a, τ, �ξ ) da, (147)

and analogous distribution for mother cells

f1(t, τ, �ξ ) ≡ χ (t, τ, τ, �ξ )∫
�

∫ τl

τs
χ (t, τ, τ, �ξ ) dτ d�ξ = χ (t, τ, τ, �ξ )

�(t )
.

(148)

Similar to the case of φ(t, a, �ξ ), such a defined f1(t, τ, �ξ )
agrees with (123). Finally, the joint distribution of τ and �ξ
for daughters is

f0(t, τ, �ξ ) ≡ χ (t, τ, �ξ |0) ≡ χ (t, 0, τ, �ξ )

φ(t, 0)
= χ (t, 0, τ, �ξ )

2σ�(t )
,

(149)

where φ(t, a) is the age distribution defined by (6) or (30) and
χ (t, τ, �ξ |a) ≡ χ (t, a, τ, �ξ )/φ(t, a). Note that we have

f0(t, τ, �ξ ) =
∫ τl

0

∫
�

K(τ, �ξ |τ̃ , �ζ ) f1(t, τ̃ , �ζ ) d �ζ d τ̃ . (150)

When additional variables �ξ are integrated out, χ (t, a, τ, �ξ ),
φ(t, a, �ξ ), and fi(t, τ, �ξ ), i = 0, 1, 2 reduce to the correspond-
ing distributions of the original Lebowitz-Rubinow model.

c. Reduction of the generalized Lebowitz-Rubinow model
to the original Lebowitz-Rubinow model.

In this subsection we show that if n(t, a, τ, �ξ ) satisfies the
equations of the generalized Lebowitz-Rubinow model (116)–
(133), then the reduced cell number density

n(t, a, τ ) =
∫

�

n(t, a, τ, �ξ ) d�ξ (151)

is a solution of Eqs. (15)–(17) of the original Lebowitz-
Rubinow model with an appropriately chosen probability
distribution of the inherited generation times, h(t, τ |τ ′).

To show this, we first integrate (116) with respect to �ξ . The
term �∇�ξ [�g(t, a, τ, �ξ )n(t, a, τ, �ξ )] vanishes due to the bound-

ary condition (132), the derivatives of n(t, a, τ, �ξ ) with respect
to t and a reduce to the corresponding terms in the Lebowitz-
Rubinow equations, and we indeed obtain the time-evolution
equation (15). The initial condition (133) reduces to (17). The
only nontrivial part is the reduction of the boundary condition
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(131) to (16). We have

n(t, 0, τ ) =
∫

�

n(t, 0, τ, �ξ ) d�ξ

= 2σ

∫ τl

0

∫
�

∫
�

K(τ, �ξ |a, �ζ )n(t, a, a, �ζ ) d�ξ d �ζ da

= 2σ

∫ τl

0

∫
�

K̃(τ |a, �ζ )n(t, a, a, �ζ ) d �ζ da

= 2σ

∫ τl

0
he(t, τ |a)n(t, a, a) da, (152)

where

he(t, τ |a) =
∫

�

K̃(τ |a, �ζ )n(t, a, a, �ζ ) d �ζ∫
�

n(t, a, a, �ζ ) d �ζ

=
∫

�

K̃(τ |a, �ζ )P (t, �ζ |a, a) d �ζ (153)

and where we have defined

P (t, �ζ |a, τ ) ≡ n(t, a, τ, �ζ )

n(t, a, τ )
= χ (t, a, τ, �ζ )

χ (t, a, τ )
. (154)

Since n(t, a, τ ) defined by (151) satisfies the equations of
the Lebowitz-Rubinow model, all results obtained within this
model (in particular, the relationships between different prob-
ability distributions) remain valid. Note, however, that the
effective he(t, τ |t, a) defined by (153) may explicitly depend
on the observation time t . It may also be different for the
mother machine experiment and for the batch culture, i.e., for
different values of the σ parameter. This is because he(t, τ |a)
is determined by n(t, a, τ, �ξ ) or P (t, �ζ |a, τ ), and these quan-
tities are usually different for σ = 0 and σ = 1. In the full
model [i.e., the generalized Lebowitz-Rubinow model given
by (116)–(133)], the value of the generation time inherited
by daughters usually depends not only on the generation time
of the mother, but also on other variables characterizing the
mother cell.

Therefore, the effective Lebowitz-Rubinow model with
he(t, τ |a) given by (153) should not be used to obtain the
relation (F10) between nr (t, a, τ ; m) and nc(t, a, τ ; m). On
the technical side, this is because if we try to repeat the step
with the introduction of the effective he(t, τ |a) in (F1), we
will in general get different he(t, τ |a) for different values
of the parameter m, i.e., for different generations. However,
the relation between nr (t, a, τ ; m) and nc(t, a, τ ; m) can be
obtained within a more complete description provided by the
generalized Lebowitz-Rubinow model. Within the latter, we
have

nr (t, a, τ, �ξ ; m) = 2mnc(t, a, τ, �ξ ; m); (155)

see discussion in Appendix G. By integrating both sides of
(155) with we get a desired result, i.e., Eq. (F10).

IV. CONCLUSIONS

We have used the extension of the McKendrick–von
Foerster model proposed by Lebowitz and Rubinow [3]
to generalize the seminal results of Powell [1,2] to the
case of a population in a unsteady (transient) state: we
have derived the exact relationships between cell age and

generation-time probability distributions. Such relationships
were found decades ago for the steady state, but, to the
best of our knowledge, they have not yet been derived for
the transient population dynamics. In particular, we have
derived a generalization of the Euler-Lotka equation that
links the generation-time distribution of just dividing cells
(mothers) to the instantaneous population growth rate. We
have also derived the inequalities linking the rates of ap-
pearance and disappearance of cells of generation time τ .
These inequalities generalize the known relationship be-
tween the mean generation time of mothers, the mean
generation time of newborns, and the population doubling
time.

Not all probability distributions in Powell’s approach
and the Lebowitz-Rubinow model are experimentally ob-
servable [8]. We have established the identities that link
the unobservable generation-time distributions of newborn
and extant cells to the observable mother generation-time
distribution.

Our results can help to infer information about generation-
time inheritance: The experimentally measured instantaneous
population growth rate �(t ) and the mother generation-time
distribution f1(t, τ ) constrain the possible functional forms
of the probability distribution h(τ |τ ′) of inherited generation
times.

We have shown that the Lebowitz-Rubinow model can
always be reduced to the McKendrick–von Foerster model.
This finding extends the results of Lebowitz and Rubinow,
who obtained the McKendrick–von Foerster equation from
their model only for the initial condition, which is a product
of two functions: one depending solely on cell age, the other
solely on generation time [3].

We have also discussed the connection between the
Lebowitz-Rubinow model and the model based on the “ma-
turity representation” proposed by Rubinow in 1968 [34]; see
Appendix J.

As an application of our formalism, we have calculated the
fitness landscapes (as defined in Refs. [26–28]) for certain
phenotypic traits in a population out of the steady state. We
have shown that the fitness landscape formula proposed in
Ref. [27] for the cell age as a phenotypic trait is an approx-
imation to the exact time-dependent formula derived in the
present paper. We have also calculated the fitness landscape
for the generation time as a phenotypic trait.

The results obtained in the framework of the Lebowitz-
Rubinow model can be generalized in several ways. First, we
discussed an extension of this model in which each cell is
described not only by its age and generation time, but also
by additional variables such as volume growth rate and cur-
rent volume. Second, the original Lebowitz-Rubinow model
explicitly included only the mother-daughter generation-time
correlations. Therefore, we have considered another gener-
alization of this model that explicitly takes into account the
nonvanishing correlations between the more distant genera-
tions (see Appendix I). Such an extended Lebowitz-Rubinow
model uses the distribution h(τ |τ1, τ2, . . . , τG) of inherited
generation times τ , which is a function of the generation times
τi of G previous generations. It reduces to the original model
after integrating the generation times of the grandmother,
great-grandmother, etc., of a given cell. However, in such a
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case, the effective “Markovian” distribution of the inherited
generation times he(t, τ |τ1), which appears in the standard
Lebowitz-Rubinow equations, may depend on the observation
time t , even though its counterpart h(τ |τ1, τ2, . . . , τG) of the
extended Lebowitz-Rubinow model is time-independent.

Note added. Recently, we became aware of a new preprint
by Genthon and Lacoste [37], in which the authors use a
fully time-dependent formula for the fitness landscape, such
as postulated in the Eq. (104).
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APPENDIX A: TABLE: KEY QUANTITIES USED IN THIS PAPER

TABLE I. Notation: The most important quantities used in this paper.

