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Aftermath epidemics: Percolation on the sites visited by generalized random walks
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We study percolation on the sites of a finite lattice visited by a generalized random walk of finite length with
periodic boundary conditions. More precisely, consider Levy flights and walks with finite jumps of length >1
[like Knight’s move random walks (RWs) in two dimensions and generalized Knight’s move RWs in 3D]. In
these walks, the visited sites do not form (as in ordinary RWs) a single connected cluster, and thus percolation
on them is nontrivial. The model essentially mimics the spreading of an epidemic in a population weakened by
the passage of some devastating agent—like diseases in the wake of a passing army or of a hurricane. Using the
density of visited sites (or the number of steps in the walk) as a control parameter, we find a true continuous
percolation transition in all cases except for the 2D Knight’s move RWs and Levy flights with Levy parameter
σ � 2. For 3D generalized Knight’s move RWs, the model is in the universality class of pacman percolation,
and all critical exponents seem to be simple rationals, in particular, β = 1. For 2D Levy flights with 0 < σ < 2,
scale invariance is broken even at the critical point, which leads at least to very large corrections in finite-size
scaling, and even very large simulations were unable to unambiguously determine the critical exponents.
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I. INTRODUCTION

One disaster often does not come alone. In the present
paper, we deal with the purely geometric—i.e., percolation—
aspects of an epidemic which comes in the wake of another
disaster like a hurricane or a war [1], and can spread only on
the sites weakened by the first.

Percolation in its simplest version (called OP in the follow-
ing) deals with the establishment of long-range connectivity
in random but statistically homogeneous systems with only
short-range links between its units [2,3]. The two best-known
examples of OP are site and bond percolation, where the
system is a regular lattice of finite dimension, and local links
are established by inserting sites or bonds [2].

This is one of the paradigmatic models in statistical physics
and has many applications, the most important one being
the spreading of epidemics [4]. Starting from a local seed, a
systemwide epidemic (or pandemic) can evolve only, if the
spreading agent (virus, bacterium, or even rumor) can reach
wide regions, i.e., if large clusters of sites are connected. If
the population is originally healthy and susceptible (except for
the seed) and becomes immune or dead after a finite time of
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illness, this is the so-called SIR (susceptible-infected-
removed) model [5,6].

There are, of course, many modifications of this simple
scenario [7,8]:

(1) The system is not a regular lattice, but some sort of
network [9–11]. This leads to new universality classes, but at
least if the network is close to regular (all nodes have similar
degree) and uncorrelated, the situation is similar as to a regular
lattice.

(2) When recovered individuals become susceptible again,
the resulting SIS model is in a different universality class from
SIR or OP [12].

(3) If there are finite incubation or latency periods between
exposure to the spreading agent and the development of symp-
toms, in the resulting susceptible-exposed-infectious-removed
compartmental model [4,13], the universality class is, in gen-
eral, not changed.

(4) Things change again if contact with more than one
infectious neighbor is needed to infect a susceptible individ-
ual. In the extreme case of bootstrap and k-core percolation
[14,15], clusters can grow (or do not shrink) only if new
(old) sites have a certain minimal number of neighbors in the
cluster. This can be relaxed so infection of a new site is more
likely if it has more infected neighbors [16–18]. The most
dramatic effect in such cases is that the percolation transition
can become discontinuous or, actually, hybrid: Although the
order parameter jumps at the transition point, one also ob-
serves scaling laws as for continuous transitions.
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(5) Similar cooperativity effects occur if two (or more)
diseases cooperate in the sense that infection by one also
makes the individual more susceptible to be infected by the
other [19].

(6) Very important, in particular, in modern times where
people can carry infections over very long distances by flights,
are nonlocal single links. Often, this is modeled by assum-
ing that the infectious agent can perform a Levy flight, i.e.,
the probability for a link between two sites is described by
a power law [16,20–24]. In this case, one finds continuous
transitions in new universality classes which depend on the
value of the power-law exponent.

(7) While long-range effects are treated in the above mod-
els as long-range contacts between static individuals, more
realistic models take into account that individuals can move
[25,26]. In this case, the connection with percolation is,
strictly spoken, lost, because there is no static infected cluster
when the epidemic has ended. If the movements are slow, this
may not be a big problem and the standard scaling laws could
still hold with minor adaptions, but in case of Levy flights all
scaling laws have to be reconsidered [25,26].

(8) In OP, local connections are established randomly. In
contrast, in explosive percolation [27,28] (EP), one inserts
connections such that the occurrence of large clusters is de-
layed. The percolation transitions in EP were first thought
to be discontinuous, but they are actually continuous. Apart
from the smallness of the order parameter exponent β, its
most striking feature is that for finite lattice sizes L, the width
of the critical region and its shift relative to the infinite lat-
tice critical point satisfy power laws with different exponents
[17]—at least when analyzed in the conventional way where
the transition point is defined as independent of the individual
realization of the process [29].

