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Curvature effects in interfacial acidity of amphiphilic vesicles
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We analyze the changes in the vicinal acidity (pH) at a spherical amphiphilic membrane. The membrane is
assumed to contain solvent accessible, embedded, dissociable, charge-regulated moieties. Basing our approach
on the linear Debye-Hückel approximation, as well as on the nonlinear Poisson-Boltzmann theory, together
with the general Frumkin-Fowler-Guggenheim adsorption isotherm model of the charge-regulation process, we
analyze and review the dependence of the local pH on the position, as well as bulk electrolyte concentration, bulk
pH, and curvature of the amphiphilic single membrane vesicle. With appropriately chosen adsorption parameters
of the charge-regulation model, we find a good agreement with the available experimental data.
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I. INTRODUCTION

The charging state of phospholipid membranes [1] and
lipid nanoparticles [2], but also other amphiphilic [3] as
well as proteinaceous self-assemblies [4], is governed by the
protonation-deprotonation equilibria of dissociable surface
molecular groups in contact with the aqueous subphase. In
the case of proteins [5], the negative charges stem from the
deprotonated carboxylate on the side chains of aspartic and
glutamic acid, and the deprotonated hydroxyl of the phenyl
group of tyrosine, while the positive charge originates from
the protonated amine group of arginine and lysine, as well
as the protonated secondary amine of histidine [6]. In the
case of phospholipids, the negative charge is derived from
deprotonated phosphate groups and deprotonated carboxylate,
while the positive charge, though rare in naturally occurring
lipids [7], stems from the protonated amine group or other
titratable molecular moieties with an engineered dissociation
constant [8].

Among the phenomena in biomolecular assemblies where
charging equilibria are particularly important, one can specif-
ically name the electrostatic interactions between membranes
[9], ion transport across the membranes [10], as well as the in-
sertion and translocation of membrane proteins [11]. To these
well-known examples one could also add the emerging role of
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charging equilibria in viral proteinaceous capsid shells [12],
their interactions with various substrates [13], and structural
reconstructions and maturation processes in chimeric protein-
lipid capsid shells [14–16].

The charging equilibria in biomacromolecular assemblies
typically involve local pH and local bathing solution ion con-
centrations, which—as has been recognized for a while—in
general differ from the bulk conditions [6,17,18], implying
that the changes in the bathing solution properties will affect
not only the pH sensing and pH response of lipid membranes
[19], but will also—and even more importantly—affect the
membrane protein(s) entering different biochemical reactions
required for the sustainability and proliferation of life. Eluci-
dation of the quantitative details of the relation between bulk
and local solution properties thus constitutes one of the chal-
lenges in the description of biomacromolecular assemblies.

We have recently formulated [20–22] a theoretical model
that couples the full macroscopic continuum description of
electrostatic interactions with the surface protonation and
deprotonation reactions of charged lipids and/or other am-
phiphillic molecules [8]. This model not only yields the details
of the lipid charging state as a function of the curvature and
bathing solution parameters, such as pH and salt concentra-
tion, but also, and this will be the focus here, the full spatial
profile of the pH in the vicinity of the membrane. In this way,
we can connect the interfacial curvature with the interfacial
pH for the nonplanar self-assemblies and assess the role of
the surface curvature in the interfacial acidity and basicity
properties. This connection in itself attests to the fact that
the knowledge of the bulk bathing solution properties does
not imply that we know what the local solution properties
are, which, in the last instance, determine the solution state
near the proteins and lipids functional groups. Below we will
argue that the local pH can actually veer off quite far from the
nominal values set in the bulk.
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In what follows, we will first recapitulate the basic features
of our theoretical model with the Poisson-Boltzmann volume
free energy functional for mobile charges and the Frumkin-
Fowler-Guggenheim adsorption isotherm model, formulated
in terms of the appropriate surface free energy, for the sur-
face charging equilibrium. We then solve the model in the
linearized Debye-Hückel (DH) approximation as well as in
the full Poisson-Boltzmann (PB) theory for a spherical vesi-
cle with finite thickness membrane, whose solvent accessible
surfaces contains the dissociable moieties. We additionally
assume that at all stages of the vesicle preparation, the mobile
charges are equilibrated with the bulk characterized by a con-
stant chemical potential. We specifically describe the spatial
profiles of the vicinal as well as luminal pH as a function of the
parameters of the model. Finally, we comment on the salient
features of the interfacial acidity and its dependence on the
bulk properties.

II. CHARGE-REGULATION MODEL

We consider a spherical vesicle with salt solution on the
two sides of its bilayer membrane, composed of two charge-
regulated (CR) monolayers containing dissociable moieties,
as shown in Fig. 1. The inner radius of the vesicle shell is R
with charge density σ1, and the outer radius is R + w with
charge density σ2. The approach described below broadly
follows our previous work and we shall only list the rele-
vant details that were further elaborated in Refs. [8,20–22].
We will focus on two CR models corresponding either to a
symmetric surface charge density interval, −σ0 � σ1,2 � σ0

(model 1), or to an asymmetric surface charge density interval,
−σ0 � σ1,2 � 0 (model 2), where σ0 = e0n0 is a structural
charge parameter corresponding to the maximal dissociated
surface charge, with e0 the elementary charge (e0 > 0) and n0

a structural surface density of dissociation sites. For all the
results presented here, we use n0 = 1 nm−2.

A fundamental quantity in our CR models is the fraction
of the neutral lipid heads η1,2 ∈ [0, 1] on the inner and outer
monolayers, where the protonation-deprotonation of dissocia-
ble moieties can take place, and we assume that σ1,2 and
η1,2 are uniform over the two monolayers. The connection
between σ1,2 and η1,2 is different in the two models that we
consider. In model 1 [20], the CR surface charge density is
given by

σi = 2n0e0
(
ηi − 1

2

)
, (1)

with −e0n0 � σ1,2 � e0n0 that can obviously change sign,
while in model 2 [23], we assume that the CR surface charge
density is given by

σi = n0e0(ηi − 1), (2)

so that −e0n0 � σ1,2 � 0 which, consequently, cannot change
sign.

We note that the two models described by Eqs. (1) and
(2) correspond to two situations, where the protonation-
deprotonation of dissociable moieties can lead to positive or
negative net charge (model 1), or it leads only to a single
type of net charge (model 2). Model 1 would correspond
to a membrane composed of at least two types of lipids, of
which one can be deprotonated (negative) and another one that

can be protonated (positive), with the latter rarely occurring
naturally [7]. Another instance would be a membrane with
embedded proteins, which are naturally polyampholytes and
contain both positive and negative amino acids, with the net
charge of the protein-membrane complex depending on the
pH. Model 2, on the other hand, is simpler and corresponds to
a single type of dissociable surface group, prevalently neg-
ative in the case of naturally occurring lipids. Apart from
being more complicated, model 1 needs, in general, more
phenomenological parameters, a complication we bypass by
simply assuming a single zwitterionic model characterized by
Eq. (1) for numerical convenience.

In numerical calculations the static dielectric constant of
water is assumed as εw = 80 and that of the lipid bilayer
membrane as εp = 5. The Debye screening length (λD = κ−1

D )
varies from about 0.34 to 10.75 nm, corresponding to the
monovalent salt concentration ranging from 1.0 to 0.001 M
[24]. Moreover, we define μ = εp/εw.

