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from a population genetics perspective

Julian Kates-Harbeck
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Michael M. Desai*

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 11 August 2022; revised 24 May 2023; accepted 30 June 2023; published 15 August 2023)

Ideas, behaviors, and opinions spread through social networks. If the probability of spreading to a new
individual is a nonlinear function of the fraction of the individuals’ affected neighbors, such a spreading
process becomes a “complex contagion.” This nonlinearity does not typically appear with physically spreading
infections, but instead can emerge when the concept that is spreading is subject to game theoretical considerations
(e.g., for choices of strategy or behavior) or psychological effects such as social reinforcement and other forms
of peer influence (e.g., for ideas, preferences, or opinions). Here we study how the stochastic dynamics of such
complex contagions are affected by the underlying network structure. Motivated by simulations of complex
contagions on real social networks, we present a framework for analyzing the statistics of contagions with
arbitrary nonlinear adoption probabilities based on the mathematical tools of population genetics. The central
idea is to use an effective lower-dimensional diffusion process to approximate the statistics of the contagion. This
leads to a tradeoff between the effects of “selection” (microscopic tendencies for an idea to spread or die out),
random drift, and network structure. Our framework illustrates intuitively several key properties of complex
contagions: stronger community structure and network sparsity can significantly enhance the spread, while
broad degree distributions dampen the effect of selection compared to random drift. Finally, we show that some
structural features can exhibit critical values that demarcate regimes where global contagions become possible
for networks of arbitrary size. Our results draw parallels between the competition of genes in a population and
memes in a world of minds and ideas. Our tools provide insight into the spread of information, behaviors, and
ideas via social influence, and highlight the role of macroscopic network structure in determining their fate.
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I. INTRODUCTION

A. Background

Individuals on a social network are subject to influence
by their neighbors, affecting their adoption of information
[1], ideas [2], and behaviors [3]. The likelihood that a given
individual adopts a new idea depends on how many of
her neighbors have adopted the idea already. For physically
spreading infections, as encountered in traditional epidemi-
ology [4], this dependence is typically linear and leads to
a “simple contagion.” By contrast, social reinforcement and
other forms of peer influence [5,6], as well as game theoret-
ical considerations of behavior [7], can result in a nonlinear
dependence of an individual’s likelihood of adoption on her
neighbors’ status [5,8–16]. A spreading process with such a
nonlinear likelihood of adoption is a “complex contagion,”
whose properties can differ significantly from simple conta-
gions [17,18]. The spread of complex contagions is related
intimately to the interplay of network structure and adoption
patterns, relying on locally high prevalence and multiple peer
influence in order to spread.

*mdesai@oeb.harvard.edu

B. Relationship with past work

The empirical evidence for complex contagions, includ-
ing the propagation of online contagions, is accumulating
[1,5,19–23] and several structural features influencing spread
have been identified [18,23–26]. Beyond the adoption char-
acteristics and network structure studied here, other factors
influencing spread likely include individual heterogeneity,
personal characteristics, strategic or reactive adoption, as well
as global influences such as mass media [21,27–29].

Threshold models [30] provide a simple and elegant way to
capture nonlinear adoption, which can be further generalized
with dose response [31,32] and arbitrary adoption [11] mecha-
nisms. These models provide insights into how heterogeneous
adoption thresholds [8,9] and the form of adoption functions
interact with node degree on random networks. Assuming
locally random treelike networks (i.e., the absence of signif-
icant clustering), general conditions for global spread can be
derived [9,33]. In some cases, the relevant microparameters
of the model, such as the probability of adoption given one
or two exposures, can be empirically measured to calibrate
the model [32]. These models do not address the temporal
dynamics of the contagion or connect its behavior to specific
structural properties of the underlying network beyond the
degree distributions. Moreover, these approaches do not study
the dynamics and statistics of “small” contagions that never
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reach macroscopic size, and do not apply to community-based
or highly clustered networks. They do illustrate a subtle in-
teraction between threshold level and degree heterogeneity
that we build on in this paper: when an individual’s adoption
threshold is a function of the fraction (as opposed to the
absolute number) of affected neighbors, low-degree nodes are
easily susceptible to be converted, but pass on the contagion
to fewer neighbors. By contrast, high-degree nodes are harder
to activate but pass it on more widely. For a fixed average
degree, it is therefore not immediately clear what the net effect
of a wider degree distribution will be on the spread of such
contagions.

