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Detecting partial synchrony in a complex oscillatory network using pseudovortices
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Partial synchronization is an important dynamical process of coupled oscillators on various natural and
artificial networks, which can remain undetected due to the system complexity. With an analogy between
pairwise asynchrony of oscillators and topological defects, i.e., vortices, in the two-dimensional XY model,
we propose a robust and data-driven method to identify the partial synchronization on complex networks. The
proposed method is based on an integer matrix whose element is pseudovorticity that discretely quantifies
asynchronous phase dynamics in every two oscillators, which results in graphical and entropic representations
of partial synchrony. As a first trial, we apply our method to 200 FitzHugh-Nagumo neurons on a complex
small-world network. Partially synchronized chimera states are revealed by discriminating synchronized states
even with phase lags. Such phase lags also appear in partial synchronization in chimera states. Our topological,
graphical, and entropic method is implemented solely with measurable phase dynamics data, which will lead to
a straightforward application to general oscillatory networks including neural networks in the brain.
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I. INTRODUCTION

Synchronization is a universal phenomenon in a system
of interacting oscillators whose relative phases are fully
locked in the whole system [1]. In recent decades, partial
synchronization of oscillators has also been recognized as
ubiquitous and important in broad research fields through
extensive chimera studies originating from seminal theoret-
ical papers [2,3]. At the beginning, chimera states denoted
self-sustained heterogeneous states composed of synchronous
and asynchronous oscillators with a symmetry breaking in
homogeneous oscillators, e.g., a ring of identical phase os-
cillators [2,3]. Chimera states are found in experiments on
optical [4–9], chemical [10–14], mechanical [15,16], and
electronic [17–20] oscillators. Recently, the term is generally
used for partially synchronized states appearing in various
fields on physics, chemistry, biology, engineering, and so-
cial networks, irrespective of the presence of the symmetry
breaking [21–26]. In fact, partially synchronized chimera-
like phenomena possibly have significant influence on the
functionalities and health of brain neurons [27–31], on heart
rhythm [32], on power-grid networks [33], and on cluster
synchronization on irregular graphs [20,34–41], which have
inherent inhomogeneity on complex networks.

Our motivation is to quantify the expanding partial syn-
chrony on complex networks in a robust and data-driven
way. In the original chimera studies on a regular ring, two
kinds of synchrony based on frequency and phase were used
to clarify the chimera states [2,3]. Frequency synchroniza-
tion indicates that synchronized oscillators possess the same
oscillation frequency as a result of entrainment. A distribu-
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tion of mean or instantaneous frequency is often used to
detect the partial frequency synchrony, where the coexis-
tence of synchronized oscillators with the same frequency
and desynchronized ones with distributed frequency indicates
a chimera state [2,3,9,11,13–15,18]. While the frequency
synchrony qualitatively reveals the chimera states with a
look at the distribution, phase synchrony has been utilized
to quantify chimeras sufficiently. A region of oscillators is
obviously synchronized with spatial coherence when the os-
cillators are almost in-phase at a time, which can be easily
checked with the phase snapshot [2–5,7–9,11,12,14–19]. The
spatial synchrony is quantified by the distribution of the local
order parameter rx = |∑x′ g(x, x′) exp(iθx′ )| where g(x, x′)
determines the local vicinity of an oscillator at a position
x [2,3,10,11,13,14]. The order parameter is also utilized for
analytical investigations of chimera states [2,3,42–45]. To
quantify the in-phase synchrony more clearly, Kemeth et al.
introduced the local curvature or the pairwise Euclidean dis-
tance of oscillator phases, and proposed chimera measures
with a threshold for the spatial coherence to classify the
chimera states [46], which has been successively used to de-
tect experimental chimeras [7,9]. The frequency and in-phase
synchronies are interchangeable in original chimera studies,
where the partially frequency-synchronized oscillators are al-
most in-phase [2,3]. For other chimera measures based on
frequency and phase synchrony, see review [26].

However, we sometimes face difficulties in quantifying the
partial synchrony apart from the original context. For instance,
quantitative indices of the spatial phase coherence can miss
the synchrony that occurs remotely on an irregular graph
[35] or that occurs with twisted (spiral) waves [14,32,47–49].
Although the remotely synchronized clusters can be predicted
by local symmetries of the graph [36], we need to know the
precise network structure and the exact equation of motion
for oscillators, which are not necessarily accessible in actual
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experiments. With the expanding interest in partial synchrony,
we will obtain more dynamics data in noisy experiments of
oscillators on complex networks with unknown details, in
which synchrony can be hidden behind the complex dynam-
ics. To analyze the noisy data by algorithms and utilize the
synchronization for applications, like for optimization in an
optoelectric experiment [50], developing a robust and quanti-
tative concept of synchrony based on measurable variables is
desirable in this data-driven era.