(9) The system can be nonhomogeneous in the sense that
some regions are more susceptible and others less so. This can
lead to multiple percolation transitions, such that changes in
cluster size are of order N in each, where N is the size of the
system [30].

(10) Even if the system is homogeneous on large scales,
it might be that there are long-range correlations between the
densities of susceptible individuals and/or the links. This is
called correlated percolation (CP), and is maybe the largest
and most varied class of nontrivial percolation models [31].

It is this class of models which is considered in the present
paper.

By far the best studied special case is the Ising model.
It is well-known that the Ising critical point can be under-
stood as a percolation-type transition for carefully defined
(Fortuin-Casteleyn) clusters [32]. But one can also study the
percolation of clusters defined simply as connected sets of +
and – spins, and of the boundaries between them. This was
recently done by Grady [33], who found in three dimensions
a true percolation transition which is not in the OP universality
class. Remarkably, Grady found that, as in EP, the width of the
critical region for finite L and its shift from the exact critical
point at L = ∞ scale with different exponents.

Another class of CP models is one where the correlations
are assumed to decay with power laws C(r) ∼ r−α , without
specifying the mechanism which generated them [34–36].
Whether the resulting percolation transition is in the OP class

or not should now depend on α, according to a generalized
Harris criterion: The universality class should be modified
iff dν (0) > α, where ν (0) is the correlation length exponent
of the model without long-range correlations. This is seen in
Ref. [36] for some critical exponents, but not for all.

Finally, there is pacman percolation [37,38]. In this case,
all sites are susceptible initially. But before the actual per-
colation process starts, a random walker performs a walk
(with periodic boundary conditions) of T steps, where T ∼ N ,
with N = Ld being the number of sites. Percolation is then
considered only on those sites which were not visited by the
walker.

The model studied in the present paper can be seen as the
opposite of pacman percolation: We again have a finite-time
random walk (RW) before the percolation proper takes place,
but now the percolation process can take place only on sites
that had been visited by the walker. A real-world scenario
which might be modeled by this is an army or a hurricane
that passes through some geographic region and an epidemic
which can evolve only in the areas devastated by them. It is
true that hurricanes in the Caribbean don’t make RWs, but
Timur’s armies in Iran and neighboring countries [39] and
the armies in the Thirty Years War in Germany [40] came
very close. Periodic boundary conditions are used both for the
walker and for the percolation process.

An immediate problem with such models is that the visited
sites are connected for an ordinary RW, and thus the problem
of percolation seems trivial. The way out of this dilemma is,
of course, to modify the walk such that visited sites are not
(necessarily) connected. In the present paper, we study two
such modifications:

(a) Knight’s move and next-nearest-neighbor (NNN) move
RW. A Knight’s move in chess is one where one moves two
lattice constants in one direction (say, x), and one in the other
(say, y). From a given position, there are eight such moves.
A NNN move RW (NNN-RW) is a walk where one moves
±1 step in each direction. In the following, we shall only
show results for the Knight’s move RW, but we have also
done extensive simulations for NNN-RWs. We will show that
there is no sharp percolation transition in this model in two
dimensions, but there is one if the model is generalized to 3D.
A Knight’s move in this generalized 3D walk is one where one
moves two lattice constants in one direction and one in each
of the two others. In this case, there are 24 moves.

(b) Levy flights. Here, the probability for a step to have a
length > r decreases for large r as

P(r) ∼ r−σ , (1)

with 0 < σ < 2. Here, we studied only two-dimensional lat-
tices. For σ → 0, the walk is just a sequence of random jumps,
and our model reduces to site percolation. For σ > 2, the walk
is in most respects equivalent to a RW, except that visited sites
do not necessarily form a single connected cluster. It is for the
latter reason that we also studied the case σ = 2.5 to verify
that the behavior is the same as for the Knight’s move RW. We
also studied the case σ = 2, which is at the border between
Levy flights and ordinary walks.