The competing effects of clustering and “long ties”
on complex contagions have been studied theoretically
[6,7,13,14] and empirically [34]. Game theoretic and thresh-
old models have been used successfully to illustrate the key
insight—supported by recent empirical work [35,36]—that
clustering and communities can accelerate the spread of a
complex contagion by allowing it to quickly reach locally high
levels and spread one community at a time [7,37], whereas
simple contagions converge faster for high-dimensional net-
works dominated by “long ties” [14]. Incidentally, similar
insights emerge in the context of synergistic co-infections,
whose coupled epidemiological dynamics also exhibit non-
linearities and thus complex contagion properties [16]. These
theoretical studies use approaches focused on deterministic
mean field dynamics and convergence times, and are restricted
to the regime of strong positive selection (i.e., where conver-
gence is essentially guaranteed) [7].

C. Overview of contributions

The effects of general network features on the stochastic
dynamics of complex contagions of a range of sizes (both the
statistical distribution of rare events as well as the probabil-
ities of global cascades) remain poorly characterized. Here
we a present a framework based on mathematical tools and
intuitions from population genetics to analyze these stochas-
tic dynamics for arbitrary forms of complex contagions, and
apply our model to understand the effects of key network
properties including sparsity, community structure, and de-
gree distributions. While the influence of these structural
features has been illuminated previously [17,18], our ap-
proach builds on and supplements this prior work.

Our method uses the language of population genetics to
provide intuitive derivations of key properties of complex
contagions and their dependence on the above network fea-
tures. This approach allows us to analyze contagion dynamics
at all scales of a network, from the local neighborhood to
the community to the global scale, taking into account the
interplay of “selection” (i.e., the local tendency for an idea
to spread), diffusion (the random fluctuations in spread due to
the stochastic nature of the process), and network structure.
We study the contagions’ full stochastic dynamics subject to
arbitrary nonlinear adoption patterns and selection regimes,
and we formulate network conditions under which complex
contagions can reach global scales.

A key idea is to use targeted approximations to derive
an effective lower dimensional diffusion process that is (ap-
proximately) obeyed by the true contagion on the network.

This approach highlights parallels between the competitions
of genes in a population and the competition of memes in a
world of minds and ideas. While our method is not necessarily
applicable to arbitrary network structures, it provides insights
in a variety of cases.

II. OUR MODEL

In particular, we study here the fate and adoption of a
newly arising idea on a network, giving rise to a complex
contagion. We model this process in the framework of evolu-
tionary game theory by considering individuals as the nodes of
an undirected graph, with edges representing interaction and
communication patterns [Figs. 1(a) and 1(b)]. We introduce
the new idea as a single randomly chosen type B node on
a network in which all other nodes are initially of type A.
Both types spread by contagion. In particular, we assume
that individuals update their type as a continuous stochastic
process, where the rate of switching depends on the fraction
of neighbors of a given type: a type A node becomes type B
at rate

r1 = y[1 + f1(y)],

and type B nodes become type A at rate

r2 = [1 − y][1 + f2(y)],

where y is the local fraction of type B neighbors at a given
node. For a complex contagion, f1/2 are functions of y, while
they are constants for simple contagions [4,38–40]. Our main
aim is to understand how successfully the new idea spreads
through the network by calculating how the overall frac-
tion of type B individuals, ȳ(t ), changes over time. In a
strict sense, we use ȳ to refer to the overall (global) frac-
tion of type B individuals and y for the local fraction as
seen by a given individual. When there is no possibility of
ambiguity we will simply use y in both cases for ease of
notation.

For concreteness we focus primarily on the simple illus-
trative case where f1(y) = αy and f2(y) = β, with positive
α and β. This models “positive frequency dependence” [41],
where an idea is unpersuasive while rare but becomes more
attractive as it is more widely adopted [6,7,13]. This is a
natural assumption in many contexts (e.g., political views,
preferences, games, or communication habits). However, we
note that some ideas may be positively selected at all fre-
quencies (i.e., negative β), in which case they will always
tend to spread, and negative frequency dependence (i.e., neg-
ative α) may also be relevant in other scenarios (e.g., fashion
trends or baby naming). We further assume that α, β � 1,
which implies that the strength of selection is relatively
weak, such that a preference for one or the other type only
emerges on a collective population level (in the opposite
case, the idea will tend to very quickly either spread or be
eliminated).