In this paper, we propose a discrete analog of frequency
synchrony with an analogy between partial asynchrony and
topological defects, vortices, in the two-dimensional XY
model [51–53] to quantify the expanding partial synchrony
clearly and robustly: no vortex in a space-time (1 + 1-
dimensional) plane means synchrony. Using the analogy, we
discretely quantify the accumulated phase mismatch between
every two oscillators during a period, which leads to an integer
matrix I . We note that the matrix can be calculated solely
from oscillator phase dynamics data without knowledge of
the network structure or theoretical model that describes the
oscillator dynamics. The element Ii j is pseudovorticity that
counts pairwise asynchrony between ith and jth oscillators.
To quantify the partial synchronization in a whole system, we
next introduce a graph from the matrix, named a synchroniza-
tion graph, where synchronous oscillators are connected with
each other irrespective of the original network structure. From
the synchronization graph, we identify the clique clusters in
which all oscillators are mutually synchronized by solving
a clique problem of the graph. The size distribution of the
clusters gives an entropic measure that quantifies the disorder
of the synchronization, which becomes a useful measure of
chimera states. The partially synchronized states are further
classified by frequency divergence obtained from the pseu-
dovorticity matrix. Numerical simulations confirm that these
measures identify different phases in the parameter space of
FitzHugh-Nagumo (FHN) neurons [54,55] on a small-world
network [56] with high clustering and a short path length.
The FHN neuron is a brain-inspired neuronal oscillator, which
has been used extensively in research on chimera states on
a one-dimensional ring [19,57,58], empirical brain networks
[59–61], and networks with complex topology [62–64]. Net-
work small-worldness is one of the important features of
actual neural networks [56]. We emphasize that our method
property identifies synchronization with a gradating phase
lag and the related chimeras without additional human con-
firmation, which cannot be identified by previous chimera
measures.

II. THEORETICAL FRAMEWORK

A topological index can be useful for a robust classification
of a system in general because it gives a measure of fundamen-
tal classification without information on the fine details of the
system. A famous example is the topological defects in the
two-dimensional XY spin model, which characterize the low
energy excitations in the system and account for the topologi-
cal phase transition [51–53]. The XY spin at two-dimensional
position �r = (x, y) is characterized by an angle θ (�r). A topo-
logical defect is discretely quantified by the integer vorticity

(a) (b) (c)

FIG. 1. Schematic illustrations of closed paths for calculat-
ing vorticity and pseudovorticity. (a) Vorticity vC bounded by a
closed curve C in two-dimensional phase field θ (x, y). (b) Vorticity
I (t, t ′; x, x′) bounded by a closed rectangular C(t, t ′; x, x′) in 1 + 1-
dimensional phase field θ (t, x). (c) Pseudovorticity Ii j (t, t ′) defined
in between oscillator i and j.

obtained from an integral of the spin angle along a closed path
as shown in Fig. 1(a); vc = 1

2π

∮
C

�∇θ (�r) · d�r = 1
2π

∮
C dθ .

Similarly, we introduce an integer index that characterizes
the partial synchronization. As a preparation for the follow-
ing discussion, we consider a one-dimensional oscillator field
θ (t, x) whose phase continuously changes along the continu-
ous x axis as well as along time. In this case we can define
a topological quantity by an integral of the phase field as a
function of time and position on a closed path C(t, t ′; x, x′) as
in Fig. 1(b):

I (t, t ′; x, x′) := 1

2π

∮
C(t,t ′;x,x′ )

dθ (t, x), (1)

which represents an integer vortex strength generated by
the phase field on the 1 + 1-dimension. The zero value
I (t, t ′; x, x′) = 0 is necessary for the condition that the domain
from x to x′ is synchronized during the time evolution from
t to t ′ with no accumulated vortex. Then, we can relate the
partial synchronization with the integral.

The integral of the phase field is, however, not well defined
in the case of the discrete oscillators considered here because
the phase may discontinuously change along the oscillator
index with a phase ambiguity of the amount of 2π . We here
define an analogous index by dividing the closed path into the
continuous changing parts along the time and discontinuous
changing parts along the oscillator index as shown in Fig. 1(c):

Ii j (t, t ′) := 1

2π

[ ∫ θ j (t ′ )

θ j (t )
dθ j (t ) +

∫ θi (t )

θi (t ′ )
dθi(t )

+ Arg(ei[θi (t ′ )−θ j (t ′ )] ) + Arg(ei[θ j (t )−θi (t )] )

]
, (2)

where the argument function Arg(z) terms account for the
phase difference between ith and jth oscillators at the initial
and the final times t and t ′. It is noteworthy that the index is
an integer, Ii j (t, t ′) = � 1

2 + θ j (t ′ )−θi (t ′ )
2π

� + � 1
2 + θi (t )−θ j (t )

2π
�, that

is associated with the pseudovortex strength inside the shaded
box in Fig. 1(c). The pseudovorticity is directly related to the
phase difference between two oscillators accumulated dur-
ing the time interval, Δ�i j (t, t ′) := θ j (t ′) − θ j (t ) − θi(t ′) +
θi(t ), by the following inequality:⌊