Quantity Name or description Eqs.

a ∈ [0, τ ] Cell age
τ ∈ [τs, τl ] Generation time
n(t, a, τ ) Number density of cells whose age is a and whose generation time is τ (52)

(a, τ ) = n(0, a, τ ) Initial condition (17), (20)
	(t, τ ) = n(t, 0, τ ) Boundary condition (16), (20)
n(t, a) Number density of cells whose age is a (12)
N (t ) Total number of cells in the population (11) (13)
γ (t, a) Cell division rate (27), (C1)
�(t ) Age-averaged cell division rate γ (t, a) (8), (9), (10)

N (t )�(t )dt is the total number of cell divisions in the population at time t (52), (53)
�r (t ) �(t ) in batch culture: instantaneous growth rate of the population (54)
�(t ) �(t ) ≡ ∫ t

0 �r (t ′) dt ′ = t�r (t ) (54), (105)
h(τ |τ ′) Probability distribution of the inherited generation times (16), (41)
χ (t, a, τ ) Joint distribution of cell age and generation time (28), (53)
φ(t, a) Cell age distribution (6), (30), (69), (70)
f0(t, τ ) Generation time distribution of the newborn cells (33), (41)
f1(t, τ ), f1(t, a) Generation time distribution of mother cells (age distribution of mothers) (7), (35), (43)
f2(t, τ ) Generation time distribution of extant cells (31), (57), (60)

APPENDIX B: RELATION BETWEEN SOLUTIONS
OF (1)–(3) FOR BATCH AND CONTINUOUS CULTURE

One can easily get the solution to (1) for continuous culture
(σ = 1 and D(t ) �= 0) from the solution to the batch culture
case where D(t ) = 0. If n(t, a) is the solution to (1) with
D(t ) �= 0 and n̄(t, a) is the solution to (1) with D(t ) = 0, then

n̄(t, a) = n(t, a)e
∫ t

0 D(t ′ ) dt ′
. (B1)

Integration of (B1) with respect to a yields

N̄ (t ) = N (t )e
∫ t

0 D(t ′ ) dt ′
, (B2)

and therefore φ̄(t, a) = n̄(t, a)/N̄ (t ) = n(t, a)/N (t ) =
φ(t, a). Cell division does not depend on the dilution
rate D(t ): γ̄ (t, a) = γ (t, a). As a consequence, we get
�̄(t ) = �(t ) and f̄1(t, a) = f1(t, a) from (7) and (8). Since
neither �(t ) nor the probability distributions depend on D(t ),
we can put D(t ) = 0 in (1) without loss of generality.

APPENDIX C: MORE ON THE RELATIONSHIPS
BETWEEN THE MCKENDRICK–VON FOERSTER

AND LEBOWITZ-RUBINOW MODELS

The division rate γ (t, a) of the McKendrick–von Foerster
model (1)–(3) can be expressed in terms of the quantities of
the Lebowitz-Rubinow model (15)–(17). By using (27) and
(32) we get

γ (t, a) = n(t, a, a)

n(t, a)
= χ (t, a, a)

φ(t, a)
= χ (t, a|a). (C1)

Such a defined division rate is an effective quantity and may
depend on σ , i.e., it may be different for the mother ma-
chine experiment (σ = 0) and the batch culture (σ = 1). This
difference may occur because γ (t, a) is no longer a known
function that is treated as an input to the model. Instead, it
is determined from the solutions of the Lebowitz-Rubinow
equation (15). This is in contrast to the situation when we
base our description of population dynamics solely on the
McKendrick–von Foerster model. If we then neglect cell-cell
interactions and assume identical environmental conditions
(temperature, pH, nutrients, etc.) for the batch culture and
the mother machine experiment, then the McKendrick–von
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Foerster model’s division rate γ (t, a) should be identical in
these two cases.

Therefore, if the McKendrick–von Foerster equation is
derived from a model that contains more variables (e.g., the
Lebowitz-Rubinow model), then in general there are two
different cell division rate functions: one for the batch cul-
ture [γr (t, a)] and one for the mother machine experiment
[γc(t, a)]. In both cases, we can express γ (t, a) for t � a
in terms of the daughter generation-time distribution f0(t, τ )
using (27) and (52)

γ (t, a) = f0(t − a, a)∫ τl

a f0(t − a, τ ) dτ
= f0(t − a, a)

F̄0(t − a, a)
, (C2)

where F̄0(t, a) is defined by (73). We have f0(t, a) = 0 for
a < τs and then γ (t, a) = 0. In the steady state, we get from
(C2)

γ (a) = f0(a)∫ τl

a f0(τ ) dτ
= f0(a)

F̄0(a)
. (C3)

The fact that one can derive Eqs. (1)–(3) from Eqs. (15)–
(17) shows that the McKendrick–von Foerster model does
not exclude mother-daughter generation-time correlations and
generation-time inheritance, it just does not allow their ex-
plicit description. This is because the distribution h(τ |τ ′) of
inherited generation times, which appears in Eq. (16), does
not exist in the McKendrick–von Foerster model. Moreover,
from Eq. (C2) we see that γ (t, a) can explicitly depend on the
observation time t in the presence of such correlations, since
f0(t, τ ) usually depends on t ; see (41).

Now assume that there are no mother-daughter generation-
time correlations

h(τ |τ ′) = f (τ ). (C4)

It follows from (41) that the distribution of inherited genera-
tion times no longer depends on t : f0(t, τ ) = f (τ ), so from
(C2) we get γ (t, a) = γ (a). In such a case we have

f (a) = γ (a)e− ∫ a
0 γ (a′ ) da′

, (C5)

and therefore

γ (a) = f (a)∫ τl

a f (τ ) dτ
= f (a)

F̄ (a)
. (C6)

The McKendrick–von Foerster model can be called the inde-
pendent generation times (IGT) model only if γ (a) is given

by (C6). equation (C2) is a generalization of the division rate
of the IGT model (C6) to the situation where the mother-
daughter generation-time correlations are present.

APPENDIX D: WHAT RELATIONSHIPS BETWEEN
PROBABILITY DISTRIBUTIONS ARE DERIVABLE

WITHIN THE MCKENDRICK–VON FOERSTER MODEL?

Here we show how some of the results presented in the
main text can be derived in an alternative way using only
the framework of the McKendrick–von Foerster model. This
model can be used to derive the relationship between the
generation-time distribution of mothers (equivalent to their
age distribution), f1(t, a) (7) and the age distribution φ(t, a)
(6) of all cells in a population. To do this, we first obtain from
Eqs. (1)–(6), (9), and (10) the time-evolution equation, the
boundary condition, and the initial condition for the cell age
distribution φ(t, a) defined by (6):

[∂t + ∂a + γ (t, a) + σ�(t )]φ(t, a) = 0, (D1)

φ(t, 0) = 2σ�(t ), (D2)

φ(0, a) = φ0(a). (D3)

Equations (D1)–(D3) are valid for both the batch culture (σ =
1) and the mother machine (σ = 0). Using (7), we rewrite
(D1) as

[∂t + ∂a + σ�(t )]φ(t, a) + �(t ) f1(t, a) = 0. (D4)

Next, we apply the Laplace transform to (D4) and get

dφ̂(t, s)

dt
+ [s + σ�(t )]φ̂(t, s) = �(t )[2σ − f̂1(t, s)], (D5)

where

φ̂(t, s) =
∫ ∞

0
e−saφ(t, a) da, (D6)

f̂1(t, s) =
∫ ∞

0
e−sa f1(t, a) da. (D7)

Solving (D5) yields

φ̂(t, s) = e−st e−σ�(t )

{
φ̂(0, s) +

∫ t

0
eσ�(t ′ )+st ′

�(t ′)[2σ − f̂1(t ′, s)] dt ′
}
, (D8)

where �(t ) is defined by (54). If we invert (D8), we obtain Eqs. (69) and (70), which were derived in a different way in
Sec. III A 6:

φ(t, a) =
⎧⎨
⎩

e−σ�(t )
[
φ0(a − t ) − ∫ t

0 �(t ′)eσ�(t ′ ) f1(t ′, a − t + t ′) dt ′], a � t,

e−σ�(t )
[
2σ eσ�(t−a)�(t − a) − ∫ t

t−a �(t ′)eσ�(t ′ ) f1(t ′, a − t + t ′) dt ′], a � t .
(D9)

Equation (D9) is a generalization of Eq. (14) of Ref. [8] to the case of unsteady population growth. [In Eq. (14) of Ref. [8], there
is a constant D(t ) = D instead of �, because D = � in the steady state limit considered there.]