III. ELECTROSTATIC FREE ENERGY:
POISSON-BOLTZMANN AND DEBYE-HÜCKEL FORMS

We start with the standard PB free energy, or the DH free
energy in the linearized case, that depends on the distribu-
tion of mobile charges, assumed to belong to a univalent
electrolyte with a fixed bulk chemical potential. The surface
charges are assumed to be located at both interfaces of a
spherical membrane. Most of our results pertain to the DH
approximation that has proven to be useful not only to pro-
vide qualitative, but also quantitative results in the context of
various problems involving interactions of charged colloidal
particles [20,21,25–28]. We should, however, clearly state that
the linearization implied by the DH approximation pertains
only to electrostatics and not to the surface charging equilib-
rium, which is always considered in its full, nonlinear form.

There are various ways to write the PB free energy
[29] and we choose the field description, with the radially
varying mean-field electrostatic potential ψ (r) as the only
relevant variable. The total PB electrostatic free energy is then
given by

FES = −
∫

V
dV

{
εwε0

2

(
dψ (r)

dr

)2

+2nI [cosh βe0ψ (r) − 1]

}

+
∮

A1

dA1 ψ (R1)σ1 +
∮

A2

dA2 ψ (R2)σ2, (3)

where nI is the univalent electrolyte concentration in the
bulk, R1 = R and R2 = R + w, while the equilibrium value of
ψ (r) is obtained from the corresponding Euler-Lagrange (EL)
equation. The volume integral extends over all the regions
except the bilayer interior. Within the bilayer interior, there are
no mobile charges and the second term in the square brackets
is absent, so that the electrostatic free energy is simply

FES = − εpε0

2

∫
V

dV

(
dψ (r)

dr

)2

+
∮

A1

dA1 ψ (R1)σ1 +
∮

A2

dA2 ψ (R2)σ2, (4)
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FIG. 1. (a) Schematic representations of the relevant features of the charge regulation at the surface of an amphiphilic bilayer within model
1 and model 2. The gray slabs correspond to the bilayer membrane of width w. The white circles represent the dissociable protonation and
deprotonation sites on the bilayer surface; the green negative charges are the fixed surface charges. Blue ions are protons and red ions are mobile
negative ions. Note the difference between the ratio of available CR surface sites to the amount of fixed negative charges (green): In model 1, this
ratio equals 2, whereas in model 2, it equals 1. Consequently, in model 1, the charge is regulated in the interval −σ0 � σ1,2 � σ0 [see Eq. (1)],
whereas in the case of model 2, it is regulated in the interval −σ0 � σ1,2 � 0 [see Eq. (2)]. σ0 is a fixed maximal structural charge density.
Protons provided by the dissociable surface moieties can exchange with the solution and in the process charge or discharge the dissociable
groups. (b) Solution of the Frumkin-Fowler-Guggenheim dissociation isotherm, given by Eq. (12), for a single charge-regulated monolayer
with different values of the χ interaction parameter with ψ = 0. The critical isotherm corresponding to the inflection point of η = η(α) is
given by (α, χ ) = (−2, 4), implying that for χ � 4, η(α) is a smooth function of α, while for χ > 4, η(α) displays a discontinuous first-order
transition between a state with η � 0 and a state η � 1, delimited by the dashed coexistence line. χ = 0 corresponds to the Langmuir isotherm
with no discontinuous state transition.

where the volume integral now extends over the bilayer inte-
rior and, of course, the permittivity εp needs to be used.

A common approach to electrostatic effects in soft matter
and specifically in the case of charged membrane vesicles
is via the DH approximation [30], often coupled together
with small curvature, second-order expansion [7,31,32]. In
the DH approximation, valid strictly for βe0ψ (r) � 1 but
yielding qualitatively similar results to the full PB solution
also outside this limit [8], the corresponding expressions
for the electrostatic free energy given by Eq. (3) simplify

considerably to

FES = −εwε0

2

∫
V

dV

[(
dψ (r)

dr

)2

+ κ2
Dψ (r)2

]

+
∮

A1

dA1 ψ (R1)σ1 +
∮

A2

dA2 ψ (R2)σ2, (5)

where the inverse square of the Debye screening length λD is
given by κ2

D = 2nIβe2
0/(εwε0) and the volume integral again
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extends over all the regions except the bilayer interior. While
the free energies given by Eqs. (3) and (5) imply the PB
and the DH equation in the regions accessible to electrolyte
ions [25], respectively, Eq. (4) leads to the standard Laplace
equation inside the lipid dielectric core. Inserting the solu-
tion of the EL equations back into Eq. (5), it is then further
reduced to a form corresponding to the Casimir charging
process [33],

FES (σ1, σ2, R) = 4π

2∑
i=1

R2
i

∫ σi

0
dσi ψ (σ1, σ2, Ri )

−→ 1

2

2∑
i=1

4πR2
i σi ψ (σ1, σ2, Ri ), (6)

where the right arrow indicates the DH limit of the same
expression where the potentials are linear functions of the
charge density. With the explicit solution for the electrostatic
potential (see Appendix A), we can derive the DH expres-
sion for the electrostatic free energy per area as a function
of the radius of curvature R to inverse quadratic order [24],
obtaining an approximate but highly accurate form of the free
energy,

κDε0εwFel (σ1, σ2, R)

2πR2
= f0(σ1, σ2, κD,w) + f1(σ1, σ2, κD,w)

κDR

+ f2(σ1, σ2, κD,w)

(κDR)2
, (7)

where the curvature-independent terms,
f0(σ1, σ2, κD,w), f1(σ1, σ2, κD,w), and f2(σ1, σ2, κD,w)
are explicitly given in Appendix C. In general, the above free
energy density of a curved membrane is not symmetric in
the two solvent accessible surface charge densities that were
assumed to be constant.

The DH electrostatic free energy for fixed surface charges
displays a general quadratic dependence on the curvature of
the lipid bilayer. This quadratic dependence of electrostatic
free energy was standardly taken as a point of departure for
the electrostatic renormalization of the mechanical properties
of membranes, such as surface tension and bending rigidity
[24,34–38], but ceases to be the case for charge-regulated
membranes.

IV. CHARGE-REGULATION FREE ENERGY AND
SELF-CONSISTENT BOUNDARY CONDITIONS

Assuming that the inner and outer membrane surfaces are
chemically identical, we presume that the surface charge-
regulation process can be described by the Frumkin-Fowler-
Guggenheim adsorption isotherm, which is a two-parameter
adsorption model [39], parameterized with the adsorption
energy α, the interaction energy between adsorbed ions, χ ,
and the lattice gas entropy. For χ = 0, the Frumkin-Fowler-
Guggenheim model reduces to the Langmuir model. Other,
multiparametric models of variable complexity can be de-
fined, but will not be analyzed here [40].

The corresponding charge-regulation free energy densi-
ties of the inner and outer membrane surfaces, denoted by

i = 1, 2, are given by

FCR(ηi )

4πR2
i

= n0kBT

[
− αηi − χ

2
η2

i + ηi ln ηi

+ (1 − ηi ) ln (1 − ηi )

]
. (8)

This can be further normalized with respect to the inner area
4πR2, which is used later. The first two terms in the free
energy are enthalpic in origin. The other terms are the lattice
gas mixing entropy of charged sites with the surface area
fraction η and neutralized sites with the surface area fraction
1 − η.

In the case of phospholipids such as phosphatidic acid (PA;
smallest and simplest phospholipid; precursor for other phos-
pholipids), phosphatidylserine (PS), and phosphatidylglycerol
(DPPG), the negative charge comes from the deprotonated
conjugate base of phosphoric acid and deprotonated carboxy-
late, while the positive charge comes from the protonated
amine or ammonium head of cationic lipids but can also be
substituted with an engineered dissociation constant [1,41].