Δ�i j (t, t ′)
2π

⌋
� Ii j (t, t ′) �

⌊
Δ�i j (t, t ′)

2π

⌋
+ 1. (3)

To see the physical meaning clearly, we consider a simple
case where all oscillators have definite harmonic motions,
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θi(t ) = 2π fit + φi. In this case, the pseudovorticity holds the
inequality �( f j − fi )(t ′ − t )� � Ii j (t, t ′) � �( f j − fi )(t ′ −
t )� + 1, which clearly indicates that the integer element
approximately gives the phase difference accumulated by the
time-evolution, Ii j (t, t ′) ∼ ( f j − fi )(t ′ − t ).

For n oscillators, we have an integer n × n matrix I whose
elements are given by the pseudovorticities. The pseudovor-
ticity matrix satisfies a couple of symmetries. The matrix is
almost antisymmetric in terms of the oscillator index and time
variables: I (t, t ′) = −IT (t, t ′) and I (t, t ′) = −I (t ′, t ). It holds
the following triangle identity in time almost everywhere:
I (t1, t2) + I (t2, t3) + I (t3, t1) = O. These symmetries are bro-
ken only for the negligible cases where the phase difference
between two oscillators at the initial or final measurement
time is the same as π modulo 2π (for details see Appendix A).
A similar identity for the node indices does not hold in general
due to the discontinuous phase change along the oscillator
index: Ii j (t, t ′) + I jk (t, t ′) + Iki(t, t ′) �= 0.

It is noteworthy that the measurement time interval Δt :=
|t ′ − t | is important to distinguish desynchronization from
synchronization. Obviously, for Δt → 0, the pseudovorticity
matrix trivially becomes the n × n null matrix, which seem-
ingly indicates the synchronization for any case since we
need a finite interval Δt to discriminate the desynchronization
of two oscillators from the frequency synchronization. The
minimum requirement of the time interval is approximately
given by the minimum frequency difference Δ fmin among
all oscillators, Δt ≈ |Δ fmin|−1. However, the minimum value
is usually unclear before executing a measurement or a nu-
merical simulation in actual cases, which means that a given
measurement interval Δt determines a resolution of frequency
synchrony. Then, we need to carefully check whether a given
Δt is enough to distinguish synchronization from desynchro-
nization or not by changing its value. Furthermore, Δt is also
related to the fundamental trade-off between resolutions of
timing (time) and frequency to detect a transient synchro-
nization; a longer measurement interval Δt provides a finer
resolution in frequency, while it also gives rise to a reduction
in detectability to the time-dependence of synchronization.

The pseudovorticity matrix includes the information on
pairwise synchrony of every two oscillators. To quantify
the partial synchronization in a whole system, we intro-
duce a graphical representation of the (partially) synchronized
groups of oscillators with an adjacency matrix, A, whose ele-
ments are defined by

Ai j (t, t ′) =
{

1 |Ii j (t, t ′)| � cs, i �= j,

0 otherwise,
(4)

where cs is the synchrony criteria of pseudovorticity. From
Eq. (3), cs = 0 and cs = 1 are sufficient and necessary con-
ditions for −2π � Δ�i j (t, t ′) < 2π , respectively. Hereafter,
we take cs = 1 to find the synchrony with the phase difference
within 2π . The adjacency matrix A(t, t ′) is symmetric because
the pseudovorticity matrix I (t, t ′) is antisymmetric.

Every two connected nodes in the synchronization graph
with the adjacency matrix are pairwise synchronized. If there
is a group of nodes connected completely, i.e., a clique, then
every two nodes in the group are synchronized, and the group
or clique represents a partial synchronization in all the oscil-

lators. Here we divide all the nodes into synchronized clique
groups. At the first step, we find the largest clique in the
synchronization graph, which is the maximum clique prob-
lem of the graph and a basic NP hard problem in computer
science. Computing all cliques requires an exponential time
with increasing graph size in general, but can be available for
a relatively small size or sparse graph. In addition, we can
obtain the approximated solution by solving the correspond-
ing optimization problem. With a numerical algorithm, we
(approximately) obtain the largest clique of the graph. Next,
we find the next largest clique in the graph after removing the
maximum clique. By repeating the procedure iteratively, we
can identify all the cliques which need to cover the graph and
their sizes, s1, . . . , sm, with m being the number of cliques.
This procedure mathematically gives a partition of the oscil-
lator set, which naturally induces an equivalence relation of
partial synchrony on the oscillators.