We are also interested in the time-evolution equations for the moments of φ(t, a). These can be obtained using (D4) or (D5),

dAk (t )

dt
+ σ�(t )Ak (t ) − kAk−1(t ) = −�(t )Tk (t ), k = 1, 2, . . . , (D10)
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where

Al (t ) =
∫ τl

0
akφ(t, a) da, Tk (t ) =

∫ τl

0
ak f1(t, a) da.

For σ = 1 from (D10) in the steady-state limit, we obtain Eqs. (18) and (20) of Ref. [8],

A1 + T1 = �−1, A2 = 2�−1A1 − T2. (D11)

For σ = 0, we get Eq. (4) of Ref. [23]:

A1 = 1

2
T1

(
1 + T2 − T 2

1

T 2
1

)
= T2

2T1
. (D12)

In general, for σ = 1 and any k � 1, we get

Ak = k!

�k
r

⎛
⎝1 −

k∑
j=1

�
j
r

j!
T j

⎞
⎠. (D13)

Note that (D13) is a special case of Eq. (92).
Now let us return to the case of transient dynamics. For k = 1, 2, . . . , K , Eq. (D10) gives a closed system of K equations

that can be solved recursively for any K < ∞. However, it is much more convenient to solve (D5) instead and find the moments
using the Laplace transform φ̂(t, s) (D8), which is equivalent to using the generating functions for probability distributions. We
get

Ak (t ) = e−σ�(t )

[
k∑

l=0

(
k

l

)
t k−lAl (0) + 2σ

∫ t

0
�(t ′)eσ�(t ′ )(t − t ′)k dt ′ −

k∑
l=0

(
k

l

)∫ t

0
�(t ′)eσ�(t ′ )(t − t ′)k−lTl (t

′) dt ′
]
. (D14)

Equation (D14) is a generalization of Eqs. (18) and (20) of Ref. [8]. To our knowledge, neither (D9) nor (D13) and (D14) has
been shown in the literature to date.

APPENDIX E: DERIVATION OF EQUATIONS (57), (69), AND (70)

Equation (D9), derived using the formalism of the McKendrick–von Foerster model, links the cell age distribution φ(t, a)
with the generation-time distribution f1(t, τ ) of mothers. However, the Lebowitz-Rubinow model provides an alternative way to
obtain that equation.

Consider first the case of a � t . Using (11), (20), (28), (29), and (30), we obtain

φ(t, a) ≡
∫ τl

a
χ (t, a, τ ) dτ =

∫ τl

a
χ0(a − t, τ )e−σ�(t ) dτ (E1)

=
∫ τl

a−t
χ0(a − t, τ )e−σ�(t ) dτ −

∫ a

a−t
χ0(a − t, τ )e−σ�(t ) dτ (E2)

= φ0(a − t )e−σ�(t ) − 1

N (t )

∫ a

a−t
n(0, a − t, τ ) dτ, (E3)

where φ0(a) ≡ φ(0, a), χ0(a, τ ) ≡ χ (0, a, τ ) is defined by (29), and a ≡ max(a, τs). Now consider the last integral in (E2). We
have ∫ a

a−t
n(0, a − t, τ ) dτ =

∫ a

a−t
n(t − a + τ, τ, τ ) dτ =

∫ t−a+a

t−a+a−t
n(t ′, t ′ − t + a, t ′ − t + a) dt ′

=
∫ t−a+a

t−a+a−t
�(t ′)N (t ′) f1(t ′, t ′ − t + a) dt ′. (E4)

In (E4) we have used (20) and (27). Combining (E1) and (E4), we finally obtain

φ(t, a) = φ0(a − t )e−σ�(t ) −
∫ t−a+a

t−a+a−t
e−σ�(t )�(t ′)eσ�(t ′ ) f1(t ′, t ′ − t + a) dt ′. (E5)

φ(t, a) (E5) is identical to both Eq. (69) and to the first line of (D9) if one puts τs = 0; hence a − t = a − t , a = a [we have
assumed τs = 0 when deriving (D9)].

Now, for a � t , we have

N (t )φ(t, a) = n(t, a) =
∫ τl

a
n(t, a, τ ) dτ =

∫ τl

τs

n(t − a, 0, τ ) dτ −
∫ a

τs

n(t − a, 0, τ ) dτ (E6)
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JĘDRAK, RUBIN, AND OCHAB-MARCINEK PHYSICAL REVIEW E 108, 024405 (2023)

= n(t − a, 0) −
∫ a

τs

n(t − a + τ, τ, τ ) dτ (E7)

= 2σ�(t − a)N (t − a) −
∫ t−a+a

t−a+τs

n(t ′, t ′ − t + a, t ′ − t + a) dt ′ (E8)

= 2σ�(t − a)N (t − a) −
∫ t−a+a

t−a+τs

�(t ′)N (t ′) f1(t ′, t ′ − t + a) dt ′. (E9)

Dividing both sides of Eq. (E9) by N (t ) (11), we get (70), which is equivalent to the second line of (D9) if only τs = 0.
In order to find the relationship between the generation-time distribution f2(t, τ ) of extant cells and the generation-time

distribution f1(t, τ ) of mothers, we proceed in a similar way. Assume first that t � τ � a. Using (31), we get

f2(t, τ ) =
∫ τ

0
χ (t, a, τ ) da = 1

N (t )

∫ τ

0
n(t − a, 0, τ ) da = 1

N (t )

∫ τ

0
n(t − a + τ, τ, τ ) da = 1

N (t )

∫ t+τ

t
n(t ′, τ, τ ) dt ′

= 1

N (t )

∫ t+τ

t
�(t ′)N (t ′) f1(t ′, τ ) dt ′ = e−σ�(t )

∫ t+τ

t
�(t ′)eσ�(t ′ ) f1(t ′, τ ) dt ′. (E10)

The derivation is analogous for t � τ but we have to consider two cases: t � a and t � a,

f2(t, τ ) =
∫ t

0
χ (t, a, τ ) da +

∫ τ

t
χ (t, a, τ ) da = 1

N (t )

∫ t

0
n(t − a, 0, τ ) da + 1

N (t )

∫ τ

t
n(0, a − t, τ ) da (E11)

= 1

N (t )

∫ t

0
n(t − a + τ, τ, τ ) da + 1

N (t )

∫ τ

t
n(t − a + τ, τ, τ ) da = 1

N (t )

∫ τ

0
n(t − a + τ, τ, τ ) da (E12)

= 1

N (t )

∫ t+τ

t
n(t ′, τ, τ ) dt ′ = e−σ�(t )

∫ t+τ

t
�(t ′)eσ�(t ′ ) f1(t ′, τ ) dt ′. (E13)

From (E10) and (E11)–(E13), we obtain a single formula for f2(t, τ ), valid both for t � τ and for t � τ :

f2(t, τ ) =
∫ t+τ

t
e−σ�(t )eσ�(t ′ )�(t ′) f1(t ′, τ ) dt ′ =

∫ t+τ

t
eσ

∫ t ′
t �(t̃ )dt̃�(t ′) f1(t ′, τ ) dt ′. (E14)

This is Eq. (57).

APPENDIX F: LEBOWITZ-RUBINOW EQUATIONS
FOR THE mth GENERATION OF CELLS AND THEIR

SOLUTION IN THE FORM OF A SERIES

Equations (15)–(17) of the Lebowitz-Rubinow model can
be rewritten in a form that explicitly includes the number of
cell divisions in a given cell lineage. Let us call the cells
existing at t = 0 the zeroth generation. The mth generation
is the result of the mth cell division (counted from t = 0). The
cell number density is n(t, a, τ ; m). The boundary condition
(16) is now

n(t, 0, τ ; m) = 2σ

∫ τl

τs

h(τ |τ ′)n(t, τ ′, τ ′; m − 1) dτ ′, (F1)

while the initial condition is

n0(a, τ, 0) = n(0, a, τ ; 0). (F2)

We have n(t, a, τ ; 0) = 
(a − t, τ ) and

n(t, a, τ ) =
Mmax∑

m=Mmin

n(t, a, τ ; m), (F3)

where Mmin and Mmax are the minimum and maximum possi-
ble number of cell divisions in a lineage. Both Mmin and Mmax

depend on t, a, τs, and τl :

Mmin ≡ �(t − a)/τl�, Mmax ≡ �(t − a)/τs� + 1, (F4)

where �x� is the floor function or the integer part of x. Be-
tween tobs = 0 and tobs = t there are not less than Mmin and
not more than Mmax complete cell cycles.