In these cases of charge regulation, the adsorbing and des-
orbing particles are identified as protons and α is then the
deprotonation free energy difference [42], which, in the case
of the Langmuir adsorption model [23], becomes

α = (pKa − pH0) ln 10, (9)

where pKa is the dissociation constant of the deprotonation re-
action and pH0 = − log10 [H+] is the bulk acidity. The above
identity is valid only on the mean-field level and if the concen-
trations of H+ and OH− ions, corresponding to the pH value,
are much lower than the concentration of the added salt.

The Langmuir model in this context is equivalent to
a Henderson-Hasselbalch equation with electrostatics in-
cluded [43]. Furthermore, χ , as in the related lattice regular
solutions theories (e.g., the Flory-Huggins theory [44]), de-
scribes the short-range interactions between nearest-neighbor
(de)protonation sites [45]. A parameter value α � 0 encodes
a favorable adsorption free energy, while χ � 0 represents
the tendency of particles on the macro-ion surface adsorp-
tion sites to phase separate into domains. Figure 1 displays
a schematic depiction of the charge-regulation process and
the Frumkin-Fowler-Guggenheim adsorption isotherm as a
function of α for different values of the interaction parameter
χ . It is important to reiterate at this point that other charge-
regulation models are, of course, possible and have been
proposed for various dissociable groups in different contexts
[39,40,46]. Our reasoning in choosing the particular Frumkin-
Fowler-Guggenheim dissocation isotherm was guided by its
simplicity in the way it takes into account the salient features
of the dissociation process on the membrane surface, and the
fact that the implied phenomenology has been analyzed before
in the context of charged amphiphilic systems [47].

From the general electrostatic free energy given by Eq. (6),
we then obtain the surface electrostatic potential as

∂FES (σ1, σ2, R)

∂σi
= 4πR2

i ψ (σ1, σ2, Ri ), (10)

for i = 1, 2. By considering Eqs. (10), as well as the form
of the charge-regulation free energy given by Eq. (8), we
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derive the standard Frumkin-Fowler-Guggenheim adsorption
isotherm [39,46] from the thermodynamic equilibrium ob-
tained by minimizing the total free energy of the system.
We get two equations that correspond to charge-regulation
boundary conditions,

∂FES (σ1, σ2, R)

∂σi

∂σi

∂ηi
+ ∂FCR(ηi)

∂ηi
= 0, (11)

for i = 1, 2, which, by taking into account Eq. (10), can be
solved by an implicit equation for ηi = ηi(ψ ) [20,21,45,48]
in the form

ηi(ψ ) = (1 + e−α−χηi (ψ )+2βe0ψ )−1, (12)

with ηi(ψ ) = ηi[ψ (σ1, σ2, Ri )]. The numerical solution of the
above equation is presented in Fig. 1 and corresponds to the
Frumkin-Fowler-Guggenheim adsorption isotherm. Again,
we reiterate that the DH linearization pertains only to elec-
trostatics, i.e., the first term in Eq. (11), while the surface
charging equilibrium is always considered in its full, nonlinear
form. It is evident from Fig. 1 that for χ � −2α, the ad-
sorption isotherm exhibits a discontinuous transition, whereas
above the “critical isotherm,” χ = −2α, i.e., χ � −2α, it
remains continuous.

The boundary condition derived above, given by Eq. (11),
together with the solution of either the full PB equation or
the linearized DH version for the electrostatic free energy,
given by Eq. (7), constitute the basic equations of our model.
In the case of the linear theory with the electrostatic free
energy given by Eq. (7), we obtain the surface potentials from
Eq. (10) as ψ (Ri ) = ψi(η1, η2).

Finally, we should note that our approach is based on
the free energy of the CR process and not on the assumed
isotherms that would follow from some chemical equilibrium
considerations, as was often done in the literature [23]. While
the two approaches are, in principle, equivalent, it seems to us
that the free energy approach has a more universal appeal and
also allows the explicit calculation of the total free energy, i.e.,
ES plus CR.

V. COMPARISON BETWEEN THE FULL PB
AND THE APPROXIMATE DH SOLUTIONS

The DH approximation [30] is standardly invoked in or-
der to derive limiting expressions and analytical formulas in
various contexts of macromolecular electrostatics [27,28]. In
order to be able to substantiate our usage of the DH approxi-
mation for most of the numerical results, we compare the pH
profile resulting from the full PB equation with the conse-
quences of the linearized DH equation. Again, we point out
that the linearization applies only to the electrostatic part, but
not to the charge-regulation part. Sometimes the linearization
is also extended to that case of charge regulation [49], as in
the constant regulation boundary condition often invoked by
Borkovec et al. [50], where for large separations one may ex-
pand the charge-potential relationships at the surface around
the potential at infinite separation.

We quantitatively compare the PB and the DH results for
certain choices of the model parameters in Appendix B. The
general conclusion is that qualitatively, and also often quan-
titatively, they generally coincide but exhibit differences in

certain parts of the parameter space. It seems that one can
thus safely use the DH approximation if the focus is on the
qualitative features, whereas a PB-based calculation would be
needed in order to do quantitative comparisons.

VI. INTERFACIAL AND LUMINAL pH

The above derivation and, specifically, the definition α =
(pKa − pH) ln 10 assume that the concentration of the protons
in solution is much lower than the concentration of salt and
does not contribute to the spatial profile of the electrostatic po-
tential, either on the PB or the DH level. For many dissociable
moieties at physiological solution conditions, this assumption
holds well, but, in general, a more detailed implementation of
the pH effects is needed; see, e.g., Refs. [51,52].

With the above provisos, the local pH is a “passive” vari-
able in the solution, except at the surface of the lipid bilayer
where it determines the dissociation state. The spatial depen-
dence of pH = − log10 [H+] is obtained from the electrostatic
potential as

pH(r) = − log10 [H+(r)]

= − log10 [H+]0 + βe0ψ (r) log10 e

= pH0 + βe0ψ (r) log10 e, (13)

where pH0 = − log10 [H+]0 is either the pH in the outside
bulk reservoir or the inside pH that is set by the procedure of
vesicle preparation and can coincide with or be different from
the bulk value [53]. The calculation of pH(r) then follows
from the electrostatic potential profile that is written explicitly
in the DH approximation in Appendix A, yielding the pH
profile in the interior of the vesicle as

pH(r � R) = − log10 [H+]0 + βe0 log10 e A
sinh(κDr)

r
,

(14)

where κD is the inverse Debye length and A is given in
Appendix A. Outside the vesicle, the relevant dependence is
obtained as

pH(r � R) = − log10 [H+]0 + βe0 log10 e B
exp(−κDr)

r
,

(15)

with B given in Appendix A. Obviously, both inside as well
as outside the vesicle, the local pH decays with the De-
bye length. The two constants A = A(σ1, σ2, κDw, κDR) and
B(σ1, σ2, κDw, κDR) are linear functions of the internal and
external surface membrane charge densities. The above for-
mulas allow us to explicitly obtain the spatial variation of pH
around and across the membrane, as well as the drops in pH
either across the membrane or between the bulk reservoir and
the region adjacent to the membrane.

Note that while the electrostatic potential is also well de-
fined inside the membrane, the pH is not since the protons do
not move freely across the hydrophobic kernel of the mem-
brane.