From the clique sizes, we define the probability where a
node belongs to the jth largest clique by

p j = s j/n for j = 1, . . . , m, (5)

where n is the total number of nodes. If a single clique
can cover the graph with p1 = 1, then the whole system is
synchronized, where any node must belong to the unique
maximum clique. On the other hand, if every node belongs to
different cliques, the system is totally desynchronized with the
uniform distribution, p1 = p2 = ... = pn = 1/n. Therefore,
the partiality of synchrony (the uniformness of the probabil-
ity) is quantified by the entropy as

Ssync := −
m∑

j=1

p j ln p j . (6)

At Ssync = 0, the system seems to be synchronized with almost
no vortex between every two nodes, while the system is com-
pletely desynchronized when the entropy has the maximum
value, Ssync = log n. In between them, the system comprises
a mixture of several synchronized parts and desynchronized
parts. Then, we here refer the entropy to as synchronization
entropy.

In addition to the entropic measures, we calculate a charac-
teristic frequency by using the measurement time interval and
the pseudovorticity matrix,

Δ f := ||I (t, t ′)||F√
2nΔt

, (7)

where ||A||F denotes the Frobenius norm of a matrix A.
We here refer to the frequency as frequency divergence be-
cause it physically means the typical frequency difference
among oscillators. For instance, the frequency divergence
is asymptotically equivalent to the standard deviation of
the frequencies, Δ f ≈

√
1
n

∑n
i=1( fi − f̄ )2, for noninteracting

harmonic oscillators and a long interval Δt , where fi and f̄
are the individual frequencies and the average frequency of
oscillators. If the frequency divergence is less than the inverse
of the measurement time interval, then oscillators almost seem
to have a single frequency in the measurement interval on
average. Otherwise, the system includes oscillators with a
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FIG. 2. False-color maps of synchronization measures of cou-
pled FitzHugh-Nagumo neurons on a small-world network. (a) Syn-
chronization entropy Ssync, (b) Frequency divergence Δ f Δt , (c) con-
ventional phase order parameter r, and (d) relative size of the
coherent component g0. The horizontal and vertical axes represent
the correlation lag α and the coupling strength K , respectively. The
regions surrounded by white curves in panels (a) and (b) have Ssync >

0 and Δ f Δt � 1, respectively.

variety of frequencies:

Δ f Δt

{�1 single-frequency oscillators,
�1 multifrequency oscillators.

(8)

The condition on frequency divergence does not iden-
tify partial synchronizations because a partially synchronized
oscillatory system may not have a difference in frequency
on average. When most (but not all) of the oscillators are
synchronized, the frequency divergence becomes very small
as a chimera state as shown in Fig. 2(b). Nonetheless, it is
helpful for classifying partial synchronizations further. For
example, in Kuramoto and FHN oscillators on a ring structure,
a desynchronized region in chimera states show frequency
bands even though the original frequencies without inter-
actions are unique [2,57,62]. The frequency divergence can
capture such a change in the frequencies caused by interac-
tions. Here, we explain the physical meaning of the frequency
divergence. The frequency divergence is proportional to the
Frobenius norm of the pseudovorticity matrix, ||I (t, t ′)||F ,
which physically corresponds to the variance of pseudovor-
ticities. Since pseudovorticity is regarded as a discrete analog
of the phase difference between two oscillators accumulated
during the measurement time interval Δt , ||I (t, t ′)||F /Δt is
approximately proportional to the frequency variance. The
factor 1/

√
2n in Δ f is introduced for exact consistency with

the frequency variance of harmonic oscillators with a suffi-
ciently long measurement interval.

For a completely synchronized system, the proposed en-
tropic and frequency measures must be zero. Therefore, they
can be regarded as “disorder parameters,” which are the
order parameters of the desynchronization quantified from
different points of view. These disorder parameters are com-
plementary to the ordinal order parameter of complete phase
synchronization, r = |∑n

j=1 exp(iθ j )|/n [65]. The completely
desynchronized state is characterized by the maximum en-
tropy, log n, while the frequency divergence has any finite
value in this case. The maximum entropy state may hardly
appear in the system with identical oscillators with a unique

original frequency. Because the state requires a frequency
difference larger than Δ fmin for every two oscillators in spite
of the fact that the oscillators have the same frequency in the
noninteracting case. For systems with heterogeneous oscilla-
tors with a frequency band, which attract much attention in
recent chimera studies, the completely desynchronized state
can be found more easily. Our method is developed mainly
for revealing hidden synchrony in the complex dynamics of
the heterogeneous oscillators in a data-driven way.

The proposed method is simply based on basic concepts of
topology, graph theory, and information theory, which are well
developed in their fields. We can straightforwardly execute
the method with a computational algorithm and raw phase
dynamics data. Note that Boltzmann-Gibbs-Shannon entropy
used in Eq. (6) is a choice to quantify the partiality of syn-
chrony. Other possible choices are discussed in Appendix B.