The time evolution of n(t, a, τ ; m) does not depend on m
and is given by Eq. (15):

∂

∂t
n(t, a, τ ; m) + ∂

∂a
n(t, a, τ ; m) = 0. (F5)

As a consequence, each n(t, a, τ ; m) obeys Eq. (20). The
renewal equation (21) can be rewritten as

	m(t, τ ) = 2σ δm1(τl − t )
∫ τl

t
h(τ |τ ′)
(τ ′ − t, τ ′) dτ ′

+ 2σ (1 − δm1)(t − τs)

×
∫ t

τs

h(τ |τ ′)	m−1(t − τ ′, τ ′) dτ ′, (F6)

where 	m(t, τ ) = n(t, 0, τ ; m) and t and t are defined by (22).
So we have

n(t, a, τ ) =
{


(a − t, τ ) for a � t,∑Mmax
m=Mmin

	m(t − a, τ ) for a � t,
(F7)

where

	1(t1, τ1) = 2σ(τl − t1)
∫ τl

t1

h(τ1|τ0)
(τ0 − t1, τ0) dτ0,

(F8)
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and for i � 2

	i(ti, τi ) = 2σ

∫ t i

τs

h(τi|τi−1)	i−1(ti−1, τi−1) dτi−1. (F9)

τ j is the duration of the jth cell cycle: τ j = t j+1 − t j and ti =
t1 + ∑i−1

j=1 τ j .
Equations (F7)–(F9) can be used to construct a formal solu-

tion of the Lebowitz-Rubinow model equations in the form of
a series that depends only on the distribution of the inherited
generation time h(τ |τ ′) and the initial condition 
(a, τ ) [3].

Equations (F7)–(F9) can also be used to derive the relation-
ship

nr (t, a, τ ; m) = 2mnc(t, a, τ ; m). (F10)

Equation (F10) follows from (F8)–(F9) and from the fact
that both the initial state and the distribution of inher-
ited generation times are identical for the mother machine
(σ = 0, �(σ ) = c) and the batch culture (σ = 1, �(σ ) = r):

c(a, τ ) = 
r (a, τ ), hc(τ |τ ′) = hr (τ |τ ′).

APPENDIX G: RELATIONSHIP BETWEEN THE FORM OF
PROBABILITY DISTRIBUTIONS FOR MOTHER MACHINE

EXPERIMENTS (σ = 0) AND BATCH CULTURE (σ = 1)

In this Appendix, we show how to express a given prob-
ability distribution for the batch culture in terms of the same
distribution for the mother machine experiment. It turns out
that the relationship in question is different for the conditional
distributions [ f0(t, τ ) and f1(t, τ )] than for χ (t, a, τ ) and the
marginal distributions that can be obtained from χ (t, a, τ ):
φ(t, a) or f2(t, τ ). We also show how the instantaneous
population growth rate �r (t ) can be expressed in terms of
quantities obtained from cell lineage statistics.

In Sec. III A we have considered relationships between
probability distributions for the same values of σ = 0. That is,
we looked separately at mother machine experiments (σ = 0)
and separately at batch culture (σ = 1). This is justified in
the sense that these are two different experimental situations.
But as we have already pointed out, and as we will show in
this Appendix, σ = 0 is equivalent to chronological sampling,
and σ = 1 is equivalent to retrospective sampling for the same
batch culture population.

The difference between chronological and retrospective
sampling (and their respective probabilities) was explained
in Sec. III D. Briefly, in retrospective sampling, we assign to
each cell the statistical weight 1/N (t ), where N (t ) is the total
number of cells in the population [26]. In the case of chrono-
logical sampling, each cell line is weighted by the number of
divisions that have occurred since t = 0: each such division
contributes a factor of 1/2, so the total weight assigned to a
line is 2−m, where m is the number of cell divisions [26].

One can now ask what is the relationship between the same
probability distribution [e.g., f1(t, τ )] for σ = 0 (the case of
mother-machine experiments, or equivalently, chronological
sampling) and for σ = 1 (the case of batch culture, or retro-
spective sampling).

For the sake of simplicity, let us restrict our attention to the
original Lebowitz-Rubinow model. Then, for χ (t, a, τ ) and
its marginal distributions, φ(t, a) or f2(t, τ ), which describe

all cells in the population, this relationship in question can
be derived from the beautiful and general analogy between
population dynamics models and nonequilibrium statistical
mechanics [27,35]. However, the relationship is different
for the conditional distributions, f0(t, τ ) and f1(t, τ ), which
describe only newborn and mother cells, respectively. For ex-
ample, we have f1c(t, τ )/ f1r (t, τ ) �= f2c(t, τ )/ f2r (t, τ ). Here
we derive the relations that connect f0c(t, τ ) with f0r (t, τ ) and
f1c(t, τ ) with f1r (t, τ ), which to our knowledge have not been
given in the literature. These relations also make it possible to
give a formula that expresses �r (t ) using only chronological
statistics.

To do this, we need to consider the cell number density and
all probability distributions for each generation separately, as
we did in Appendix F. First, following Refs. [26,27] we define
χc(t, a, τ ; m) and χr (t, a, τ ; m) as

χc(t, a, τ ; m) = nr (t, a, τ ; m)

N02m
(G1)

and

χr (t, a, τ ; m) = nr (t, a, τ ; m)

N0e�(t )
, (G2)

where N0 = N (0). The definition of χr (t, a, τ, m) given above
is consistent with the definitions of Sec. II D and Appendix F;
cf. Eqs. (106) and (107).

To see which equations χc(t, a, τ, m) (G1) satisfies, let us
first consider Eq. (F1) for the batch culture, i.e., for σ = 1:

nr (t, 0, τ ; m) = 2
∫ τl

τs

h(τ |τ ′)nr (t, τ ′, τ ′; m − 1) dτ ′. (G3)

If we divide (G3) by N02m and use (G1), we get

χc(t, 0, τ ; m) =
∫ τl

τs

h(τ |τ ′)χc(t, τ ′, τ ′; m − 1) dτ ′. (G4)

nc(t, 0, τ ; m) = N0χc(t, 0, τ ; m) satisfies the same equation.
Now, if we sum both sides of (G4) with respect to m and
multiply by N0, we get

nc(t, 0, τ ) =
∫ τl

τs

h(τ |τ ′)nc(t, τ ′, τ ′) dτ ′. (G5)

The above equation has a form identical to (16) with σ = 0.
Similarly, summing both sides of (G3) with respect to m
gives (16) with σ = 1. Next, for all m, both nc(t, 0, τ ; m)
and nr (t, 0, τ ; m) satisfy (15). Therefore, both nc(t, 0, τ ) =∑

m nc(t, 0, τ ; m) and nr (t, 0, τ ) = ∑
m nr (t, 0, τ ; m) satisfy

(15). This shows that σ = 0 indeed corresponds to the case of
chronological sampling, while σ = 1 corresponds to the case
of retrospective sampling.

What is the relationship between χr (t, a, τ ; m) and
χc(t, a, τ ; m)? From (G2) and (G1) or from (F10) we get

χr (t, a, τ ; m) = 2me−�(t )χc(t, a, τ ; m). (G6)

The above equation also follows from the elegant formalism
of fluctuation relations [27,35]. Using (G6) we can now obtain
analogous relations between φr (t, a; m) and φc(t, a; m) as well
as between f2r (t, τ ; m) and f2c(t, τ ; m) where

φ�(σ )(t, a; m) ≡
∫ τl

a
χ�(σ )(t, a, τ ; m)d τ (G7)
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and

f2�(σ )(t, τ ; m) ≡
∫ τ

0
χ�(σ )(t, a, τ ; m) da, (G8)

and where �(σ ) was defined by (19): �(0) = c, �(1) = r.
Now for both σ = 0 and σ = 1 we can define the probabil-

ity that a randomly chosen cell belongs to the mth generation:

ϑ�(σ )(t, m) =
∫ τl

0

∫ τl

a
χ�(σ )(t, a, τ ; m) dτ da. (G9)

We also have

f0�(σ )(t, τ ; m) ≡ χ�(σ )(t, 0, τ ; m)

φ�(σ )(t, 0)
= χ�(σ )(t, 0, τ ; m)

2σ��(σ )(t )

(G10)

and

f1�(σ )(t, τ ; m) ≡ χ�(σ )(t, τ, τ ; m)

��(σ )(t )
. (G11)

The relations between f0r (t, τ ; m) and f0c(t, τ ; m) and be-
tween f1r (t, τ ; m) and f1c(t, τ ; m) have a different form than
in the case of χ�(σ )(t, a, τ ; m), φ�(σ )(t, a; m) or f2�(σ )(t, τ ; m).
Instead of (G6) we now have

f0r (t, τ ; m) = 2me−�(t ) �c(t )

2�r (t )
f0c(t, τ ; m) (G12)

and

f1r (t, τ ; m) = 2me−�(t ) �c(t )

�r (t )
f1c(t, τ ; m). (G13)

Note that f0r (t, τ ; 0) = 0. If the maximum number of cell
divisions in a population is Mmax = M, then we must have
f1r (t, τ ; M ) = 0, otherwise there will be newborn cells in a
population from the M + 1-th generation.