Because the pH exhibits a spatially varying profile, pH =
pH(r), we can define different characteristic values that can
be, at least in some cases, obtained either directly or indirectly
from experiments [11,54]. First, we can define a drop in pH
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across the membrane of the vesicle of magnitude

pHm = pH(R + w) − pH(R). (16)

Two other important quantifiers are the difference between the
bulk pH0 and pH right at the outer surface as a function of the
outer radius of the vesicle R, defined as

pHout = pH(R + w) − pH0. (17)

Similarly, the difference between the bulk value pH0 and pH
right at the inner surface as a function of the inner radius of
the vesicle R is defined as

pHin = pH(R) − pH0. (18)

In what follows, we will present several notable numeric re-
sults, while at the same time reminding the reader that this
is a multiparameter system and its parameter space cannot be
exhaustively and systematically explored at this point.

A separate question here is the value of the potential or,
equivalently, the pH at the center of the vesicle relevant for
the analysis of the lumina of viruses and viruslike particles
[55]. Here again, we invoke the differences stemming from
the different procedures of preparation that can constrain the
value of the inner pH to be different from the bulk, a situation
we will not analyze in detail. In the case of the DH, small
curvature approximation, this is found to be

lim
r−→0

ψ (r) = ψ (0) = εwσ1R2κDw2 + εp[σ1R2 + σ2(R + w)2]R + εwσ1(1 + κDR)wR2

ε0εw{(εp − εw )w2 + εpR2} csch(κDR), (19)

taking into account Appendix A. The pH in the lumen then
follows as

pH(0) = − log10 [H+]0 + βe0 log10 e ψ (0), (20)

where log10 [H+]0 is the acidity in the bulk reservoir. The
expression for pH(0) has two well-defined limits defined by

lim
κDR�1

ψ (0) = εp[σ1R2 + σ2(R + w)2] + εwσ1wR

ε0εw{(εp − εw )κDw2 + εpκDR2} (21)

and

lim
κDR�1

ψ (0) =εwσ1R(R + w)2(κDR)(κDw)e−κDR

ε0εw{(εp − εw )κDw2 + εpκDR2} . (22)

Clearly, in the second limit of κDR � 1, the potential in the
center of the vesicle vanishes and thus the luminal pH is the
same as in the bulk, if the membrane is fully permeable to
all mobile charged species. Interestingly enough, as can be
discerned from numerical solution, the electrostatic poten-
tial and, consequently, the pH inside the vesicle are almost
constant up to the inner surface, implying that the Donnan
potential approximation could be used for that case [55].
These are the only analytical limits that one can derive for
this problem.

Finally, we note that our calculation is based on the chem-
ical equilibrium and ionic identity between the ionic solution
inside and outside the vesicle.

VII. RESULTS

We now analyze some numerical results obtained mostly
within our model (1), unless specifically annotated for
model (2).

We first investigate the full spatial profile of pH in the
vicinity of the vesicle. We assume that in the preparation of
the vesicle, the inner and the outer solutions are equilibrated
at the same bathing solution pH. On the DH level, the solution
for the potential can be derived analytically (see Appendix A),
but the solution of the CR isotherm, given by Eq. (11), can
only be obtained numerically. The latter then yields the two
surface charge densities, σ1,2. Figures 2 and 3 show the plots

of pH vs r obtained from Eq. (13) for different values of the
bulk pH0 and the CR parameters α, χ . Clearly, the general
dependence of pH(r) indicates a large variation close to both
surfaces of the bilayer, to be quantified below.

We have used typical system parameters such as an
inverse Debye length κD = 1.215 nm−1 or, equivalently,
screening length λD = 0.823 nm corresponding to an aque-
ous electrolyte solution with 140 mM salt concentration. The
dimensionless curvature h is defined as h = 1/(κDR), where
R is the inner radius of the vesicle. In Figs. 2 and 3, the
dimensionless curvature h is fixed at 0.05, corresponding to
R = 16.46 nm.

From our Frumkin-Fowler-Guggenheim charge-regulation
model, we obtain (σ1 = −0.202 e0/nm2, σ2 =
−0.395 e0/nm2) for (α = −5, χ = 0) (no surface
interaction) [Fig. 2(a)] and (σ1 = −0.233 e0/nm2, σ2 =
−0.561 e0/nm2) for (α = −10, χ = 10) [Fig. 2(b)]. The
plots show that the pH decreases remarkably at the
region close to the vesicle’s inner surface and that the
pH at the outer surface is lower than that at the inner
surface. In general, the pH exponentially approaches the
bulk pH0 away from the membrane. For the negative
α = −10 and χ = 20 (χ = −2α) case [Fig. 2(c)], the
Frumkin-Fowler-Guggenheim charge-regulation model
yields (σ1 = 0.011 e0/nm2, σ2 = −0.561 e0/nm2). Close to
the surface, the pH increases like sinh(κDr), which is shown
with more detail in Fig. 2(d).

For positive α > 0 (Fig. 3), we obtain (σ1 = 1.357 e0/nm2,
σ2 = 0.567 e0/nm2) at (α = 20, χ = 20) [Fig. 3(a)] and
(σ1 = 0.474 e0/nm2, σ2 = 0.567 e0/nm2) at (α = 5, χ =
10) [Fig. 3(b)]. All curves exhibit the same scaling sinh(κDr)
near the inner surface. Clearly, in the case of α > 0, the
local pH decreases from the value it attains near the sur-
face of the bilayer towards the bulk pH0 for both Figs. 3(a)
and 3(b).

In order to clearly see the deviation of pH from the bulk
pH0, we have used κD = 1/20 nm−1 and R = 10 nm with
dimensionless curvature h fixed at 2. Figure 4 presents the plot
of pH(r) across the membrane for bulk pH0 = 5.0, (α, χ ) =
(10, 10) [Fig. 4(a)], (α, χ ) = (−10, 0) [Fig. 4(b)]. The
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FIG. 2. Plot of pH(r) across the membrane for different values of bulk pH0, in the case of (a) Langmuir dissociation isotherm (α, χ ) =
(−10, 0) and (b), (c) two Frumkin-Fowler-Guggenheim dissociation isotherms for (b) (α, χ ) = (−10, 10) and (c) (α, χ ) = (−10, 20), at
negative values of α. σ1,2 indicate the values of the inner or outer surface charge densities in the unit of e0/nm2 corresponding to the chosen
values of (α, χ ). In all cases, n0 = 1 nm−2, κD = 1.215 nm−1, and R = 16.46 nm, with dimensionless curvature h fixed at 0.05. The Bjerrum
length �B = 0.74 nm, εp = 5, εw = 80, surface dissociable group concentration n0 = 1 nm−2, and w = 4 nm. σ1 and σ2 are obtained from
the CR process. All curves show that the pH vicinal to the bilayer reduces remarkably from pH0 in the bulk, except in (c) where this is
the case only for pH in the outer compartment. pH at the outer surface is typically lower than right at the inner surface and then increases
exponentially towards pH0 in the region far from the outer surface. The pH(r) for the Frumkin-Fowler-Guggenheim dissociation isotherm
(α, χ ) = (−10, 20) in (c) is mostly independent of the position, except in the immediate vicinity of the inner surface, but is unobservable on
the scale of the figure. Note that σ2 does not change to the numerical accuracy of the first three decimal places.

rightmost panels show the expanded pH(r) scale in order to
see the small changes with r. The vicinal pH close to the outer
surface of the vesicle can be drastically different from the bulk
one, depending on the parameters.