III. APPLICATION TO FITZHUGH-NAGUMO NEURONAL
OSCILLATORS ON A SMALL-WORLD NETWORK

As the first benchmark, we used the present synchroniza-
tion measures to investigate the FHN model on a small-world
network. The FHN model [54,55] is a simplification of the
Hodgkin-Huxley model [66] that describes neuron dynamics.
It has been pointed out that the small-worldness appears in
a variety of systems, such as actual neuronal networks [56].
Thus, the following test case of the usage of our proposed
method may extend to the empirical results obtained from
actual brain experiments.

The dynamics of the FHN model is written as

1

τ

dvi

dt
= vi − v3

i

3
− wi + cos α

∑
j

Ji jv j + sin α
∑

j

Ji jw j,

(9)

dwi

dt
= a − bwi + vi + cos α

∑
j

Ji jw j − sin α
∑

j

Ji jv j,

(10)

where v and w are membrane potential and recovery variables,
respectively, and α is a correlation lag. A coupling matrix Ji j

is given by Ji j = (K/N )ai j , where K is coupling strength, N is
the number of sites, and ai j is the adjacency matrix of a small-
world graph. Other parameters are set as a = 0.5, b = 0, and
τ = 0.05. Small-world graph ai j is created by the rewiring
scheme proposed in Ref. [56] by starting from ai j of a ring
lattice of N = 200 sites with k = 6 edges. An obtained graph
satisfies the characteristic of the small-world graph as follows.
It has a clustering coefficient of 0.654, which is much greater
than k/n = 0.05, and characteristic path length of 6.06, which
is on the same order as ln(N )/ ln(k) = 2.30, where k/n and
ln(N )/ ln(k) are the clustering coefficient and characteristic
path length of the corresponding random graph.

Figures 2(a) and 2(b) show the synchronization entropy
Ssync and frequency divergence Δ f as functions of correlation
lag α and correlation strength K . The numerical simulation
was done with the time difference dt = 0.01 and the number
of time steps Nstep = 40 000. We chose the time interval from
t = 360 to t ′ = 400 when calculating Ii j (t, t ′). Each phase
of the neurons is defined by θ j = arg(v j + iw j ). From these
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FIG. 3. Dynamics, snapshot, and mean frequency of reordered oscillators for several choices of the correlation lags depicted by stars on the
synchronization phase diagram in Fig. 2. The correlation lags are set to α = −1.4, 0, 1.8, and 3 for panels (a), (b), (c), and (d), respectively,
with K = 8, which corresponds to the stars with indices (i)–(iv) in Figs. 2(a) and 2(b). In each parameter setting, the left panel shows the
phase dynamics of coupled FitzHugh-Nagumo neurons reordered by their synchronization groups calculated for an interval from t = 360 to
t ′ = 400 and their phases at t = 400. The right top panel is the snapshot of v-amplitudes at t = 400. The right bottom panel is the mean spiking
frequencies of reordered neurons during the same interval. The dynamical states represent a chimera state, the complete synchronized state, a
chimera state, and a synchronized state with gradational phase lag in panels (a), (b), (c), and (d), respectively.

measures, we can systematically determine the phase diagram
even in a small-world graph that is a non-Euclid complex
system. From these results, we found that synchronized re-
gion with Ssync = 0 and Δ f = 0 widely spreads at around
α = 0 and (±)π . Two main islands of chimera states with
0 < Ssync/ log n � 1 and Δ f > 0 are revealed in the synchro-
nized sea at around α = ±π/2, which are shown as regions
surrounded by white curves in Fig. 2(a). On the one hand, the
frequency is divergent at the middle in the left island at around
α = −π/2. On the other hand, the frequency almost stays
Δ f Δt � 1 in the right island chain. The difference between
the left and right chimera regions are further discussed later
with reference to Fig. 3.

Figure 2(c) shows a total order parameter defined as r =
| ∑ j exp(iθ j )|/N , which characterizes the complete synchro-
nization. We can confirm that the synchronization sea at
around α = 0 corresponds to the conventional synchronous
phase. By comparing r with our proposed measures, we also
found another type of synchronized phase at around α =
±π , where the total order parameter r does not develop. As
discussed below, this phase is a synchronized state with a
gradational phase lag. In the chimera regions, r is small as
expected.

Figure 2(d) shows temporal average of g0(t ), where
g0(t ) = ∫ δ

0 g(|Di j |, t )d|Di j |, Di j = exp(iθi) − exp(iθ j ), and
g(|Di j |, t ) is a density function of |Di j | with a threshold
for spatial coherence δ = 0.01Dmax [46]. This g0(t ) corre-
sponds to the relative size of the coherent component, and
thus g0(t ) = 1 means the complete synchronization. We found
that this quantity successfully captures the synchronization
phase, while, unfortunately, it cannot distinguish the other
phases. Almost all regions except for the synchronized re-
gion at around α ∼ 0 seem to be chimera states. The specific

synchronized state with a gradational phase lag is overlooked
by g0(t ) as well as by r.