Let q�(σ )(t, s; m) be χ�(σ )(t, a, τ ; m), φ�(σ )(t, a; m), or
fi�(σ )(t, τ ; m) for i = 0, 1, 2, so s = a, s = τ or s = (a, τ ). We
have q�(σ )(t, s) = ∑

m q�(σ )(t, s; m). Following [35] we define

Rq(t, m|s) ≡ qc(t, s; m)

qc(t, s)
(G14)

and

Sq(t, s) ≡
∑

m

2mRq(t, m|s). (G15)

Now we are ready to express any probability distribution for
the batch culture in terms of the corresponding distribution
for the mother machine. For q(t, s) = χ (t, a, τ ), φ(t, a) or
f2(t, τ ) we get

qr (t, s) = e−�(t )Sq(t, s)qc(t, s). (G16)

However, for f0(t, τ ) we have

f0r (t, τ ) = �c(t )

2�r (t )
e−�(t )S f0 (t, τ ) f0c(t, τ ), (G17)

whereas for f1(t, τ ) we get

f1r (t, τ ) = �c(t )

�r (t )
e−�(t )S f1 (t, τ ) f1c(t, τ ). (G18)

We see that compared to (G16) there is an additional factor
proportional to �c(t )/�r (t ) in both (G17) and (G18). Now
consider two definitions of the fitness landscape

H (α)
q (t, s) = 1

t
ln[Sq(t, s)], (G19)

H (β )
q (t, s) = 1

t

{
�(t ) + ln

[
qr (t, s)

qc(t, s)

]}
. (G20)

H (α)
q (t, s) was used in Ref. [35] while H (β )

q (t, s) was used in
Refs. [27,28]. For q(t, s) = χ (t, a, τ ), φ(t, a) and f2(t, τ ) we
have H (α)

q (t, s) = H (β )
q (t, s) = Hq(t, s), where H (β )

q (t, s) is a
fitness landscape analyzed in Ref. [28] and in our Sec. III D.
However, for q = f0 and q = f1 we have

H (β )
f0

(t, τ ) = H (α)
f0

(t, τ ) + 1

t
ln

[
�c(t )

2�r (t )

]
(G21)

and

H (β )
f1

(t, τ ) = H (α)
f1

(t, τ ) + 1

t
ln

[
�c(t )

�r (t )

]
. (G22)

In general, H (β )
f0

(t, τ ) �= H (α)
f0

(t, τ ) and H (β )
f1

(t, τ ) �=
H (α)

f1
(t, τ ). As a consequence, to define fitness landscapes of

τ , neither f0(t, τ ) nor f1(t, τ ) should be used.
Next, following Ref. [28] and using the nonnegativity of

the Kullback-Leibler divergence (81), one can show that in
the case of the Lebowitz-Rubinow model we have

〈ln[Sq(t, s)]〉qc � �(t ) � 〈ln[Sq(t, s)]〉qr (G23)

for q(t, s) = χ (t, a, τ ), φ(t, a) or f2(t, τ ), where 〈(· · · )〉qr =∫
(· · · )qr (t, s) ds and similarly for 〈(· · · )〉qc . But this is no

longer the case for f0(t, τ ) and f1(t, τ ), for which we get

〈ln[S f1 (t, τ )]〉1c � �(t ) − ln

[
�c(t )

�r (t )

]
� 〈ln[S f1 (t, τ )]〉1r,

(G24)

〈ln[S f0 (t, τ )]〉0c � �(t ) − ln

[
�c(t )

2�r (t )

]
� 〈ln[S f0 (t, τ )]〉0r .

(G25)

As for the numerical values of the expressions appearing in the
double inequalities (G24) and (G25), note that the summation
in the definition of (G15) is taken over different sets of values
for S f1 (t, τ ) and S f0 (t, τ ). In the former case we have 0 � m �
M − 1, while in the latter we have 1 � m � M.

Relationship between �c(t ) and �r (t ). Determination of
�r (t ) using lineage statistics. Equations (G12) and (G13) can
be used to determine �r (t ) using only chronological statistics,
i.e., the quantities with σ = 0, �(σ ) = c. Integrating both
sides of (G13) with respect to τ , summing over m from m = 0
to m = M − 1, and shifting all terms with σ = 1, �(σ ) = r to
the left, we get

�r (t )e�(t ) = �c(t )
M−1∑
m=0

2mη1c(t, m), (G26)

where we define

η1�(σ )(t, m) =
∫ τl

τs

f1�(σ )(t, τ ; m) dτ. (G27)
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Likewise, (G12) yields

�r (t )e�(t ) = 1

2
�c(t )

M∑
m=1

2mη0c(t, m), (G28)

where

η0�(σ )(t, m) =
∫ τl

τs

f0�(σ )(t, τ ; m) dτ. (G29)

But (G26) and (G28) are actually the same equation, because
we have

f0(t, τ ; m + 1) ≡
∫ τl

τs

h(τ |τ ′) f1(t, τ ′; m) dτ ′, (G30)

and by integrating both sides of (G30) with respect to τ we
get

η0�(σ )(t, m + 1) = η1�(σ )(t, m). (G31)

Equation (G26) should be compared with Eq. (5) or Ref. [27],
which in our notation reads

e�(t ) =
M∑

m=0

2mϑc(t, m), (G32)

and which can be derived from (G6) by integrating with re-
spect to a and τ and summing over m from m = 0 to m = M.
The ϑ�(σ )(t, m) that appears in (G32) is defined by (G9). In
general, ϑ�(σ )(t, m) �= η1�(σ )(t, m).

Comparing (G32) to (G26), we see that the latter formula
uses only the statistics of the dividing cells, while the former
takes into account all cells in the population. This is a weak-
ness of the formula (G26), because at any time t between t
and t + �t , the number of dividing cells is much smaller than
the number of all cells. Nevertheless, if one wants to express
the instantaneous population growth rate �r (t ) only in terms
of chronological statistics, (G26) is an alternative to (G32).
Note that both �r (t ) and �c(t ) are observable, both being
proportional to the number of cells born at the observation
time t .

We can also combine (G32) and (G26) to get

�r (t ) = �c(t )

∑M−1
m=0 2mη1c(t, m)∑M
m=0 2mϑc(t, m)

. (G33)

It may be more convenient (or more accurate) to find �r (t )
using (G33) than using (G32) or (G26) alone. In addition,
Eq. (G33) gives a relationship between �r (t ) and �c(t ).

APPENDIX H: EXISTENCE AND UNIQUENESS OF
THE SOLUTION TO THE RENEWAL EQUATION (21)

Here we give a simple proof that the solution to the
Lebowitz-Rubinow model is unique, provided that we ex-
clude the “pathological” forms of the distribution of inherited
generation times h(t, τ |τ ′). [Here we assume that h(t, τ |τ ′)
can explicitly depend on time.] The proof breaks down for
h(t, τ |τ ′) containing the part proportional to the Dirac delta
function, h(t, τ |τ ′) ∼ δ(τ − τ ′), for example, for h(t, τ |τ ′) =
βδ(τ − τ ′) + (1 − β ) f (τ ) studied in [3], if β �= 0. In such
cases the uniqueness of the solution is not guaranteed.

Following Refs. [32,38], we define the following norm in
the space of continuous real functions of two variables 	 :
[0, T ] × [τs, τl ] → R:

‖	(t, τ )‖ω = max{e−ωt |	(t, τ )| : t ∈ [0, T ], τ ∈ [τs, τl ]},
(H1)

where

ω = 2 max{2σ h(t, τ |τ ′) : t ∈ [0, T ]; τ, τ ′ ∈ [τs, τl ]}. (H2)

Using the renewal equation (21) for a given initial condition

(t, τ ), we define

S[	(t, τ )] = 2σ(t − τs)
∫ t

τs

h(t, τ |ξ )	(t − ξ, ξ ) dξ

+ 2σ (τl − t )
∫ τl

t
h(t, τ |ξ )
(ξ − t, ξ ) dξ .