We now analyze the dependence of the pHout on the
various parameters of the system in Figs. 5 and 6. The
procedure is the same as before; we solve analytically for
the electrostatic potential and then obtain the corresponding
surface charges from the Frumkin-Fowler-Guggenheim

charge-regulation model. The inverse Debye length is set as
κD = 1.215 nm−1. Of particular importance is the dependence
on the curvature and radius of the bilayer. In Figs. 5 and 6,
we show this dependence for positive and negative α. Clearly,
at first, pHout starts with a positive value, meaning that the
surface pH is larger than the bulk pH0. It then increases with
the radius, reaches a maximum, and then decays, eventually
even turning negative. This behavior is the more pronounced
the more α is negative. For positive values of α, pHout starts
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FIG. 3. Plot of the difference in the behavior of pH(r) across the membrane in the case of a (a) Frumkin-Fowler-Guggenheim dissociation
isotherm (α, χ ) = (20, 20) and (b) Langmuir dissociation isotherm (α, χ ) = (5, 10), at positive values of α. σ1,2 indicate the values of the inner
or outer surface charge density in the unit of e0/nm2 corresponding to the chosen values of (α, χ ). In all cases, n0 = 1 nm−2, κD = 1.215 nm−1,
and h = (κDR)−1 = 0.05. All curves show that at the region close to the inner surface of the vesicle, the pH increases as sinh(κDr). The pH
decreases exponentially towards pH0 in the region far from the outer surface for both (a) and (b). The Bjerrum length �B = 0.74 nm, εp = 5,
εw = 80, surface dissociable group concentration n0 = 1 nm−2, and w = 4 nm.
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FIG. 4. Plot of pH(r) across the membrane for bulk pH0 = 5.0, (a) (α, χ ) = (10, 10), (b) (α, χ ) = (−10, 0). In both cases, n0 = 1 nm−2,
κD = 1/20 nm−1, and R = 10 nm with dimensionless curvature h fixed at 2. σ1 and σ2, mentioned in the unit of e0/nm2, are obtained from
the CR process and correspond to the values of (α, χ ) combination. The vicinal pH close to the outer surface of the vesicle can be drastically
different from the bulk one, depending on the parameters, while the variation on the inner side cannot be discerned on the scale of the figure.
The Bjerrum length �B = 0.74 nm, εp = 5, εw = 80, surface dissociable group concentration n0 = 1 nm−2, and w = 4 nm.

with a negative value, reaches a minimum, and then increases,
eventually turning positive. Interestingly enough, because of
the properties of the Frumkin-Fowler-Guggenheim dissoca-
tion isotherm, for small curvatures, pHout can start at zero
[see Fig. 6(a)], for certain negative values of α. This simply
means that at that α, the bilayer is uncharged, charges up at a
critical value of curvature, and then follows basically the same
behavior as for other negative values of α. The pronounced

variation of pHout, which is, in principle, measurable [11],
indicates that one could get some indication for the numerical
values of the model parameters by comparing with suitable
experiments.

In a recent detailed experimental work on detec-
tion of curvature-dependent interfacial pH for amphiphilic
self-assemblies and unilamellar phospholipid vesicles, an
interface-interacting spiro-rhodamine pH probe and Schiff
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FIG. 5. Plot of pHout as defined in Eq. (17) vs R with κD = 1.215 nm−1 for different values of the CR parameters (α, χ ). (a) α � 0 and
(b) α > 0 for small (left panels) and large (right panels) radii R. Clearly, the pH vicinal but exterior to the vesicle can be larger or smaller than
the bulk pH0, depending on the charge-regulation parameters entering into the CR model. In general, α � 0 makes the vicinal pH larger, while
α � 0 makes it smaller. Also, the larger χ , the larger is this effect.
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FIG. 6. Plot of pHout vs R for different values of the CR parameters (α, χ ) and κD = 1.215 nm−1. (a) χ = −2α. (b) α < 0 and χ = 0 (no
surface interaction). For large enough positive χ , the dependence of pHout on R shows a behavior akin to a second-order transition, where
for small radii it vanishes, and then, at a critical value R = Rc, it starts deviating from zero, reaching for a maximum and then leveling off at
a constant value for a sufficiently large R dependent on the values of the dissociation parameters (α, χ ). No such behavior is observed for the
Langmuir dissociation isotherm χ = 0.

base polarity probe have been used to measure the deviation
of the local interfacial pH from the bulk phase [11]. It has
been shown that the charging state (and polarity) of the am-
phiphile and phospholipid self-assemblies can be regulated by
the curvature of the vesicle or micelle. While the experimental
system is more complicated than our model and specifically
contains also the interfacial dielectric constant, we believe it
could be instructive to compare the predictions of our model
with the measured values for pHout.

We calculated pH(r = R) and pH(r = R + w) from the
Frumkin-Fowler-Guggenheim CR model as described in de-
tail above. The curvature radius R is set as 100 nm, which
is one of the experimentally chosen values for the large
unilamellar phospholipid vesicles in the experiment [11].
Other examples include radii ∼15, 25, 50 nm that we did not
explicitly consider. We assumed the bulk value pH0 = 5.2 cor-
responding to the 2.0 mM cacodylate-HCl buffer. The inverse
ionic screening length was taken as κD = 0.5 nm−1 (Table I)
and κD = 1.0 nm−1 (Table II), corresponding to ionic con-
centrations of 25 and 100 mM. For both choices, pH(r = R)
and pH(r = R + w) are larger than the bulk pH0 for α > 0
and less than the bulk pH0 for α < 0. In addition, for the

critical adsorption isotherm χ = −2α, we have pH(r = R) =
pH(r = R + w) = pH0 for small radii of curvature.

In experiments of Ref. [11] performed for 1,2-dimyristoyl-
sn-glycero-3-phosphorylglycerol (DMPG)/1,2-dimyristoyl-
sn-glycero-3-phosphocholine (DMPC) (2 : 1) mixture in the
case of large unilamellar vesicles, the authors obtained
pHout � −1.4 to −1.6. In this particular case, the negative
charge stems from the deprotonation of DMPG, while the
DMPC lipid component carries no net charge. We model this
situation both in the framework of model (1), as well as model
(2), which seems to be the more realistic case. From our
calculations in the framework of model (1), with (α, χ ) =
(−10, 10), we obtain pHout [defined in Eq. (17)] as −1.221
(Table I) and −1.354 (Table II). Theoretically, depending on
the combination of (α, χ ), the value of pHout from our
model 1 could be obtained in the range of the experiments.

On the other hand, model 2 (Fig. 7), yielding only neg-
ative values of the surface charge density and thus, as
already stated, being closer to the experimental situation cor-
responding to DMPG deprotonation, with (α, χ ) = (−5, 0)
and (α, χ ) = (−5, 10), yields pHout up to −1.5, which is
again close to the stated experimental value [11]. Note, also,

TABLE I. pH at the inner and outer surfaces of the vesicle. The bulk pH0 is set as 5.2. The radii of the vesicle are 50 nm and 100 nm.
The Bjerrum length �B = 0.74 nm, εp = 5, εw = 80, surface dissociable group concentration n0 = 1 nm−2, and w = 4 nm. The inverse Debye
length is κD = 0.5 nm−1.