Figures 3(a)–3(d) show the dynamics of a phase θ =
arctan(w/v) from time t = 350 to t = 400, amplitudes of v

components at t = 400, and mean spiking frequencies ω of
each neuron for different values of alpha with K = 8, where
these parameter points are shown as (i)–(iv) in Fig. 2(a). Note
that the neuron indices are reordered firstly by the number
of clique cluster to which they belonged and secondly by the
values of the phase θ at t = 400, which is referred to here as
clique cluster ordering (CCO). The ordering enables us to find
a clear difference in dynamics among revealed phases. First,
as shown in Fig. 3(b), the synchronized region shows constant
spiking frequency and amplitudes. Second, Fig. 3(d) shows a
constant spiking frequency and a gradual change in the ampli-
tudes. This is the gradational phase lag synchronization state.
Note that, the total order parameter cannot develop because
of the gradational phase lag. Furthermore, due to this phase
lag, a measure g0 index misleads us so that we mistake the
gradational synchronized state for chimera states. Third, in the
chimera states shown in Figs. 3(a) and 3(c), some parts show
that amplitudes of v and spiking frequencies largely fluctuate,
corresponding to the desynchronized parts. The other parts
show almost constant spiking frequencies with amplitudes
like a gradational synchronized state. These results indicate
the coexistence of desynchronized and synchronized parts.
The feature of the desynchronized parts is consistent with
the behavior of the FHN model on the ring lattice structure
[57,62]. A phase gradation in the synchronized parts is a char-
acteristic of this small-world network. Note that these chimera
states have different characteristics: a dominant synchronous
region in one [Fig. 3(c)] and multiple synchronous regions
in the other [Fig. 3(a)], which cause the aforementioned
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FIG. 4. False-color maps of pseudovorticity matrix and adjacent matrix of synchronization graph for coupled FitzHugh-Nagumo neuronal
dynamics on a small-world network. We chose the correlation lags α = −1.4, 0, 1.8, and 3 for panels (a), (b), (c), and (d), respectively, with
K = 8, which corresponds to the parameter settings at stars with indices (i)–(iv) in Figs. 2(a) and 2(b). In each parameter setting, the left and
right panels show the pseudovorticity matrix and adjacent matrix, respectively. These matrices correspond to a chimera state, the complete
synchronized state, a chimera state, and a synchronized state with gradational phase lag in panels (a), (b), (c), and (d), respectively.

difference in Δ f Δt . In this way, the present measures allow
us to visualize the synchronous phase from the viewpoint of
discrete frequency synchrony.

We next show in Figs. 4(a)–4(d) pseudovorticity matrix Ii j

(left) and the adjacency matrix Ai j (right panel) of synchro-
nization graph for four types of regions. We found that these
four regions have distinct Ii j and Ai j . Figures 4(b) and 4(d)
show that two types of synchronized regions have |Ii j | � 1
and complete graph of Ai j . Note that the gradational phase
lag synchronization has |Ii j | = 1, while complete in-phase
synchronization only has |Ii j | = 0. For the two types of the
chimera regions in Figs. 4(a) and 4(c), the magnitudes of Ii j

are large, and Ai j are sparse and rather dense, respectively.
This is because the chimeras in Figs. 4(a) and 4(c) are close
to the desynchronized and synchronized phases, respectively,
which are consistent with the behavior in Figs. 3(a) and 3(c).
These characteristics of Ii j provide a way to establish other
good quantities in addition to Ssync to distinguish the different
phases.

Figure 5(a) shows another entropic measure Smax, which
is defined in Appendix B. From this observation, we found

FIG. 5. (a) False-color maps of another entropic measure Smax

and (b) clustering coefficient of synchronization graph Csync for
coupled FitzHugh-Nagumo neurons on a small-world network. The
regions surrounded by white curves in panels (a) and (b) have Smax >

0 and 1 > Csync, respectively.

that both Ssync and Smax provide qualitatively similar phase
diagrams. Smax can be calculated with smaller numerical effort
than Ssync can; namely, Smax is determined only from the
largest clique without iterative clique determinations. These
results suggest that the entropic definitions based on Schur-
concave-function family will provide the similar results. Note
that an iterative determination is required for visualizing all of
the synchronized clusters of oscillators. Figure 5(b) shows the
clustering coefficient Csync of the synchronization graph, and
1 − Csync has a structure remarkably similar to the entropic
measures Ssync and Smax. In particular, Smax and 1 − Csync show
good agreement with each other. The clustering coefficient
may be useful for screening partial synchronizations in a large
oscillatory system because it merely requires O(n3) calcula-
tion, which is much smaller than the cost to exactly solve
the NP problem to obtain Ssync. We need further confirmation
of the similarity between 1 − Csync and Ssync in different sys-
tems. We note that the temporal change in the graph structure
includes the information on the synchronization dynamics.
A comparison between the synchronization graph and the
original network graph would also be interesting, which will
be discussed elsewhere.