A particular feature of the present model is that the finite
value of T can induce, for finite L, an additional characteristic
length scale. For RW, this length scale would be the square

024312-2



AFTERMATH EPIDEMICS: PERCOLATION ON THE SITES … PHYSICAL REVIEW E 108, 024312 (2023)

root of the rms end-to-end distance√
〈R2〉 ∼ T 1/2 ∼ Ld/2, (2)

which diverges for d > 2 faster than L when L → ∞, if the
periodic boundary conditions would not bring it down to L.
Indeed, as shown in Ref. [38], the latter implies that the corre-
lation between visited sites decays as C(r) ∼ r2−d . For Levy
flights, different powers of R scale differently, 〈Rq〉 ∼ T q/σ , if
q > σ [41], and the correlation function C(r) is, in general,
not a power law (see Appendix). Thus it is not scale-free,
suggesting that several new length scales might be involved.
This might imply that the standard finite size scaling (FSS)
behavior is no longer valid for Levy flights and that, in par-
ticular, the width and the shift of the critical peak in variables
like the fluctuations of the order parameter might scale with
different exponents, as found also in EP [28] and in boundary
percolation in the Ising model [33].

II. DEFINITIONS OF THE MODELS, ALGORITHMS,
AND COMPUTATIONAL DETAILS

Both models live on square, respectively, cubic lattices. For
computational efficiency, we replaced the periodic boundary
conditions by helical ones, where one uses a single integer
to label sites, and neighbors of site i are (i ± 1) mod N,

(i ± L) mod N, . . . (i ± Ld ) mod N . For generating Levy
flights, we used the algorithm of Refs. [21,23]: First, two ran-
dom numbers (δx, δy) between 0 and 1 are chosen randomly.
If r2 ≡ δx2 + δy2 � 1, they are discarded and an another pair
is chosen. Otherwise, �x = ± δx

r1+2/σ and �y = ± δy
r1+2/σ , where

all four sign combinations are chosen with equal probability.
In the following, we shall use the words walk and walker

both for Levy walks and for (generalized) Knight’s move
walks.

In the Introduction, walk and percolation were discussed
as independent and subsequent parts of the model, but for
computational efficiency we measured the properties related
to percolation already during the walk by means of the site
insertion version of the Newman-Ziff (NZ) algorithm [42]. In
our algorithm, we keep track of the number n of sites visited
by the walker (we use ρ = n/N as control parameter) and the
size Sn of the largest cluster when n sites are visited (Sn/N
is used as order parameter). At each step of the walk, we
registered whether a new site was visited or not. In the latter
case, the next step was taken immediately. If a new site i
was visited, however, we increased the number n of visited
sites by 1 and performed one step of the NZ algorithm. During
this step, the connected cluster containing i is determined. Let
us call its size Cn, whence

Sn = max{Sn−1,Cn}. (3)

The nth gap is defined as

�n = Sn+1 − Sn, (4)

and the maximal gap over all values of n is called �max, while
the n value at which the maximum occurs is called nmax and
the giant cluster size at this point is Smax.

As observables, we measured the average order parameter
and its variance as functions of n, the averages of �max and
nmax, and their variances. These were measured at lattice sizes

L = 32, 64, . . . 16384 for d = 2, and at L = 32, 64, . . . 512
for d = 3. The number of realizations for each Levy flight
parameter α and for each dimension in the case of (general-
ized) Knight’s move RW was >70 000 for the largest L, and
increased up to >2 000 000 for the smallest.

III. FINITE-SIZE SCALING

Because FSS might be different in the present model in
view of the additional length scale induced by the finiteness
of the walk time T , we should review the standard scenario
for its scaling.

We expect that Var[Sn] has a peak near the percolation
transition which gets sharper with increasing N . At the same
values of N , the gaps should also be maximal. Let us call
ρc(L) the position of the peak of the distribution of nmax/N at
given N = Ld , and ρc = limL→∞. Let us furthermore define
the order parameter exponent β and the correlation length
exponent ν by demanding for infinite systems that

s ≡ L−2〈Sn(ρ)〉 ∼ (ρ − ρc)β forρ > ρc (5)

and

ξ (ρ) ∼ |ρ − ρc|ν, (6)

where ξ (ρ) is the correlation length which for percolation is
defined as the rms radius of the largest finite cluster.

Standard (FSS) arguments [mainly, that observables are
homogeneous functions near a critical point, that there is only
one unique divergent length scale as ρ → ρc, and that the scal-
ing of a quantity depends only on its (anomalous) dimension],
lead to the ansatzes

s = Ld f −d
S[(ρ − ρc)L1/ν] (7)

and

χ ≡ L−2{Var[Sn(ρ)]}1/2 = Ld f −d
χ [(ρ − ρc)L1/ν], (8)

where

d f = d − β/ν. (9)

For bond percolation (whether correlated or not), Sn would
increase whenever the largest cluster eats a smaller one. The
largest gap would thus occur when the largest second-largest
cluster gets eaten. If we still assume that all masses scale with
L according to their anomalous dimension, this would imply
that also

〈�max〉 ∼ χ
�

≡ {Var[�max]}1/2 ∼ Ld f (10)

at criticality, while equations analogous to Eqs. (7) and (8)
(with scaling functions 
� and 
χ

�
) should hold for ρ �= ρc.