R = 50 nm R = 100 nm

(α, χ ) σ1(e0/nm2) σ2(e0/nm2) pH(r = R) pH(r = R + w) σ1(e0/nm2) σ2(e0/nm2) pH(r = R) pH(r = R + w)

(10,0) 0.213 0.306 6.897 7.421 0.232 0.280 7.003 7.268
(10,20) 0.518 0.832 9.345 11.218 0.587 0.777 9.767 10.930
(20,20) 0.786 0.846 11.395 11.372 0.876 0.921 11.961 12.035
(20,10) 0.585 0.833 9.856 11.234 0.646 0.797 10.218 11.091
(−5,10) 0 0 5.2 5.2 0 0 5.2 5.2
(−10,20) 0 0 5.2 5.2 0 0 5.2 5.2
(−10,10) −0.117 −0.188 4.265 3.840 −0.130 −0.165 4.190 3.979
(−20,5) −0.390 −0.582 2.091 0.987 −0.429 −0.526 1.871 1.310
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TABLE II. pH at the inner and outer surfaces of the vesicle. The bulk pH0 is set as 5.2. The radii of the vesicle are 50 nm and 100 nm.
The Bjerrum length �B = 0.74 nm, εp = 5, εw = 80, surface dissociable group concentration n0 = 1 nm−2, and w = 4 nm. The inverse Debye
length is κD = 1.0 nm−1.

R = 50 nm R = 100 nm

(α, χ ) σ1(e0/nm2) σ2(e0/nm2) pH(r = R) pH(r = R + w) σ1(e0/nm2) σ2(e0/nm2) pH(r = R) pH(r = R + w)

(5,5) 0.346 0.495 6.545 7.032 0.376 0.452 6.641 6.889
(10,0) 0.420 0.549 6.828 7.232 0.449 0.515 6.918 7.128
(10,20) 1.139 0.846 9.575 8.359 1.078 0.922 9.307 8.662
(20,10) 1.140 0.846 9.578 8.359 1.078 0.922 9.307 8.662
(−5,10) 0 0 5.2 5.2 0 0 5.2 5.2
(−10,20) 0 0 5.2 5.2 0 0 5.2 5.2
(−10,10) −0.256 −0.415 4.203 3.667 −0.284 −0.362 4.111 3.846
(−15,10) −0.511 −0.754 3.215 2.412 −0.563 −0.697 3.040 2.595

that in model 2, the corresponding CR parameters (α, χ )
corresponding to a close match with the experimental data are
much smaller and thus possibly more realistic.

VIII. DISCUSSION

The properties of the bulk bathing solution can be quite
different from the local environment near the embedded
membrane proteins and lipid functional groups. This is in par-
ticular important for the spatial dependence of the acidity or
basicity that actually governs the dissociation equilibrium
of protein and lipid dissociable groups. Recent detailed ex-
periments [11,54] have, in fact, shown that the surface pH
can differ from the bulk one by several units. A deviation
of 1.8 and 2.2 units from the bulk to the interface was de-
tected for cationic cetrimonium bromide (CTAB) micelles
and dimethyldioctadecylammonium bromide (DDAB) unil-
amellar vesicles [54], and the pH deviation of −1.4 to −1.6
for DMPG/DMPC (2 : 1) mixture large unilamellar vesicles
[11], respectively.

Motivated by these experimental findings, we performed a
detailed theoretical study of the effects of interfacial curvature
in the case of bilayer vesicles with surface dissociable groups,
on the interfacial acidity and basicity properties and found
that the local pH can actually veer off quite far from the
nominal values set in the bulk. Our theoretical model is based
on the Poisson-Boltzmann volume free energy functional for
mobile charges and the Frumkin-Fowler-Guggenheim adsorp-
tion isotherm model, formulated in terms of the appropriate
surface free energy, for the surface dissociation equilib-
rium. It quantifies the surface adsorption and dissociation
energy, the nearest-neighbor surface interaction energy, and
the lattice gas entropy of adsorption and dissociation sites.
In general, the model is rich enough to encode the simple
Langmuir isotherm behavior also captured by the original
charge-regulation model [23], as well as the more nuanced be-
havior of the Frumkin-Fowler-Guggenheim isotherm [20] and
the ensuing first-order adsorption-dissociation transition; see
Fig. 1. We solved the model numerically on the full nonlinear
PB level as well as in the linearized DH approximation for
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FIG. 7. Plot of pH(r) across the membrane for model 2, given by Eq. (2), with n0 = 1 nm−2, κD = 1.215 nm−1, and R = 16.46 nm, with
dimensionless curvature h set at 0.05. The surface charge densities on both sides of the bilayer σ1 and σ2 are negative and are noted in the
respective panels in the unit of e0/nm2. For the Langmuir dissociation isotherm (α, χ ) = (−5, 0) or for the Frumkin-Fowler-Guggenheim
dissocation isotherm (α, χ ) = (−5, 10), the corresponding pHout is comparable. For (α, χ ) = (−10, 30), pHout is much smaller and the
deviation of pH from pH0 at the outer surface can only be seen clearly after magnification in the immediate vicinity of the outer surface (not
shown).
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a spherical vesicle with finite thickness permeable membrane,
whose solvent accessible surfaces contain the dissociable moi-
eties. We were specifically interested to derive the spatial
profiles of the vicinal as well as luminal pH as a function of
the parameters of the model.

The numerical solutions of our model predict the full spa-
tial dependence of pH as a function of surface dissociation
model parameters, α and χ , assumed to be the same for the
outer (solution interface) as well as inner (luminal interface)
bilayer surface. What is clear is that for α � 0, the pH vicinal
to the bilayer differs remarkably from pH0 of the bulk, with
pH at the outer surface being lower than that right at the
inner surface; see Fig. 2. This behavior can be modified by the
amount of salt in the bulk reservoir or, equivalently, its screen-
ing length κD

−1, which can be seen by comparing the behavior
of Figs. 2 and 4. As for the case of α � 0 (see Fig. 3), clearly
the pH at the luminal interface is much more perturbed than
at the solution interface, implying that the negative curvature
quantitatively has a larger effect than the positive curvature of
the interface.

We also compared two different models of the CR process,
one associated with a symmetric charge distribution across
the bilayer (model 1) and another one with an asymmetric
distribution (model 2). We note that the obtained pH profiles
can be similar; the CR parameters (α, χ ) corresponding to that
profile are quite different; compare Figs. 2 and 7.

The change in pH at the solution interface can be quantified
further by computing pHout as defined in Eq. (17). From
Fig. 5, we discern that for α � 0, pHout as a function of
the membrane curvature develops a local maximum whose
position depends on the radius of the vesicle, R, contrary to
the case of α � 0 where pHout develops a local minimum
as a function of the radius of the vesicle. In both cases, the
position of the extremum also depends on the value of the
interaction parameter χ displacing it towards the interface
for larger positive values. The value of pHout can be either
positive or negative, depending on the surface interaction pa-
rameters. For some combinations of (α, χ ), pHout can show
a second-order transition as a function of R, being zero for
small enough R and then starting to deviate from zero at a
critical value of the radius of the vesicle; see Fig. 6. This can
only happen for large enough nearest-neighbor interactions at
the surface, χ �= 0.

Another notable conclusion, following from the compari-
son between the DH approximation and the full PB solution,
is that the former describes the same effects as the latter on
a qualitative level. Notably, the DH approximation as used
here does not imply just a DH solution for the electrostatic
potential, but also a full minimization of the final free energy
with nonlinear surface interaction terms included. It would
probably be more appropriate to refer to it as the DH-CR
solution than as merely a DH solution. We surmise that it
could also be used to great advantage in other situations where
the full PB solution is prohibitively difficult to find even
numerically.