(H3)

The uniqueness of the solution to (21) may be proved by
invoking the Banach contraction principle applied to the op-
eration S defined by (H3). Namely, we will show that for two
solutions of (21), 	(t, τ ) and 	 ′(t, τ ) with the same initial
condition [
(t, τ ) = 
′(t, τ )], we have

‖S	 − S	 ′‖ω = max{e−ωt |S	(t, τ ) − S	 ′(t, τ )| : t ∈ [0, T ], τ ∈ [τs, τl ]} � 1
2‖	 − 	 ′‖ω. (H4)

Indeed,

∣∣S	(t, τ ) − S	 ′(t, τ )
∣∣ =

∣∣∣∣∣
∫ t

τs

2σ h(t, τ |ξ )
[
	(t − ξ, ξ ) − 	 ′(t − ξ, ξ )

]
dξ

∣∣∣∣∣
�

∫ t

τs

|2σ h(t, τ |ξ )|∣∣	(t − ξ, ξ ) − 	 ′(t − ξ, ξ )
∣∣ dξ

� ω

2

∫ t

τs

∣∣	(t − ξ, ξ ) − 	 ′(t − ξ, ξ )
∣∣ dξ, (H5)

and consequently

‖S	 − S	 ′‖ω � max

{
ωe−ωt

2

∫ t

τs

∣∣	(t − ξ, ξ ) − 	 ′(t − ξ, ξ )
∣∣ dξ : t ∈ [0, T ], τ ∈ [τs, τl ]

}
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� ω

2
max

{
e−ωt

∫ t

τs

eω(t−ξ )‖	 − 	 ′‖ω dξ : t ∈ [0, T ], τ ∈ [τs, τl ]

}

� ω

2
‖	 − 	 ′‖ω

∫ ∞

0
e−ωξ dξ = 1

2
‖	 − 	 ′‖ω. (H6)

In the transition from the second to the third line of (H5) we
used (H2), whereas in (H6) we used the following inequality:

∀ ∈ [0, T ], τ ∈ [τs, τl ] : |	(t̃, τ )| � exp(ωt̃ )‖	‖ω, (H7)

which is a consequence of the definition (H1) of ‖	‖ω.

APPENDIX I: MORE GENERAL DESCRIPTION OF
THE GENERATION-TIME INHERITANCE

In the Lebowitz-Rubinow model (15)–(17), generation-
time inheritance and mother-daughter generation-time cor-
relations are described by the parameterized probability
distribution h(τ |τ ′). This quantity appears in Eq. (16):
h(τ |τ ′)dτ is the probability that the generation time of both
daughter cells is τ , given that the generation time of their
mother was τ ′.

Thus, it is implicitly assumed that each of the two daugh-
ter cells (denoted + and − from now on) inherits the same
generation time upon division: τ+ = τ− = τ . Moreover, the
common value of τ inherited by both daughters is assumed to
depend only on the generation time τ ′ of their mother, but not
on the generation times of their more distant ancestors.

Both assumptions can be relaxed. In this Appendix, we
propose a more general model that explicitly takes into ac-
count generation-time correlations between sisters, as well as
between the cell of interest and the cells of G � 1 previous
generations in the lineage. We show that, under certain sim-
plifying assumptions, such a model can be reduced to the
effective model of the form analyzed in the main text.

1. Elimination of cell sister generation time

a. Heuristic justification

The simplifying assumption τ+ = τ− = τ can be justified
by the following argument. First, consider a general situation
where one of the sister cells inherits the generation time τ+
upon cell division, and the other inherits τ− (τ+ need not
equal τ−), provided that their mother’s generation time was τ ′.
Such an event is denoted by (τ+, τ−|τ ′). Let the probability of
(τ+, τ−|τ ′) be P (τ+, τ−|τ ′) and assume that it is equal to the
probability of the situation where τ+ and τ− are swapped be-
tween the daughters: P (τ+, τ−|τ ′) = P (τ−, τ+|τ ′). In such a
case, the average number of (τ+, τ−|τ ′) cell divisions between
t and t + dt is equal to the number of (τ−, τ+|τ ′) divi-
sions. Now we can cut and rearrange the lineage tree so that
instead of the two “asymmetric” divisions: (τ+, τ−|τ ′) and
(τ−, τ+|τ ′), we have two “symmetric” ones, (τ+, τ+|τ ′) and
(τ−, τ−|τ ′). Such a rearrangement changes the generation-
time correlation between the sister cells, but does not affect
the number of cells born with a given value of generation
time τ at observation time t . Thus, both �(t ) and n(t, 0, τ ) =
	(t, τ ) remain unchanged. As long as we are not interested

in the generation-time correlation between sisters, all model
predictions remain the same after this “reshuffling” of the
lineage tree. However, both daughters of a given mother now
inherit the same generation time.

b. Formal justification

Now we will try to make the arguments given above a
little more rigorous. First, consider the case of a population
in a batch culture. At each cell division, we can distinguish
between the old-pole and the new-pole daughter cells. The
former will be called “red” and marked with a plus (+); the
latter will be called “blue” and marked with a minus (−). It has
been shown experimentally that the new pole cells in E. coli
grow faster than the old pole cells [39]. However, we ignore
the effects of aging here: We assume that it is just as likely
that one daughter inherits the time of generation τ+ and the
other τ− as it is that τ+ and τ− are interchanged.

Furthermore, we assume that each cell is characterized not
only by its age a and the inherited generation time τ , but
also by the generation time of its sister, τ̃ , and that of its
mother (τ1), grandmother (τ2), and by the generation times
of the more distant ancestors: τ3, . . ., τG. Therefore, instead
of n(t, a, τ ), e.g., in (15) and (16), we now have to introduce
the following cell number densities: n+(t, a, τ, τ̃ , τ1, . . . τG)
for the “red” cells and n−(t, a, τ, τ̃ , τ1, . . . τG) for the “blue”
ones. We have

n+(t, 0, τ, τ̃ , �τ ) = n−(t, 0, τ̃ , τ, �τ ), (I1)

where �τ = (τ1, τ2, . . . τG). We also define

ns(t, a, τ, τ̃ , �τ ) = n+(t, a, τ, τ̃ , �τ ) + n−(t, a, τ, τ̃ , �τ ) (I2)

and

n(t, a, τ, �τ ) ≡
∫ τl

τs

ns(t, a, τ, τ̃ , �τ ) d τ̃ . (I3)

The time-evolution equation for both n+(t, a, τ, τ̃ , �τ ) and
n−(t, a, τ, τ̃ , �τ ) is identical to (15):

∂n+(t, a, τ, τ̃ , �τ )

∂t
+ ∂n+(t, a, τ, τ̃ , �τ )

∂a
= 0, (I4)

∂n−(t, a, τ, τ̃ , �τ )

∂t
+ ∂n−(t, a, τ, τ̃ , �τ )

∂a
= 0. (I5)

From (I2) and (I3) it also follows that both ns(t, a, τ, τ̃ , �τ ) and
n(t, a, τ, �τ ) obey (15), too:

∂ns(t, a, τ, τ̃ , �τ )

∂t
+ ∂ns(t, a, τ, τ̃ , �τ )

∂a
= 0, (I6)

∂n(t, a, τ, �τ )

∂t
+ ∂n(t, a, τ, �τ )

∂a
= 0. (I7)

(The operator ∂/∂t + ∂/∂a does not depend on τ̃ or the com-
ponents τ1, τ2, τ3, . . ., τG of �τ .)
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We should add the appropriate initial conditions to the
time-evolution equations (I4)–(I7):


+(a, τ, τ̃ , �τ ) = n+(0, a, τ, τ̃ , �τ ), (I8)


−(a, τ, τ̃ , �τ ) = n−(0, a, τ, τ̃ , �τ ), (I9)


s(a, τ, τ̃ , �τ ) = 
+(a, τ, τ̃ , �τ ) + 
−(a, τ, τ̃ , �τ ), (I10)


(a, τ, �τ ) =
∫ τl

τs


s(a, τ, τ̃ ; �τ ) d τ̃ . (I11)

Now consider the boundary condition, i.e., the influx of
newborn cells due to cell division. Let us focus on the “red”
newborns. Such cells can be daughters of either “red” or
“blue” mothers. The probability of these two situations is
proportional to h++(τ, τ̃ |�τ ) and h+−(τ, τ̃ |�τ ), respectively.
h++(τ, τ̃ |�τ ) dτ d τ̃ is the probability that a “red” cell inherits
the generation time τ and its “blue” sister inherits the gen-
eration time τ̃ , provided that their mother is “red” and the
generation times of G consecutive common ancestors of the
two daughters are the components of �τ . h+−(τ, τ̃ |�τ ) has an
analogous interpretation. So we have

n+(t, 0, τ, τ̃ , �τ )

=
∫ τl

τs

∫ τl

τs

h++(τ, τ̃ |�τ )n+(t, τ1, τ1, τ̃1, �τ ′) d τ̃1 dτG+1

+
∫ τl

τs

∫ τl

τs

h+−(τ, τ̃ |�τ )n−(t, τ1, τ1, τ̃1, �τ ′) d τ̃1 dτG+1.