For the present case of site percolation, essentially the same
argument applies. There, �n corresponds to the sum of a small
number of eaten neighboring clusters, and Eq. (10) can be
assumed still to hold.

Finally, we expect that distributions of observables like
Smax, ρmax (the density of visited sites where the largest gap
occurs) and �max should be, up to normalization, functions of
dimensionless variables, where we can write Smax/Ld f , (ρ −
ρc)L1/ν and �/Ld f , so we can write

PS (Smax) = L−d f fS (Smax/Ld f ), (11)

Pρ (ρmax) = L1/ν fρ[(ρmax − ρc)L1/ν], (12)
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and

P
�

(�max) = L−d f f
�

(�max/Ld f ) (13)

[notice that Eqs. (11) and (13) of Ref. [43], which are anal-
ogous to Eqs. (11) and (13), are more complicated without
need].

According to the standard FSS scenario, the variance of Sn

and the distribution of ρmax have nearby peaks which have the
same scaling with L and whose position is shifted from ρc by
the same scaling. If we denote the average of these two peak
positions as ρc(L), we should thus have

ρc(L) − ρc ∼ peak width ∼ 1/Lν . (14)

IV. NUMERICAL RESULTS

A. Two dimensions

1. Conventional variables

We studied percolation on the sites visited by Levy flights
with σ = 0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.25, 1.5, 1.7, 1.8, 1.9,
2.0, and 2.5. The last two values are, strictly speaking, no
longer Levy flights (where σ < 2 for d = 2) but scale like
ordinary RWs, but we can also use the Levy flight-generating
algorithm for these values, and get nontrivial results because
the visited sites do not form, in general, connected clusters.
We also simulated ordinary site percolation, which corre-
sponds to σ = 0, to see whether the scaling changes when
going from σ = 0 to σ > 0.

In Fig. 1, we show the order parameter s and its fluctuations
χ as functions of the density ρ of visited sites, for N = 16 384
and for typical values of σ . We see the very sharp transition
for ordinary site percolation (σ = 0), while the transitions
become increasingly more fuzzy for increasing σ and happen
at smaller densities of allowed sites. Indeed, we claim that the
leftmost curve (for σ = 2.5) and maybe also that σ = 2 do not
show phase transitions at all. To settle this question, we also
have to look at smaller L and perform careful FSS analyses.

In Fig. 2, we show the values of χ against ρ for L ranging
from 64 to 16 384, and for σ = 0 [Fig. 2(a)] and σ = 1.5
[Fig. 2(b)]. More precisely, in view of Eq. (8), we plotted
Ld−d f χ against (ρ − ρc)L1/ν , where we took the standard OP
values of d f and ν for σ = 0, but had to use fitted values of the
critical exponents for σ = 1.5. There are several comments:

(i) The collapse is not perfect even for σ = 0 (where we
know the exact asymptotic scaling), which illustrates the im-
portance of nonleading corrections to scaling. This also shows
that using least-squares fits to obtain the best data collapse in
such figures could be highly misleading. Indeed, data collapse
plots like Fig. 2 are very helpful in getting rough overviews,
but other methods are, in general, better suited to obtain
precise results. For percolation, these include, e.g., spanning
probabilities [44], the mass of the second-largest cluster at
criticality [45], or the scaling of gaps as discussed in the
previous section [43,46,47]. In the present case, estimating
spanning probabilities or second-largest cluster masses would
abrogate the advantages of the NZ algorithm, and was thus not
done.

(ii) With increasing σ , the fractal dimension d f increases
slightly, but it hardly changes. In contrast, ν increases dra-
matically. But we still obtain a perfect data collapse, which

FIG. 1. Order parameters (a) and the square root of their vari-
ances (b) at L = 16 384 for five values of σ between 0 and 2.5,
plotted against the density of allowed sites ρ, which serves as a
control parameter.

implies that the width of the peak and its shift from the exact
critical point (which has also decreased significantly from its
value for σ = 0) scale in the same way with L. Thus, we see
here no indication for two different ν exponents.

The critical threshold ρc and the exponents ν and β can
also be estimated by using Eqs. (5) and (7). In Fig. 3, we
show, again for σ = 1.5, a data collapse plot in which we
plotted L2−d f s against (ρ − ρc)L1/ν . We used the same value
of ν as in Fig. 2(b), but for optimal collapse we had to use
slightly different values of d f and ρc. Since precise error esti-
mates are difficult from such data collapse plots, we see these
differences as rough error estimates. In addition, we show in
Fig. 3 a curve indicating const (ρ − ρc)β , with β = (2 − d f )ν.
It shows that Eqs. (5) and (9) are rather well satisfied.