Last but not least, we need to clearly state that our model
hinges on the assumption that the chemical potential of all
the mobile species, the water dissociation products, the elec-
trolyte ions and water, is constant, corresponding to the grand
canonical ensemble. We therefore assume that during the

process of the vesicle formation, the chemical equilibrium
is maintained at all times. If this were not the case, one
could not define the Debye length through the bulk electrolyte
concentration and one would have to formulate a canonical
ensemble version of our model, where the process of vesi-
cle formation traps a certain number of charged molecules
inside the vesicle and the charge and density distributions
would then strongly depend on the details of the vesicle
formation process, precluding a detailed quantitative analysis
since every preparation and indeed every vesicle in a single
preparation could be characterized by a different amount of
trapped charges.

ACKNOWLEDGMENTS

R.P., P.K. and H.R. acknowledge the support of the School
of Physics, University of Chinese Academy of Sciences,
Beijing, China. R.P. also acknowledges the support of the
Wenzhou Institute of the University of Chinese Academy of
Sciences, Wenzhou, Zhejiang, China. P.K., R.H. and R.P. ac-
knowledge funding from the Grant No. 12034019 of the Key
Project of the National Natural Science Foundation of China.

APPENDIX A: DEBYE-HÜCKEL SOLUTION

In the DH approximation, the electrostatic potential can be
explicitly obtained for different regions of the problem [56].
Inside the vesicle,

1

r

d2[r�I(r)]

dr2
+ κD

2�I(r) = 0, (A1)

giving

�I(r � R) = A
sinh(κDr)

r
. (A2)

In the lipid membrane or the amphiphilic layer, we have

1

r

d2[r�II(r)]

dr2
= 0, (A3)

implying

�II(R � r � R + w) = C

r
+ D, (A4)

while in the external compartment,

1

r

d2[r�III(r)]

dr2
+ κD

2�III(r) = 0 (A5)

is satisfied by

�III(r � R + w) = B
exp(−κDr)

r
. (A6)

Here the inverse square of the Debye screening length is given
by κ2

D = 2nIβe2
0/εwε0, where nI is the bulk electrolyte ionic

concentration.
Above, we have obviously assumed that the two compart-

ments (I and III) are in chemical equilibrium and can exchange
electrolyte solution ions. If this were not the case, the screen-
ing properties, κD(I) and κD(III), would differ.

024402-11



KHUNPETCH, MAJEE, RUIXUAN, AND PODGORNIK PHYSICAL REVIEW E 108, 024402 (2023)

0 10 20 30
r[nm]

1

2

3

4
p
H

(r
)

L
ip

id
m

em
b
ra

n
e

pH0 = 3.5

3.0

2.5

(a) (α, χ) : (−5, 0)

Δσ1 =−0.037
Δσ2 =−0.058

DH
PB

0 10 20 30
r[nm]

L
ip

id
m

em
b
ra

n
e

pH0 = 3.5

3.0

2.5

(b) (α, χ) : (−10, 10)

Δσ1 =−0.072
Δσ2 =−0.005

DH
PB

0 10 20 30
r[nm]

L
ip

id
m

em
b
ra

n
e

pH0 = 3.5

3.0

2.5

(c) (α, χ) : (−10, 20)

Δσ1 =−0.002
Δσ2 =−0.005

DH
PB

FIG. 8. Comparison of the spatial dependence of pH(r) across the membrane for different values of the bulk pH0 obtained from the full
PB and the linearized DH solutions in the case of α � 0. (a) (α, χ ) = (−5, 0), (b) (α, χ ) = (−10, 10), (c) (α, χ ) = (−10, 20) for different
values of the bulk pH0. Here, σi = σ PB

i − σ DH
i in the unit of e0/nm2 and n0 = 1 nm−2 is used. The absolute value of σi is greater within the

full PB theory, but it changes when there is a symmetry breaking, i.e., for (α, χ ) = (−10, 20). σ1 is negative here, but σ1 is positive in this
case, implying that σ PB

1 < σ DH
1 . The largest discrepancies are observed in the vicinity of the membrane, but even then they are overall small

and cannot be discerned on the scale of the figure.

The electrostatic potentials in different regions are con-
nected via boundary conditions that have the standard form

εw

∂�I(r)

∂r

∣∣∣∣
r=R

− εp
∂�II(r)

∂r

∣∣∣∣
r=R

= σ1

ε0
(A7)

and

εp
∂�II(r)

∂r

∣∣∣∣
r=R+w

− εw

∂�III(r)

∂r

∣∣∣∣
r=R+w

= σ2

ε0
. (A8)

The four unknown coefficients, A, B,C, and D, are obtained
from the boundary conditions and have the form obtained
previously in [56]:

A = A/, B = B/,C = C/, D = D/, (A9)

where

 = ε0εw{(εp − εw )κDw2 + εpκDR2

+ [εp(1 + 2κDR) − εw(1 + κDR)]w + κDR

× [εww2κD + εpR + εw(1 + κDR)w] coth(κDR)}
(A10)

and

A = εwσ1R2κDw2 + εp[σ1R2 + σ2(R + w)2]R

+ εwσ1(1 + κDR)wR2csch(κDR),

B = [{[εp(σ1R2 + σ2(R + w)2) − εwσ2(R + w)2]w}
+ εp[σ1R2 + σ2(R + w)2]R

+ εwσ2(R + w)2δκDR coth(κDR)] exp[κD(R + w)],

C = εw{σ1w
2κDR2 + [σ1R2 + σ2(R + w)2]R

+ σ1R2(1 + 2κDR)w

− σ2(R + w)2κD coth(κDR)},

D = εp[σ1R2 + σ2(R + w)2]

− εw[σ1R2 + σ2(R + w)2 + σ1R2κD(R + w)]

+ εwκDσ2(R + w)2R coth(κDR). (A11)

The results quoted in the main text are based on the various
limits stemming from these expressions.

APPENDIX B: COMPARISON BETWEEN THE FULL
POISSON-BOLTZMANN AND THE APPROXIMATE

DEBYE-HÜCKEL SOLUTIONS

Here we compare the linearized DH solution with the full
numerical solution of the PB equation. Technically, this refers
to solutions of the full PB equation,

1

r

d2[r�(r)]

dr2
+ κD

2

βe0
sinh βe0�(r) = 0, (B1)

and the linearized DH equation,

1

r

d2[r�(r)]

dr2
+ κD

2�(r) = 0, (B2)

in the regions (I and III) accessible to the electrolyte ions.
The methodology for obtaining the PB numerics has been
explained in detail in our previous publications [20–22] and
will not be elaborated here.

In Figs. 8 and 9, we compare the spatial profile of the pH
as obtained from the PB and the DH solutions. We notice that
overall, the difference for the chosen values of the parameters
is small, but is smaller for α � 0 (Fig. 8) than for α � 0
(Fig. 9). In fact, for large positive α, the DH solution ceases
to be a good approximation for the PB result, which would
invalidate the DH approach. We also specifically indicate the
difference in the surface charge densities, σi = σ PB

i − σ DH
i ,

obtained from the two approaches in order to facilitate the
comparison.
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FIG. 9. Comparison of the spatial dependence of pH(r) across the membrane for different values of the bulk pH0 obtained from the full
PB and the linearized DH solutions in the case of α � 0. (a) (α, χ ) = (20, 20), (b) (α, χ ) = (5, 10), and σi = σ PB

i − σ DH
i is provided in the

unit of e0/nm2. For all the plots, n0 = 1 nm−2 is considered. One observes a significant deviation between pH values obtained from PB and
DH approaches for (α, χ ) = (20, 20). For (α, χ ) = (5, 10), the difference is nevertheless small although σ1 is higher in this case. This is
because of the value of σ1 itself, which is high for (α, χ ) = (20, 20).