To some readers this model may appear reminiscent of SIS
or SIR models in epidemiology [42], where the rate at which
a susceptible individual becomes infected is often assumed to
be proportional to the number of infected neighbors. Indeed,
these models are encompassed by our framework. However,
in SIS or SIR models the rate of recovery of an infected
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FIG. 1. Model and simulations on real social networks. (a) We model a complex contagion on a network where each individual can be
type B or type A. We denote the global frequency of type B individuals as ȳ. Each node sees a potentially different local fraction y of type B
neighbors (node labels). (b) Transition rates between type B and type A individuals occur at rates r1 and r2; the form of f1/2(y) determines
the nonlinear adoption probabilities in complex contagions. (c) Simulations on networks of variable clustering derived by swapping pairs of
edges in a Facebook network [49] (N = 4039, k = 43) show that the spread of complex (but not simple) contagions are highly sensitive to
clustering. The line increasing with clustering is the complex contagion. The three flat lines correspond to simple contagions and are ordered
top to bottom as in the legend. (d, e) Example frequency trajectories for contagions that fixed in our simulations. Each colored line shows
the frequency within a given community as detected by a standard community detection algorithm [55], while the black line shows overall
frequency ȳ. If the community structure is strong, the contagion fixes one community at a time, rapidly gaining and maintaining local popularity,
which helps the spread (d, clustering C = 0.6). If the community structure is weaker (but still detectable [55]), the contagion instead spreads
uniformly across the entire network (e, C = 0.2). This is much less likely, so the fixation probability Pfix is lower in this case. Simulations
assume f1(y) = αy, f2(y) = β, α = 0.25, and β = 0.05.

individual is generally not subject to neighbor influence,
while the rate of spread is linear in the neighbors. This leads
to simple contagion dynamics (with “infected” corresponding
to type B) for low values of ȳ and a diverging negative
frequency dependent selection for large values of ȳ (see
the section “Relation to epidemiological models” in [43]).
Therefore, small epidemics are well described with simple
contagions, with the additional trivial consequence that large
epidemics become exponentially unlikely. We do not study
this case here. Instead, our paper is focused on the rich
behavior resulting from positive frequency dependence once
a sufficient prevalence ȳ is reached. In this case, dynamics for
low ȳ are not well described with simple contagion models,
considerations of social proof [5,19] and evolutionary game
theory are relevant, and the conclusions and intuitions gained
from the model can differ substantially from those implied by
epidemic models [7].

In Figs. 1(c)–1(e) we explore how the spread of such a
complex contagion is influenced by network structure. For

this purpose, we consider the Facebook network from the
Stanford Large Network Dataset collection [49]. We con-
struct a sequence of networks with variable clustering but
unchanged degree sequence by randomly swapping pairs of
edges, and study contagions on this set of graphs. We find
that the spread of simple contagions is largely insensitive
to network structure [Fig. 1(c)]. By contrast, for complex
contagions there is a critical level of clustering required to
allow the contagion to spread globally. Below this level, the
contagion becomes exponentially unlikely to fix across large
networks. This can be seen in Fig. 1(c), which shows that the
fixation probability of the complex contagion is comparable
to a simple contagion with negative selection when clustering
is low but behaves like a simple contagion with positive selec-
tion as clustering gets sufficiently high. We also find that the
contagion fixes one community at a time when clustering is
sufficiently high [Fig. 1(d)], but for moderate or low clustering
values, all communities move through y space more or less in
unison [Fig. 1(e)].
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A. Diffusion approximation

To quantify and analyze these effects, we begin by calcu-
lating the global rate at which type A individuals become type
B. In our model of contagion dynamics, this is

RateA→B = N (1 − ȳ)EA[r1(y)]

= N (1 − ȳ)EA[y{1 + f1(y)}]
= N (1 − ȳ)(EA[y] + αEA[y2]). (1)

Here we use EA[·] to denote the expectation value induced
by the distribution of local y as seen by a randomly chosen
type A individual, and equivalently for type B. The N (1 − ȳ)
term is the number of type A individuals, and the expectation
value gives the mean rate r1 as averaged over all of these type
A nodes. Through EA[r1(y)], the rate crucially depends on the
distribution of local y seen by type A individuals, which will
depend on the network structure and the distribution of type
B individuals on the network. The rate of the reverse process
RateB→A has an equivalent form:

RateB→A = NȳEB[(1 − y)(1 + f2(y)]. (2)

These transition rates define the stochastic process governing
ȳ(t ), i.e., the total amount of type B individuals on the graph as
a function of time. We will use the rates to develop an effective
diffusion process describing its behavior.