Similar analyses were also made for other values of σ ,
but we do not report results since more precise estimates of
critical parameters are obtained from gap scaling, as we shall
show next.

2. Gap scaling in the event-based ensemble

In the above conventional types of analyses, observables
are studied at fixed values of the control parameters. It
was suggested first by Manna and Chatterjee [46] (see also
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FIG. 2. Data collapse plots of χ against ρ for σ = 0 (a) and
σ = 1.5 (b). The critical exponents used in these plots are the exact
ones for standard OP in (a) and fitted ones in (b). Note that, in view
of the visible deviations from a perfect data collapse in (a) (where
the asymptotic scaling is known exactly), the good data collapse
in (b) might be a bit fortuitous, and the precise values of the fitted
exponents for σ = 1.5 should not be taken too seriously.

FIG. 3. Data collapse plot of s against ρ for σ = 1.5. The expo-
nent ν is the same as in Fig. 2(b), but df and ρc are slightly readjusted
for best collapse. Also plotted is a power law s = const (ρ − ρc )β ,
showing that Eqs. (5) and (9) are well satisfied.

FIG. 4. Plots of Pρ (ρ ) (the distribution of maximal gap positions)
and of the width χ of the order parameter distribution at given ρ at
σ = 1.8. Normalization of all curves is such that they all have the
same height, for easier comparison of their widths. It is seen that
Pρ (ρ ) has the sharpest peak, even if we compare it to curves of χ at
different values of L.

Refs. [29,43,47,48]) that more precise estimates could be
obtained by studying observables at that value of the control
parameter where the largest gap (i.e., the largest jump in the
order parameter) occurs in individual realizations. These val-
ues fluctuate, of course, from realization to realization, and the
ensemble of realizations at the point of maximal gap is called
an event-based ensemble in Ref. [29]. This was proposed
for EP [46,47], where these fluctuations are excessively large
[28], and its usefulness for other percolation transitions was
suggested in Refs. [43,48].

That gap scaling studied at the points of maximal gaps is
also useful in the present model is suggested by Fig. 4. There
we plotted Pρ (ρ) (the distribution of maximal gap positions)
at L = 2048 and σ = 1.8, and compared it to three curves of χ

at the same value of σ and for three different values of L. For
easier comparison of their widths, we used the same arbitrary
normalization for all four curves. It is clearly seen that Pρ (ρ)
has the narrowest peak. It has the largest fluctuations, but this
drawback is far outweighed by the sharpness of its peak.

Fractal dimensions. Let us first look at the fractal dimen-
sions. It can either be obtained from the average values and
variances of Smax (the size of the giant cluster at criticality) or
from the average values and variances of �max (which, as we
pointed out, should scale like the size of the second-largest

cluster). In Fig. 5, we show log-log plots of L−d (0)
f 〈Smax〉

[Fig. 5(a)] and of L−d (0)
f 〈�max〉 [Fig. 5(b)] against L,

where d (0)
f = 91/48 is the fractal dimension in OP. We see

in both panels that the curves are horizontal for σ < 1, sug-
gesting that the model is in the OP universality class for
σ < 1. For σ > 1, there are, however, significant deviations
which become more and more pronounced with increasing
σ . But since all curves are strongly nonlinear, it is impossi-
ble to quote with certainty an asymptotic power law for any
σ > 1. We also indicate in both panels the power laws Smax ∼
�max ∼ L2, which we would expect for compact clusters. It is
very strongly suggested that this is the asymptotic scaling for
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FIG. 5. Log-log plots of L−d (0)
f 〈Smax〉 (a) and of L−d (0)

f 〈�max〉
(b) against L. In (b), we also show a straight line with the slope that
would be expected for compact clusters (df = 2).

σ > 2 (and for Knight’s move RWs), and we will later give
strong arguments that there is no sharp percolation transition
in this case. Whether there is a sharp transition for σ = 2 is
an open question.

Analogous plots for the (square roots of the) variances are
shown in Fig. 6. Again both panels of Fig. 6 clearly show
OP scaling for σ < 1, and non-OP scaling for σ > 1. But
again it is impossible to determine the asymptotic scaling laws
for σ > 1, except that the data suggest strongly that clusters
are compact for Levy flights with σ > 2 and for the Knight’s
move RWs.

All these results agree perfectly with what we obtained
from the conventional analysis (data not shown). In partic-
ular, we understand now that the fractal dimensions used in
Figs. 2(b) and 3 are only effective exponents valid in the
studied range of L, and it should not surprise that they differ
from each other.