To clarify the stability and scalability of the observed
chimera states, we next systematically investigated the size N
dependence of the phase diagram. Figure 6 shows the size de-
pendence of Ssync and phase diagrams. Simply put, we found
that qualitatively similar phase diagrams were observed as N
increases with a fixed k/N (=0.05), the ratio of the (averaged)
number of edges and nodes. We also set the cluster coefficient
C to similar values ranging within [0.5,0.6]. Due to the ran-
domness of the created small world graphs [56], fluctuation
of the cluster coefficient values remains. Irrespective of the
small fluctuation of C and size N , we observed similar phase
diagrams. This consistency of the phase diagrams suggests the

024307-6



DETECTING PARTIAL SYNCHRONY IN A COMPLEX … PHYSICAL REVIEW E 108, 024307 (2023)

FIG. 6. Size dependence of the phase diagrams (false-color maps
of Ssync) of FitzHugh-Nagumo neurons on small-world networks. The
system sizes are set to N = 200, N = 300, N = 400, and N = 500
for (a), (b), (c), and (d), respectively. The regions surrounded by
white curves have Ssync > 0. Here, the number of edges k is scaled as
k = 0.05N ; namely, the ratio k/N is fixed. For different N , clustering
coefficients are set to similar values ranging within C ∈ [0.5, 0.6].

stability of the chimera states and supports the validity of our
methods.

We further investigated the cluster coefficient C depen-
dence of the phase diagram with a fixed N = 200. Figure 7
shows C dependence of Ssync. We found that, interestingly,
the chimera phases become wider and wider as C becomes
smaller and smaller. In particular, the chimera phase at around
α = π/2 significantly expands as C decreases. This can be
attributed to the fact that when a small-world graph has a small
C, which means that the graph is close to a random graph
where the synchronized state becomes unstable, the chimera
phase becomes stable instead of the synchronized phase. We
found that the chimera states at around α = −π/2 are robust
to the change in C, while those at around α = π/2 are sensi-
tive to it. This may be attributed to the fact that the chimera
states at around α = π/2 consist of dominant phase-lagged
synchronized oscillators and minority desynchronized ones

FIG. 7. Change in the phase diagrams (false-color maps of
Ssync) of FitzHugh-Nagumo neurons on small-world networks hav-
ing different clustering coefficients C and mean-path lengths L
with a fixed N = 200. The coefficients and lengths are given
by (C = 0.65, L = 6.1), (C = 0.59, L = 3.8), (C = 0.50, L = 3.3),
and (C = 0.33, L = 2.9) for panels (a), (b), (c), and (d), respectively.
The regions surrounded by white curves have Ssync > 0.

[see Fig. 3(c)], and thus the instability of the phase-lagged
synchronization caused by the decrease in C significantly
affects the phase diagrams.

IV. CONCLUSIONS

We have introduced a graphical description to classify
complex synchronization dynamics in an oscillatory system
based on a discrete analog of frequency synchrony. To make
the partial synchronization visible in a computer-friendly way,
we have proposed an index matrix with integer elements from
a topological viewpoint. Each element of the matrix repre-
sents the pseudovorticity generated by the phase difference
accumulated by the time-evolution of a pair of oscillators
in the system. From the matrix, we derive a synchroniza-
tion graph that represents the pairwise synchronization in a
graphical way. The synchronized clusters of oscillators are
clarified by solving a clique cover problem of the graph. From
the pseudovorticity matrix and the synchronization graph,
we can also obtain the synchronization entropy and the fre-
quency divergence of the system, which are scalar measures
for partial synchronization. We apply our method to coupled
neuronal oscillators on a small-world network based on the
FitzHugh-Nagumo model. From the analysis, we confirmed
that our proposed measures work well for classification of
the phase dynamics with a phase diagram, where we found
complete synchronization, gradational synchronization, and
chimera states.

In particular, the gradational synchronization and the re-
lated chimera states, which are hidden in the case of the
original ordering of the oscillator index, are revealed by the
reordering of the index based on the solution of the clique
problem of the synchronization graph. The gradational syn-
chronization missed in previous studies is one of the typical
states, which dominates a large portion of the parameter space.
As well as revealing the frequency synchronized state with
spatial incoherence, we find the chimera state where synchro-
nized and desynchronized states coexist accompanying the
gradational phase lags.

For quantifying the synchrony, our method inspired by
an analogy with vortices, which play a key role in a topo-
logical phase transition, gives complementary information
to the Kuramoto order parameter defined in analogy to or-
der parameters charactering phase transitions accompanied
by spontaneous symmetry breaking [65]. In contrast to the
Kuramoto order parameter, the proposed method ignores the
presence of phase lags in synchrony, which simplifies the
characterization of synchrony with a robust entropic measure
for the partiality.