Let us consider δȳ, the net change in ȳ during some small
time interval δt . The value of δȳ is determined by the differ-
ence between A → B and B → A transitions. The numbers of
each of these transition events during a small time interval
δt can be viewed as independent poisson distributed random
variables with rates as given by RateB/A→A/B. Hence, the mean
and variance of δȳ have the form

E [δȳ] ≡ a(ȳ)δt = 1

N
(RateA→B − RateB→A)δt,

Var[δȳ] ≡ b(ȳ)δ = 1

N2
(RateA→B + RateB→A)δt .

For large N , we can treat ȳ as a continuous variable between
0 and 1. The evolution of ȳ can then be described by a
Fokker-Planck equation [50]

∂ f (ȳ, t )

∂t
= − ∂

∂y
[a(ȳ) f (ȳ, t )] + 1

2

∂2

∂ ȳ2
[b(ȳ) f (ȳ, t )], (3)

where a(ȳ) captures selection and b(ȳ) captures diffusion
strength. The process has absorbing boundary conditions at
ȳ = 0, 1 (since a population with all equal types will remain
unchanged). We can summarize the behavior of this process
with a selection pressure s, which we define in the standard
way from population genetics [50],

s ≡ 2a(ȳ)

Nb(ȳ)
= 2(RateA→B − RateB→A)

RateA→B + RateA→B
. (4)

This selection pressure determines whether the contagion will
on average tend to grow (s > 0) or shrink (s < 0) and its
magnitude measures the strength of selection as compared to
the influence of random drift.

The rates from Eq. (1) or equivalently the selection strength
s(ȳ) from Eq. (4) define an effective diffusion process on
the space of ȳ, as shown in Eq. (3). The properties of ȳ(t )

according to this process will mimic the properties of the true
evolution of ȳ(t ) on the network.

Thus, the key task for understanding the dynamics of the
population is to find the local distribution of y seen by in-
dividuals of different types, which allows us to compute the
expectation values in Eq. (1) and hence the effective selection
strength s(ȳ) from Eq. (4). How the individuals are distributed
among the network (and thus the local distribution of y) will
depend on the network structure and the form of the func-
tions f1/2(y). If the expectation values in Eq. (1) depend on
additional degrees of freedom beyond the global value ȳ, then
a higher-dimensional diffusion process (tracking more than
just the global value ȳ may be necessary to model the full
dynamics on the graph accurately.

B. Selection regimes

In a well-mixed population, where every node is connected
to all other nodes, all individuals see the same global value of
y = ȳ. Thus EA[y2] = ȳ2, and hence

s(ȳ) ≈ αȳ − β (5)

in the limit where α, β � 1. This simple linearly increasing
form of s(y) (omitting the bar for the rest of this section,
since y = ȳ) is consistent with our model of an idea that is
negatively selected when rare but that becomes more popular
as it increases in frequency. The critical threshold frequency
above which the idea becomes positively selected is y = yn ≡
β

α
. In addition to this frequency dependence of s, the effect

of random fluctuations is another key ingredient to under-
standing the behavior of the process. Standard results from
population genetics [50] imply that whenever the number of
type B individual is small compared to the inverse of the
selection pressure (i.e., when Ny|s| � 1, in the illustrative
case of constant s), the random stochasticity of the process
dominates over the effects of selection, and the frequency of
the idea is dominated by random “genetic drift.” By contrast,
when Ny|s| � 1, selection dominates over random drift, and
the idea will tend to deterministically spread or be eliminated
from the population.