Correlation length exponents. Correlation length exponents
are obtained from the scalings of the shift of the averages
of ρmax and of the widths of their distributions. According
to standard FSS, both give the same exponent ν, but due to
possible violations of the standard FSS scenario, this might
not be the case in the present model.

FIG. 6. Log-log plots analogous to Fig. 5, but of δSmax =
{Var[Smax]}1/2 (a) and δ�max = {Var[�max]}1/2 (b), instead of 〈Smax〉
and 〈�max〉.

Since measuring the shifts of χ̄ ≡ 〈ρmax〉 with L requires
precise estimates of the true critical point positions, this is
a somewhat delicate and error-prone procedure, in particular
since we have already seen strong deviations from pure power
law scalings. Thus we look first at the scaling of the variances.
In Fig. 7, we show log-log plots of L1/2χρ against L, where

χρ = {Var[ρmax]}1/2. (15)

We see now strong deviations from OP scaling for all
σ > 0.5. Superficially, all curves look rather straight so that
ν seems well determined for each σ > 0.5 and 1/ν seems to
increase continually with it, until 1/ν = 0 for σ > 2 (which
would suggest that χρ = const for σ > 2). But more careful
inspection shows that all curves for σ < 1 bend downwards,
while those for σ > 1 bend up. Only the curve for σ = 1
seems perfectly straight for L > 256, with slope

ν (σ=1) = 2.00 ± 0.03. (16)

It is not clear what this means for the true asymptotic val-
ues of ν. If the deviations from straight lines are a minor
finite size correction (which is suggested superficially), then
1/ν seems to decrease roughly linearly with σ in the range
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FIG. 7. Plots of the variances of times of largest jumps as
a function of L for σ = 0.0, 0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.25, 1.5,

1.7, 1.8, 1.9, 2, 2.5, and Knight’s move RW from the bottom to the
top of the curves, respectively. The upper solid line corresponds to
ν = ∞ and seems to apply for σ > 2 and Knight’s move RW, while
the lower line corresponds to ν = 4/3 which holds for standard 2D
percolation, and is consistent with our results within error bars for all
σ < 0.5.

1/2 < σ < 2, i.e.,

1/ν =

⎧⎪⎨
⎪⎩

3/4 σ < 1/2

1 − σ/2 1/2 < σ < 2

0 σ > 2

(17)

This would mean that the model is not in the OP class for
1/2 < σ < 1, although we had clear evidence that d f there is
the same as in OP.

Another, more radical, extrapolation could be the follow-
ing: The curvatures seen in Fig. 7 imply that all curves for
σ < 1 align asymptotically with the one for σ = 0, and those
for σ > 1 become finally parallel to that for σ = 2. In this
scenario, ν is would be constant for all σ �= 1, and that it
jumps at σ = 1 from 4/3 to ∞. Neither of these two scenarios
is very plausible. A third one could be that 1/ν = 1/ν (0) for
σ < 1, and decreases then continuously to 0.

Whatever the correct scenario is, it is clear that 1/ν = 0 for
σ > 2, which means that the order parameter curve s versus ρ

becomes, for σ > 2, independent of L, and in particular no
singularity develops in the limit L → ∞. Thus there is no
percolation transition for σ > 2.

Let us now look at the values of ρ̄ and their dependences
on σ and L. To be specific, take σ = 1.8. In Fig. 7, we
had seen that if there is a scaling law χρ ∼ L1/ν , then there
must be very large finite size corrections to it. In contrast, if
we choose ρc(σ = 1.8) carefully, we can make the curve of
log[ρ̄ − ρc(σ = 1.8)] versus log L nearly perfectly straight—
but with a value of ν which is closer to L1/ν (0)

. This would
support the conjecture that there are two different correlation
length exponents. But there is also another, more plausible
scenario: If we allow similarly large corrections to scaling
for the dependence of ρ̄ on L as for χρ , we can find a value
of ρc such that the curves ρ̄ − ρc versus L and χρ versus L
give practically the same value of ν. This is demonstrated

FIG. 8. Log-log plots of L1/νχρ and of (ρ̄ − ρc ) L1/ν versus L for
σ = 1.8. For χρ we choose ν such that the curve seems to become
flat for large L. For ρ̄ − ρc we show two curves: One, where the curve
shows best scaling (for all L > 256), the other with the same ν as for
χρ and with ρc such that it becomes nearly a shifted copy of the one
for χρ .

in Fig. 8, where we plotted both quantities against L with
suitably chosen values of ν and ρc. More precisely, in this
log-log plot we show one curve for χρ and two curves for
ρ̄ − ρc—one such that is it as straight as possible, the other
such that it mimics χρ .