(I12)

In the above, �τ ′ = (τ2, τ3, . . . τG+1), i.e., the primed quantities
refer to mothers. We have assumed here that the generation
time τ inherited by the “red” cell depends on the generation
times of its mother, grandmother, etc., up to the Gth gener-
ation, but it does not depend on τG+1, nor on the generation
times of the ancestors’ siblings.

Now we make another simplifying assumption: The “red”
cell can be equally likely a daughter of a “red” or a “blue”
mother,

h++(τ, τ̃ |�τ ) = h+−(τ, τ̃ |�τ ) = h+(τ, τ̃ |�τ ). (I13)

Using (I2), (I3), and (I13), we rewrite (I12) as

n+(t, 0,τ,τ̃ ,�τ ) =
∫ τl

τs

h+(τ,τ̃ |�τ )n(t,τ1,τ1,�τ ′) dτG+1. (I14)

For the “blue” cells, we have analogous equation:

n−(t, 0, τ, τ̃ , �τ ) =
∫ τl

τs

h−(τ, τ̃ |�τ )n(t, τ1, τ1, �τ ′) dτG+1,

(I15)

where h−(τ, τ̃ |�τ ) = h+−(τ, τ̃ |�τ ) = h−−(τ, τ̃ |�τ ), analogous to
the case of the “red” cells. We also have

h+(τ, τ̃ |�τ ) = h−(τ̃ , τ |�τ ). (I16)

Next, we make another assumption about the symmetry be-
tween the “blue” and “red” cells: The probability that a “red”
cell inherits the generation time τ and its “blue” sister inherits
the generation time τ̃ is equal to the probability of the situation
where the generation-time values are swapped between the
sisters,

h+(τ, τ̃ |�τ ) = h−(τ, τ̃ |�τ ) ≡ h(τ, τ̃ |�τ ). (I17)

Instead of defining h(τ, τ̃ |�τ ) as in (I17), we can add (I14) and
(I15) to get

ns(t, 0, τ, τ̃ , �τ ) = 2
∫ τl

τs

h(τ, τ̃ |�τ )n(t, τ1, τ1, �τ ′) dτG+1,

where

h(τ, τ̃ |�τ ) ≡ h+(τ, τ̃ |�τ ) + h−(τ, τ̃ |�τ )

2
. (I18)

The intuitive interpretation of (I18) is as follows: One of the
cells inherits the generation time τ upon division, but we have
no information whether this is a red or a blue cell. Now τ̃ can
be integrated out, and we finally get

n(t, 0, τ, �τ ) = 2
∫ τl

τs

h(τ |�τ )n(t, τ1, τ1, �τ ′) dτG+1, (I19)

where

h(τ |�τ ) ≡
∫ τl

τs

h(τ, τ̃ |�τ ) d τ̃ . (I20)

So far we have considered the batch culture. To get analogous
results for the mother machine, we have to consider only the
“red” cells and ignore the “blue” ones. As a result, the factor
2 in the boundary condition disappears.

2. Elimination of generation times of the cell’s grandmother
and more distant ancestors

In the previous subsection, we showed how to eliminate the
generation time of the cell’s sister from the model description,
provided that certain simplifying conditions are satisfied. We
derived the equations describing the time evolution of the cell
density n(t, a, τ, �τ ), where �τ = (τ1, τ2, . . . τG) and τ1 is the
generation time of the mother, τ2 is the generation time of the
grandmother, and so on.

Now our task is to keep the dependence of the inherited
generation-time distribution h(τ | . . .) on the mother’s gener-
ation time τ1, but to get rid of the generation times of more
distant ancestors. We are going to obtain Eqs. (15)–(17) of
the Lebowitz-Rubinow model, i.e., the time-evolution equa-
tion with initial and boundary conditions for the cell number
density,

n(t, a, τ ) =
∫ τl

τs

· · ·
∫ τl

τs

n(t, a, τ, �τ ) dτ1 · · · dτG. (I21)

Note that we no longer require that a < τi for i = 1, 2, . . . , G.
Our starting point for the following analysis is now

Eqs. (I7), (I11), and (I19). We also define

n(t, 0, τ, �τ ) = 	(t, τ, �τ ). (I22)

The inherited value of the generation time τ = τ0 depends on
τi, i = 1, 2, . . . , G as described by h(τ |�τ ) (I20). We assume
that the correlations between more distant generations (i >

G) are vanishing and that the environmental conditions are
constant.
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Integrating (I7) with respect to the components of �τ , we obtain (15). Similarly, the initial conditions (I11) reduce to (17).
However, to obtain the boundary condition (16) from (I19), we have to define an effective distribution of the inherited generation
times:

he(t, τ |τ1) ≡
∫ τl

τs
. . .

∫ τl

τs
h(τ |τ1, τ2, . . . , τG)n(t, τ1, τ1, τ2, . . . , τG, τG+1) dτ2 · · · dτG dτG+1∫ τl

τs
. . .

∫ τl

τs
n(t, τ1, τ1, τ2, . . . , τG, τG+1) dτ2 · · · dτG dτG+1

=
∫ τl

τs
. . .

∫ τl

τs
h(τ |τ1, τ2, . . . , τG) f1(t, τ1, τ2, . . . , τG, τG+1) dτ2 · · · dτG dτG+1∫ τl

τs
. . .

∫ τl

τs
f1(t, τ1, τ2, . . . , τG, τG+1) dτ2 · · · dτG dτG+1

= P (t, τ, τ1)

P (t, τ1)
= P (t, τ |τ1), (I23)

where

f1(t, τ1, τ2, . . . , τG, τG+1) = n(t, τ1, τ1, τ2, . . . , τG, τG+1)

N (t )�(t )
(I24)

is a generalization of the mother age distribution, f1(t, τ ), considered in the main text. We have∫ τl

τs

. . .

∫ τl

τs

f1(t, τ, �τ ) dτ1 · · · dτG = f1(t, τ ), (I25)

where f1(t, τ ) is given by (7) and (35). In (I23) we have also defined

P (t, τ, τ1) =
∫ τl

τs

∫ τl

τs

. . .

∫ τl

τs

P (t, τ, τ1, τ2, . . . , τG, τG+1) dτ2 · · · dτG dτG+1 (I26)

and

P (t, τ1) =
∫ τl

τs

∫ τl

τs

. . .

∫ τl

τs

∫ τl

τs

P (t, τ, τ1, τ2, . . . , τG, τG+1) dτ dτ2 · · · dτG dτG+1, (I27)

where

P (t, τ, τ1, τ2, . . . , τG, τG+1) = h(τ |τ1, τ2, . . . , τG) f1(t, τ1, τ1, τ2, . . . , τG, τG+1). (I28)

Note that P (t, τ, τ1, τ2, . . . , τG, τG+1) defined above is
properly normalized. Importantly, the time dependence of
P (t, τ, τ1) and P (t, τ1) need not cancel in (I23) and
he(t, τ |τ1) can depend on the observation time t even if
h(τ |τ1, τ2, . . . , τG) does not.

Finally, invoking (I23), we integrate (I19) with respect to
the components of �τ and we arrive at (16):

n(t, 0, τ ) =
∫ τl

0

∫ τl

0
. . .

∫ τl

0
n(t, 0, τ, �τ ) dτ1 dτ2 · · · dτG

= 2σ

∫ τl

0

∫ τl

0
. . .

∫ τl

0
h(τ |τ1, �τ ′)

× n(t, τ1, τ1, �τ ′) dτG+1 · · · dτ2 dτ1

= 2σ

∫ ∞

0
he(t, τ |τ1)n(t, τ1, τ1) dτ1. (I29)

In this way we have reduced the model defined by (I4), (I5),
and (I12) to the simpler one given by (15)–(17).