One conclusion following from the numerical results of
the PB and DH approaches is that qualitatively, they are very
similar, but for certain values of the parameters, there are
quantitative differences. It seems that one can thus safely
use the DH approximation if the focus is on the qualitative
features, whereas a PB-based calculation would be needed in
order to do quantitative comparisons.

Concerning the quantitative mismatch between the PB
and DH theories, we see the same trends as reported earlier
[25]. For equal surface charge densities, linear DH theory
overestimates the electrostatic potential. As our current study
suggests, this remains true even when charge regulation is
included, unless the surface charge densities computed within
the two theories do not vary too much. For significantly larger
σi, as is the case for the luminal region in Fig. 9(b), the elec-
trostatic potential and the corresponding pH can, of course, be
larger for the PB theory.

APPENDIX C: CURVATURE EXPANSION PARAMETERS

In writing the DH electrostatic free energy in the curvature
expanded form, given by Eq. (7) (see [24] for details), which is
based on the solution of the DH equation [56], we introduced
the following quantities:

f0(σ1, σ2, κD,w) = μ(σ1 + σ2)2 + κDw
(
σ 2

1 + σ 2
2

)
2μ + κDw

, (C1)

f1(σ1, σ2, κD,w)

= κDw

(
[3μ + 2(κDw) − 1]σ 2

2 + 2μσ1σ2 − (μ − 1)σ 2
1

2μ + (κDw)

)
,

(C2)

and

f2(σ1, σ2, κD,w) = κDw

[2μ + (κDw)]2

{
(μ − 1)[(κDw)(μ − 1) − μ]σ 2

1 − 2μ[(κDw) + 1](μ − 1)σ1σ2

+ [(κDw)3 + (κDw)2(4μ − 1) + (κDw)(5μ2 − 4μ + 1) − μ(μ − 1)]σ 2
2

}
, (C3)

which no longer depend on the curvature of the membrane.
In addition, for the curved membrane, f0, f1, and f2 are not
symmetric with respect to the two solvent accessible inner and
outer surface charge densities.

APPENDIX D: DEPENDENCE OF �pHm,�pHin,
�pHout ON CURVATURE

Taking into account the DH solution for �I,�II, and �III

above, and the definition of the constants A = A(R,w), B =
B(R,w), and C = C(R,w) in Eq. (A11) that explicitly depend
on R,w, we can rewrite the equations for the changes of the

acidity, Eqs. (16)–(18), in the explicit form

pHm = pH(R + w) − pH(R)

= βe0 log10 e

[
B(R,w)

exp[−κD(R + w)]

(R + w)

− A(R,w)
sinh(κDR)

R

]
, (D1)

pHout = pH(r = R + w) − pH0

= βe0 log10 e B(R,w)
exp[−κD(R + w)]

R + w
, (D2)

024402-13



KHUNPETCH, MAJEE, RUIXUAN, AND PODGORNIK PHYSICAL REVIEW E 108, 024402 (2023)

2 4 6 8
R [nm]

−3

−2

−1

0

1

2
Δ

p
H

in

×10−3

(a)

(α, χ) = (−10, 20)

(−5, 10)

2 4 6 8
R [nm]

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

(b)

(−5, 0)

(−7.5, 0)

(α, χ) = (−10, 0)

2 4 6 8
R [nm]

0.2

0.4

0.6

0.8

1.0

1.2

(c)

(α, χ) = (10, 0)

(7.5, 0)

(5, 0)

FIG. 10. Plot of pHin vs R for (a) the “critical isotherm” χ = −2α case, and for χ = 0 for (b) negative and (c) positive values of α.
Overall, pHin is very small with different behaviors in a curve, i.e., (i) pHin < 0, (ii) pHin = 0, and (iii) pHin > 0, i.e., pHin can
increase, decrease, or remain constant as the radius R varies. (b), (c) Plots of pHin vs R for the χ = 0 case, which corresponds to no surface
interaction. Plots are for (b) α < 0 and (c) α > 0. The pHin in both cases are, in fact, the same in absolute value, but different in sign. For all
cases, κD = 1.215 nm−1.

and

pHin = pH(r = R) − pH0

= βe0 log10 e A(R,w)
sinh(κDR)

R
. (D3)

Figures 10 and 11 show the plots of pHin vs R, with the
rest of the parameters the same as before. Figure 11 shows that
pHin decreases when we increase the size of the vesicle for
α < 0 [Fig. 11(a)], while pHin increases when the size of the

vesicle increases for α > 0 [Fig. 11(b)]. In addition, in Fig. 10,
we found that the dependence of pHin on the radius R can
show an increase, decrease, or remain constant, depending
on the values of the parameters (α, χ ). What is particularly
interesting is the “critical isotherm” corresponding to the χ =
−2α case that shows no variation with radius up to a critical
value and, after that, a nonmonotonic dependence. Figure 10
shows the case of χ = 0 (no surface interaction). The plots are
for both α < 0 [Fig. 10(b)] and α > 0 [Fig. 10(c)]. We found
that the pHin are the same, but different in sign.
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FIG. 11. Plot of pHin vs R. The inverse Debye length κD is fixed at 1.215 nm−1. σ1 and σ2 are obtained from the CR process. The plots
are shown for (a) α < 0 and (b) α > 0. pHin (a) decreases or (b) increases when the size of the vesicle increases.
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[24] H. R. Shojaei, A. L. Božič, M. Muthukumar, and R. Podgornik,
Phys. Rev. E 93, 052415 (2016).

[25] A. Majee, M. Bier, and S. Dietrich, J. Chem. Phys. 145, 064707
(2016).

[26] R. Bebon and A. Majee, J. Chem. Phys. 153, 044903 (2020).
[27] S. V. Siryk, A. Bendandi, A. Diaspro, and W. Rocchia, J. Chem.

Phys. 155, 114114 (2021).
[28] S. V. Siryk and W. Rocchia, J. Phys. Chem. B 126, 10400

(2022).
[29] T. Markovich, D. Andelman, and R. Podgornik, in Handbook

of Lipid Membranes, edited by C. R. Safynia and J. O. Raedler
(Taylor & Francis, London, 2021), pp. 99–128.

[30] M. Muthukumar, Physics of Charged Macromolecules.
Synthetic and Biological Systems (Cambridge University Press,
Cambridge, 2023).

[31] D. Andelman, in Handbook of Biological Physics: Structure
and Dynamics of Membranes, edited by R. Lipowsky and E.
Sackmann (Elsevier, Amsterdam, 1995), pp. 603–642.

[32] A. Fogden and B. Ninham, Adv. Colloid Interface Sci. 83, 85
(1999).

[33] E. J. Verwey and J. T. G. Overbeek, Theory of the Stability of
Lyophobic Colloids (Elsevier, Amsterdam, 1948).

[34] M. Winterhalter and W. Helfrich, J. Phys. Chem. 92, 6865
(1988).

[35] D. J. Mitchell and B. W. Ninham, Langmuir 5, 1121
(1989).

[36] H. Lekkerkerker, Physica A 167, 384 (1990).
[37] B. Duplantier, R. E. Goldstein, V. Romero-Rochin, and A. I.

Pesci, Phys. Rev. Lett. 65, 508 (1990).
[38] J. L. Harden, C. Marques, J. F. Joanny, and D. Andelman,

Langmuir 8, 1170 (1992).
[39] L. Koopal, W. Tan, and M. Avena, Adv. Colloid Interface Sci.

280, 102138 (2020).
[40] M. Borkovec, B. Jönsson, and G. J. M. Koper, in Surface

and Colloid Science, edited by E. Matijević (Kluwer Aca-
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