We define Preach(y) as the probability that the contagion
reaches a given value of at least y. This function captures the
ability of the new idea to invade the population and describes
the statistical behavior of the process at both small and large
values of y. The selection regimes described above then define
various different qualitative behaviors of Preach(y). When drift
dominates, Preach(y) falls off as 1

Ny as in a neutral random
walk. In regimes of positive selection, a contagion reaching a
given value of y is almost certain to reach continuously higher
values of y, so Preach is approximately constant. By contrast,
when negative selection dominates, the contagion becomes
exponentially less likely to reach ever higher values of y, so
Preach falls off exponentially.

In a complex contagion, where s is a function of y, the
process can encounter various such regimes of selection, as
illustrated in Figs. 2(a) and 2(b). In our example where s(y) =
αy − β, the contagion begins with a neutral regime at low y.
Depending on the total network size N , the contagion may
then encounter a regime of negative selection before eventu-
ally reaching the regime of positive selection above frequency
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(a)

(c) (d)

(b)

FIG. 2. Selection and genetic drift in complex contagions. For
simplicity we omit the bar for ȳ in all panels. (a) The condition
N |s(y)|y = 1 distinguishes regimes where contagion dynamics are
dominated by genetic drift, negative selection, or positive selection
(this is an approximation to the exact condition N |S(y)| = 1; see the
Supplemental Material [43]). (b) A contagion can spread globally
if it reaches high enough frequency to be positively selected; this
may require “tunneling” through a regime of negative selection at
lower frequencies. (c, d) Sparsity (c) and community structure (d) can
change the shape of s(y) and hence alter the contagion dynamics.

yn (with another regime of neutral selection in between where
s(y) ≈ 0). If the initial regime of negative selection is not
too “strong,” a contagion can “tunnel through” it by random
chance, then encounter positive selection and fix.

In the simple example of fixed selection, the boundaries
between the regimes of selection are defined approximately by
the points at which Ny|s| = 1. In the more general frequency
dependent case, we can use diffusion theory to generalize this
condition [see “Well mixed populations” and “Working with
NS(y)” in [43] for details]. By placing a fictitious absorbing
boundary at a given value of y, we can use the solution for
the fixation probability of a diffusion process like Eq. (3) with
arbitrary a(y) and b(y) functions [50] to derive

Preach(y)−1 ∝
∫ y

0
e−NS(z) dz (6)

with S(y) ≡ ∫ y
0

2a(z)
Nb(z) dz = ∫ y

0 s(z) dz. By inspecting Eq. (6)
and noting the exponential dependence, we can provide
the generalized condition for transitioning between selection
regimes:

N |S(y) − S(y∗)| = 1, (7)

where y∗ is the argument of the most negative value of S(x)
reached for any value x < y. This elegantly generalizes the
constant selection condition Ny|s| = 1. The intuition behind
the new condition is as follows. Consider the ratio

Preach(y)

Preach(y∗)
=

∫ y∗

0 e−NS(z) dz∫ y
0 e−NS(z) dz

,

which captures the scaling of Preach beyond the point y∗.
How this quantity scales with y depends how the value of

NS(y) compares to NS(y∗). Because of the exponential, the
largest value of the integrand dominates each integral. Thus,
if NS(y) � NS(y∗), the value of the integrand e−NS(y) in
the denominator is negligible for y > y∗ and Preach(y) does
not drop with y and instead remains roughly constant in y
(positive selection). If NS(y) < NS(y∗) [which implies NS(y)
is dropping with increasing y, otherwise there would be a
different y∗], the integral in the denominator is dominated
by the current value of NS(y) and Preach(y) drops exponen-
tially (negative selection). Finally, if NS(y) ≈ NS(y∗), the
denominator grows roughly linearly with y (neutral selec-
tion). Therefore, Eq. (7) defines transition points between the
various selection regimes, where S(y) = ∫ y

0 s(z) dz captures
the integrated effect of selection up to y. We illustrate the
resulting selection regimes for our case of s(y) = αy − β in
Supplemental Fig. 1 in [43]. Selection regimes are a key fea-
ture of a given contagion process as they allow an immediate
high-level description of its behavior.