APPENDIX J: DERIVATION OF THE RUBINOW MODEL
FROM THE LEBOWITZ-RUBINOW MODEL

Starting from the Lebowitz-Rubinow model (15)–(17), we
derive here a model that is formally identical to the one pro-
posed by Rubinow in 1968 [34]. In the latter model, there
is only a single state variable x ∈ [0, 1], called maturity. x
increases with cell age a (or observation time t) from x = 0

at the beginning of the cell cycle to x = 1 at cell division. The
time evolution of x for each cell is assumed to be deterministic
and is given by the maturation velocity function g̃(t, x):

dx

dt
= g̃(t, x). (J1)

Let u(t, x)dx be the number of cells with maturity x at time t .
The equations of the Rubinow model are

∂

∂t
u(t, x) + ∂

∂x
[g̃(t, x)u(t, x)] = 0, (J2)

g̃(t, 0)u(t, 0) = 2σ g̃(t, 1)u(t, 1), (J3)

u(0, x) = u0(x). (J4)

We consider here a slightly different set of model equations
than the one originally proposed by Rubinow [34] or analyzed
in [32]. First, we allow g̃(t, x), which appears in (J1), (J3), and
(J2), to depend on the observation time t . Second, in analogy
to the case of the Lebowitz-Rubinow model, we introduce the
parameter σ in the boundary condition (J3): σ = 1 for the
batch culture and σ = 0 for the mother machine. However,
unlike the original model, we ignore cell death [34].

1. The maturity representation of the Lebowitz-Rubinow model

No unique, precise definition of maturity x was given in
Ref. [34]. In this reference we find the following passage: “By
level of maturity is meant the various stages in the growth
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of the cell such as birth, onset of DNA synthesis, onset of
mitosis, etc. These may or may not be readily observable. In
fact, it is difficult to say in what manner the maturity level of a
cell should be determined. For bacterial cells such as E. coli in
which DNA synthesis continues from the moment of birth, the
amount of DNA in the cell could be utilized as a measure of
cell maturity. Or x could simply be considered to represent
the amount of DNA in the cell. However, for many cells
in which DNA synthesis is only a portion of the life cycle,
such a measure is not completely satisfactory. Thus, at the
present time even the dimensions of x must be left unspecified.
Another possibility is to let x represent cell volume.” In this
quotation, we have changed the original notation of maturity
from μ to x. Here our definition of maturity is simply

x = a

τ
. (J5)

If, instead of the cell age a, we use x as defined in Eq. (J5)
as the independent variable of the Lebowitz-Rubinow model,
then (15) becomes

∂ ñ(t, x, τ )

∂t
+ 1

τ

∂ ñ(t, x, τ )

∂x
= 0, (J6)

where

ñ(t, x, τ ) = n(t, xτ, τ )τ (J7)

and n(t, a, τ ) is the solution of (15)–(17). Where there is a
risk of confusion, we use a tilde to distinguish the quantities
of the Rubinow model (maturity representation) from those of
the Lebowitz-Rubinow model (age–generation-time represen-
tation). Next, using (J7), we define

χ̃ (t, x, τ ) = ñ(t, x, τ )

N (t )
= χ (t, xτ, τ )τ, (J8)

where χ (t, a, τ ) is given by (28). From (J6) and (J8) we obtain
the time-evolution equation for χ̃ (t, x, τ ):

∂χ̃ (t, x, τ )

∂t
+ 1

τ

∂χ̃ (t, x, τ )

∂x
+ σ�(t )χ̃ (t, x, τ ) = 0. (J9)

We also define

u(t, x) =
∫ τl

τs

ñ(t, x, τ ) dτ (J10)

and

ϕ̃(t, x) = u(t, x)

N (t )
=

∫ τl

τs

χ̃ (t, x, τ ) dτ. (J11)

Within the Rubinow model, one can show that the total num-
ber of cells in the population,

N (t ) =
∫ 1

0

∫ τl

τs

ñ(t, x, τ ) dτ dx, (J12)

is given by (11), as it should be. Now, by integrating both sides
of (J6) with respect to τ and using (J8), (J10), and (J11), we
get (J2), provided that

g̃(t, x)u(t, x) =
∫ τl

τs

ñ(t, x, τ )

τ
dτ. (J13)

As a result,

g̃(t, x) =
∫ τl

τs

1

τ

ñ(t, x, τ )

u(t, x)
dτ =

∫ τl

τs

1

τ

χ̃ (t, x, τ )

ϕ̃(t, x)
dτ

=
∫ τl

τs

τ−1χ̃ (τ |x, t ) dτ ≡
〈

1

τ

〉
. (J14)

We can now derive (J3) from (16). After changing the vari-
ables from a to x, Eq. (16) reads

ñ(t, 0, τ )

τ
= 2σ

∫ τl

τs

h(τ |ξ, t )ñ(t, 1, ξ )
dξ

ξ
. (J15)

Using (J13), we actually get (J3) from (J10) and (J15). Fi-
nally, using (J7) and (J11), we obtain the initial condition
(J4) from the initial condition n(0, a, τ ) = 
(a, τ ) (17) of the
Lebowitz-Rubinow model.

Note that although h(τ |ξ, t ), which describes the inheri-
tance of generation times, does not appear explicitly in the
Rubinow model, it affects the form of the boundary condition
(J3). We see that (J2)–(J4) can be regarded as an effective
model with g̃(t, x) equal to τ−1 averaged over all cell cycle
lengths for given values of t and x.

2. Stationary solution for the Rubinow model

a. Steady exponential growth in batch culture

For σ = 1, in the steady-state limit, χ̃ (t, x, τ ) = χ̃r (x, τ ),
�(t ) = �r and N (t ) = N0 exp(�rt ). Invoking (55) and
changing the variable a to x, we obtain

χ̃r (x, τ ) = 2�r f0r (τ )τ exp (−�rxτ ). (J16)

Equation (J16) can also be derived directly from (J9), which
in this case is

dχ̃r (x, τ )

dx
+ τ�rχ̃r (x, τ ) = 0. (J17)

Integrating (J16) with respect to x, we obtain∫ 1

0
χ̃r (x, τ ) dx = f2r (τ ) = 2 f0r (τ )(1 − e−�rτ ), (J18)

as expected. For the maturity distribution ϕ̃r (x) defined by
(J11), we have

ϕ̃r (x) =
∫ τl

τs

χ̃r (x, τ ) dτ =
∫ τl

τs

2�r f0r (τ )τe−�r xτ dτ

= −2�r f̂ ′
0r (z)|z=�r x, (J19)

where f̂0r (z) is the Laplace transform of f0r (τ ), and f̂ ′
0r (z) is

the derivative of f̂0r (z) with respect to z. [We can extend the
integration limits in (J19) by replacing τs with 0 and τl with
∞, since f0r (τ ) = 0 for τ < τs and τ > τl .] If the generation-
time distribution of newborns is the gamma distribution,

f0r (τ ) = τα−1e−τ/β

βα�(α)
, f̂0r (z) = 1

(1 + βz)α
, (J20)

then we obtain from (J19)

ϕ̃r (x) = 2αβ�r

(1 + β�rx)α+1
. (J21)
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The normalization condition for ϕ̃r (x) (J21) is the Euler-Lotka
equation, which now reads

1 = 2

(1 + β�r )α
. (J22)

We rewrite (J21) using (J22) as

ϕ̃r (x) = 2α(2
1
α − 1)

[1 + (2
1
α − 1)x]α+1

. (J23)

From (J14), we also find the explicit form of the maturation
velocity:

g̃r (x) = − f̂0r (z)|z=�r x

f̂ ′
0r (z)|z=�r x

. (J24)

In particular, for f0r (τ ), which is given by (J20), we get

g̃r (x) = (1 + β�rx)

αβ
= [1 + (2

1
α − 1)x]

αβ
. (J25)

We rewrite Eq. (J24) as

f̂ ′
0r (z)

f̂0r (z)
= − 1

grB(�−1
r z)

, (J26)

and therefore

f̂0r (�rx) = exp

(
−

∫ x

0

�r

g̃r (x̃)
dx̃

)
. (J27)

b. Steady state in the mother machine experiment

For the mother machine experiment (σ = 0) in steady
state, Eq. (J9) reduces to dχ̃c(x, τ )/dx = 0; hence χ̃c(x, τ )
is a constant function of x, so it depends in a nontrivial way
only on τ . (In this and the following equations, c stands for
“chronological.”) To find the explicit form of χ̃c(x, τ ), it is
most convenient to use (56),

χc(a, τ ) = f0c(τ )∫ ∞
0 τ ′ f0c(τ ′) dτ ′ , (J28)

and (J8), from which, after changing the variables, we get

χ̃c(x, τ ) = τ f0c(τ )∫ ∞
0 τ ′ f0c(τ ′) dτ ′ . (J29)

We see that χ̃c(x, τ ) is identical to f2c(τ ) given by (65). As a
consequence,

ϕ̃c(x) =
∫ τl

τs

χ̃c(x, τ ) dτ = 1. (J30)

[More precisely, ϕ̃c(x) = (x)(1 − x), where (x) is the
Heaviside step function.] Finally, we get the maturation ve-
locity function for the present case:

g̃c(x) = 1∫ τl

τs
τ f0c(τ ) dτ

= 1

〈τ 〉0c
= �c. (J31)
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