We expect that our method will also work well to classify
and quantify the partial synchronization of general discrete os-
cillatory systems appearing not only in numerical simulations
but also in actual experiments, e.g., electroencephalography
(EEG) brain waves. An increase in partial synchrony on EEG
signals for Parkinson’s disease patients was found by the anal-
ysis based on pairwise order parameters [31], which quantify
in-phase synchrony. With the proposed method, we can give a
visualization of the synchronized clusters and may find further
partial synchrony with phase lags missed in the previous re-
search. Another possible application is in functional analysis
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of neuromorphic devices. Adaptive and temporal changes in
partial synchronization can be utilized for solving combinato-
rial optimization problems in photonic spiking neurons [50].
Our method may contribute to revealing the mechanism in a
visual and quantitative way.
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APPENDIX A: SYMMETRIES
OF PSEUDOVORTICITY MATRIX

The pseudovorticity matrix, I (t, t ′), is antisymmetric in
terms of the oscillator index and time variable except for
conditions that have zero measure in the phase space, θ. The
negligible conditions originate from the argument function
used in Eq. (2), Arg(eix ) = x + 2π�1/2 − x/2π� for x ∈ R,
that lies within the interval (π, π ] and is discontinuous at
x ≡ π mod 2π .

To provide more details, we start from the following equa-
tion of the matrix element:

Ii j (t, t ′) =
⌊

1

2
+ θi(t ) − θ j (t )

2π

⌋
+

⌊
1

2
+ θ j (t ′) − θi(t ′)

2π

⌋
.

(A1)

The matrix element is determined by the phase differences
at the initial and final measurement time. Here, we represent
the phase differences by the integer quotients and the real
remainders of the division by 2π :

θi(t ) − θ j (t ) = −π + 2πk + 2πr, (A2)

θi(t
′) − θ j (t

′) = −π + 2πk′ + 2πr′, (A3)

where we take k, k′ ∈ Z and r, r′ ∈ [0, 1). Using these repre-
sentations, we obtain the following equations:

Ii j (t, t ′) = 1 + k − k′ + �−r′�, (A4)

I ji(t, t ′) = 1 + k′ − k + �−r�. (A5)

For r, r′ ∈ (0, 1), the element is thus antisymmetric:

Ii j (t, t ′) = −I ji(t, t ′). (A6)

For r = 0 or r′ = 0, where the phase difference is exactly
π mod 2π , the element has no such symmetry. Since these
conditions give lines (measure zero set) in two-dimensional
Euclidean space, (θi(t ), θ j (t )) or (θi(t ′), θ j (t ′)), we say that
the pseudovorticity matrix is almost antisymmetric, and the
exceptional cases are negligible for the actual analysis based
on the numerical/experimental data of phase dynamics.

Similar arguments can be applied to the antisymmetry and
the triangle equality in terms of time. We represent phase
differences at t = t1, t2, and t3 in a similar way:

θi(t1) − θ j (t1) = −π + 2πk1 + 2πr1, (A7)

θi(t2) − θ j (t2) = −π + 2πk2 + 2πr2, (A8)

θi(t3) − θ j (t3) = −π + 2πk3 + 2πr3, (A9)

where we take k1, k2, k3 ∈ Z and r1, r2, r3 ∈ [0, 1). The ma-
trix elements are represented as

Ii j (t1, t2) = 1 + k1 − k2 + �−r2�, (A10)

Ii j (t2, t3) = 1 + k2 − k3 + �−r3�, (A11)

Ii j (t3, t1) = 1 + k3 − k1 + �−r1�. (A12)

For r1, r2, r3 ∈ (0, 1), the triangle equality and the antisym-
metry is satisfied in terms of time:

Ii j (t1, t2) + Ii j (t2, t3) + Ii j (t3, t1) = 0, (A13)

Ii j (t1, t2) = −Ii j (t2, t1). (A14)

In other measure zero cases, these relations do not hold.

APPENDIX B: GENERALIZATION
OF SYNCHRONIZATION ENTROPY

While we use Boltzmann-Gibbs-Shannon (BGS) entropy
in Eq. (6), we have other choices for quantifying the uniform-
ness of the size distribution in a partition of graph by cliques.
In fact, we can obtain many entropylike measures by using
Schur-concave functions. A Schur-concave function gives a
monotone of majorization, that is a binary relation of two
stochastic states which determines whether one state can be
mapped from the other state by a doubly stochastic linear map
or not. BGS entropy is one of such Schur-concave functions.
Here, we introduce another Schur-concave function as

Smax := 1 − max(p) = 1 − s1

n
. (B1)

Smax is an intuitive measure of partial synchronization because
1 − Smax is the largest cluster size, which contributes to a de-
crease in computing cost to solve the iterative clique problem
if we don’t need to know all the synchronized clusters of
oscillators. It has the maximum Smax = (n − 1)/n for desyn-
chronization. In synchronized cases, Smax has the minimum
Smax = 0, whose value is the same as the synchronization
entropy. We confirmed that Smax show a qualitatively similar
phase diagram as that of synchronization entropy Ssync shown
in Fig. 2 [see Fig 5(a)].
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