We thus conclude that the model definitely is not in the OP
universality class for σ > 1. The possible deviations from the
conventional FSS picture due to a possible new length scale
generated by the finite times of the Levy flights seem not to
have led to two values of ν, but they might be the source for
the huge observed corrections to scaling.

B. Three dimensions

Here we just simulated the model with modified Knight’s
move RWs. As said in the Introduction, the finiteness of the
walk trajectory does not introduce an additional length scale
in this case, whence we expect standard FSS.

Plots of the raw data of s against ρ for L =
64, 128, 256, 512, 1024, and a collapse plot of these data anal-
ogous to Fig. 3 are shown in Fig. 9. In contrast to OP and all
other percolation models we are aware of, the raw data curves
cross each other, but the scaling relations Eqs. (5) and (9)
are well satisfied. The exponent ν = 1.96(2) is very different
from that in OP, but the fractal dimension d f = 2.512(10) is
the same within errors. These values are still preliminary (we
will say more about critical exponents when discussing χ and
gap statistics), but we can already say now that these data do
not seem to suffer from large corrections to scaling, in contrast
to those of the previous subsection.

A collapse plot of χ (analogous to Fig. 2) is shown in
Fig. 10. We see a very good data collapse, albeit for sightly
different values of the critical parameters. These differences
give a first impression of error estimates.

The fact that FSS is satisfied this time with small correc-
tions, and that critical exponents can be determined rather
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FIG. 9. (a) Order parameter s against ρ for 3D generalized
Knight’s move RW for different lattice sizes L. Notice the region
very near the critical point where curves cross each other (in contrast
to OP and to the 2D Levy flight model discussed in the previous
subsection). (b) Data collapse plot of the data shown in (a). The
values of ρc and of the exponents ν and df are fitted to obtain best
collapse. Also plotted is a power law s = const (ρ − ρc )β , showing
that Eqs. (5) and (9) are well satisfied.

FIG. 10. Data collapse plot of χ against ρ for 3D generalized
Knight’s move RWs. The numerical values of the critical parameters
were, as in all previous collapse plots, obtained by eyeball fits.

FIG. 11. Log-log plots for the modified Knight’s move RW in 3D
of the four event-based observables (Smax, Dmax, and the square roots
of their variances) which should scale ∼Ld f at the critical point. For
easier comparison, each curve is shifted vertically by an arbitrary
factor and is divided by Ld f . Please notice the very much blown-up y
scale in this and in the following figure.

precisely, is supported by looking at event-based gap scaling.
In Fig. 11, we show the four observables which should scale
with the fractal dimension (Smax, Dmax, and the square roots
of their variances). For easier comparison, we multiply each
by an arbitrary constant and divide it by Ld f . The best fit is
obtained with

d f = 2.502(5), (18)

which represents our final estimate.
When determining the correlation exponent ν, we are faced

again with the fact that we have to know the precise value of
the critical point ρc if we want to check that the width of the
critical peak and its shift from ρc scale with the same power
of L. But in contrast to the case of 2D Levy flights, there does
not seem to be a problem now, as shown in Fig. 12. From this
figure, we obtain our best estimates:

ρc = 0.20382(5), ν = 1.99(1). (19)

It was conjectured in Refs. [34,35] that, for 3 � d � 6, one
has ν = 2/a, if the correlation decays as C(r) ∼ r−a. Ac-
cording to Ref. [38], the sites visited by a RW and the
sites not visited by it are correlated with a = d − 2. Thus,
the present aftermath percolation model with (generalized)
Knight’s move walks should be in the same universality class
as pacman percolation in 3 � d � 6 and, in particular, for
d = 3 we expect ν = 2 in perfect agreement with our sim-
ulations [49]. In view of this agreement, we conjecture that
also d f and β are simple rationals, i.e.,

ν = 2, d f = 5/2, β = 1. (20)

This is also compatible with the estimates of Ref. [37], who
found ν = 1.8(1) and β = 1.0(1) for pacman percolation, and
is fully confirmed by somewhat less extensive simulations
of aftermath percolation with NNN-RW’s, for which ρc =
0.2120(3).

In the present paper, we also measured the distributions
of Smax, ρmax, and �max and their scaling functions defined
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FIG. 12. Log-log plots analogous to those in Fig. 8 of the L
dependence of the width of the peak of ρmax and of its shift from ρc,
but for the modified Knight’s move RW in 3D. In contrast to Fig. 8,
we find now very good scaling, with the same value of ν for both
curves. Notice again the very much blown up y scale.

in Eqs. (11)–(13). It was claimed in Ref. [43] that these
are superuniversal (i.e., universal across different universality
classes) and the same even in discontinuous percolation tran-
sitions. Due to the possible difficulties with scaling violations
mentioned above, we postpone their discussions for the model
with Levy flights to a forthcoming paper, where we shall also
discuss several other models. Here we present just one fig-
ure for the Knight’s move RW in three dimensions (Fig. 13).
In this figure, we show the three distributions for L = 128.
According to Ref. [43], the distribution of Smax should be
Gumbel and should thus have an exponential right-hand tail,
while the two other distributions should fall off faster than
exponential. The opposite is true: Pρ (ρmax) and P�(�max)
seem to fall off exponentially, while PS (Smax) falls off faster.
More details will be given in Ref. [50].

FIG. 13. Histograms of Smax, ρmax, and �max for aftermath per-
colation with Knight’s move RW in d = 3 for L = 128, based on a
sample of 4 500 000 realizations.

FIG. 14. Correlation sum of visited sites by a Levy flight σ = 1.5
with T = 0.96L2 steps on a square lattice of size L = 16 384, mul-
tiplied by (L/r)2 and plotted over r/L. The density of visited points
for this T is roughly 0.55, i.e., the critical density at the percolation
threshold. The curve is obtained by averaging over 2000 realizations,
thus the deviations from a smooth curve are not due to noise but to
the discreteness of the lattice.

V. CONCLUSIONS

In this paper, we have introduced a version of CP. Moti-
vated by the fact that disasters like wars, floods, or hurricanes
often leave a weakened region which then falls easy prey to a
second disaster like an epidemic, we have studied percolation
restricted to the sites visited by generalized RWs. Essentially,
this aftermath epidemic model is the inverse of pacman perco-
lation [37,38], where percolation is restricted to the sites not
visited by a RW.

A crucial difference from pacman percolation is that the
sites not visited by ordinary RWs are not connected, while
those visited are. Thus, to obtain nontrivial percolation in
aftermath epidemics, one has to use generalized walks where
the visited sites are not connected. We studied Levy flights
in two dimensions, and Knight’s move RWs both in two and
three dimensions.

In three dimensions (and with Knight’s move RWs), we
found that our model is in the same universality class as
pacman percolation, and we conjecture that not only ν = 2
is a simple rational but also d f = 5/2.

Knight’s move RWs in 2D do not lead to a sharp per-
colation transition. This is analogous to pacman percolation,
where one also has to go to three or more dimensions to find
a sharp transition. But for Levy flights, sharp transitions are
found whose universality classes seem to depend on the Levy
flight exponent σ .

As a control parameter, one can take in these models
the number of walker steps or the number of visited points.
Since finite walks might introduce new length scales, one
has to worry that this breaks scale invariance and thereby
violates one of the essential assumptions in the theory of
critical phenomena. We find that this is indeed the case for
Levy flights (but not for Knight’s move RWs). Thus, it is
not obvious that the usual FSS applies. We found indeed no
such problem for Knight’s move RWs in 3d. But we found
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problems in the form of very poor scaling in the case of Levy
flights. It is not clear whether these are finite-size corrections
or whether they show that FSS is basically broken in this
model. Another effect induced by additional length scales
could be that different observables with the same scaling
dimension show different critical exponents. In particular, we
looked carefully into the possibility that there are two differ-
ent correlation exponents, as has been found in some other
nonstandard percolation models. We found no such deviation
from FSS.

When simulating and analyzing these models, we used the
fast NZ algorithm. This implied that we could very quickly
determine quantities like cluster masses and gaps (i.e., jumps
in the leading cluster mass) but not spanning probabilities.
Thus, we have not considered the latter, nor have we looked at
backbones or conductivity exponents. But we have analyzed
our data both within the traditional paradigm where one con-
siders observables at given values of the control parameter and
in the event-based ensemble [29,46,47], where observables
are measured at those control parameter values where the

biggest gap occurs. We found that the latter gives, in general,
more precise results.

ACKNOWLEDGMENTS

M.F. and A.A.M. acknowledge support from the research
council of the Alzahra University. P.G. thanks N. Araújo, M.
Grady, H. Herrmann, and Y. Kantor for discussions about CP.

APPENDIX

To measure correlations between sites visited by a Levy
flight in two dimensions, we measured the correlation sum
C(r), i.e., the fraction of pairs of visited sites which are a
distance � r apart. This is shown in Fig. 14 for σ = 1.5,
L = 16 384, and T = 0.96L2, which corresponds to a density
ρ = 0.55 of visited sites. For better resolution, we multiplied
this by (L/r)2, so the curve would be a horizontal flat line
for a Poisson process, i.e., for σ = 0. We see only very small
deviations from this, and definitely no power law.
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