III. RANDOM REGULAR GRAPHS

A. Approach

To gain insight into the effect of various aspects of net-
work structure on the spread of complex contagions, we now
apply the ideas of effective diffusion processes and selection
regimes to contagions on several archetypical families of net-
works. One simple but critical aspect of network structure is
that not all nodes are connected. To focus on the effects of this
sparsity, we consider the spread of a contagion on a random
regular graph, where each node is connected at random to
exactly k other nodes [51]. In such a network, each node will
no longer see the “global” value ȳ, but rather some local value
that reflects the fraction of its neighbors that happen to be
type B. In principle, determining these local values of y is a
complicated problem. However, because the network is ran-
dom, we expect no strong locality in how type B individuals
are distributed, so the neighbors of each individual form an
approximately random sample of size k of the whole popula-
tion. This no-locality (or “annealed”) [52,53] approximation
is related to the assumption that a large randomly connected
network initially looks “locally treelike” [9,33] for a spreading
contagion, but specifically ignores the fact that type B nodes
are slightly more likely than chance to be connected to one
another (this is because they can in reality only initially appear
as a neighbor of another type B individual). The assumption
of no locality contrasts with the case of a spatial network (e.g.,
a square lattice) where locality is fundamental to the network
geometry (in this case the contagion becomes a front propaga-
tion problem and must be treated differently [54]). We confirm
the accuracy of the no-locality assumption in Supplemental
Fig 2 [43], and contrast it with the case of spatial networks in
Supplemental Figs. 3 and 4 [43].

In our approximation (see “Sparse networks” in [43] for
details), the distribution of y as seen by a given individual
with k neighbors follows a Hypergeometric (approximately
a Binomial for k � N) distribution with success probability
ȳ and k trials:

y ∼ 1

k
Hypergeometric(N, ȳN, k),
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which implies EA[y] = ȳ. In a simple contagion (with f1/2

independent of y), only the first moment of the local distri-
bution of y appears in Eqs. (1) and (2). A simple contagion
is thus unaffected by network sparsity. By contrast, higher
moments appear in Eqs. (1) and (2) for a complex contagion
with y-dependent f1/2(y). Due to discreteness in the connec-
tivity (and thus the nonzero variance in the distribution of
local y), some type A nodes will have more type B neigh-
bors than others, and hence EA[y2] > EA[y]2 = ȳ2. Sparsity
therefore increases RateA→B and s(y) compared to the well-
mixed behavior (5) and enhances the spread of a complex
contagion.

B. Results

Using the hypergeometric distribution over local y and its
moments, we can obtain the expectation values in Eqs. (1)
and (2) and hence compute the effective selection s(ȳ) on
this graph using Eq. (4). Specifically, we find that for large
networks where N � k (and assuming α, β � 1),

s(ȳ) = α

(
ȳ + (1 − ȳ)

k

)
− β. (8)

This reduces to the well-mixed solution s(ȳ) = αȳ − β as
k becomes large, but for small k selection is significantly
enhanced, as shown in Fig. 2(c). The intuition is that for
small k, some nodes will by chance happen to have a higher
fraction of type B neighbors than others due to local sampling
fluctuations. Because the transition rates increase nonlinearly
with y, the increased positive selection on the few individuals
that see high values of y outweighs the effect of the reduced
value of y seen by individuals with fewer type B neighbors.
While this effect is present for all k, it becomes stronger for
smaller k since the variance in the locally observed y increases
with smaller k.

The example of sparse regular networks illustrates several
general patterns in our analysis. The distribution of type B
individuals is influenced by the network structure and dis-
creteness for any contagion process, but it is only for complex
contagions that it affects selection and thus the spread. This
happens through the higher moments of the distribution of
local y, which only appear in Eqs. (1) and (2) if there is a
frequency dependence of f1/2, i.e., for a complex contagion.
By contrast, as long as the first moment is unchanged from ȳ,
a simple contagion is not affected by network structure (see
“Simple contagion” in [43]).

Generally, for a given ȳ, structure influences how type
B individuals are distributed during the contagion, which
through Eqs. (1) and (2) interacts with the specific form of
f1/2(y) to produce the effective selection strength s(ȳ). This
determines regimes of selection and the overall behavior of
the contagion. Moreover, s(ȳ) defines an effective diffusion
process capturing the behavior of ȳ(t ), which we can easily
solve using standard methods to obtain Preach(ȳ), the fixation
probability Pfix, properties of the temporal evolution [14],
or any other quantities of interest. Thus we can reduce our
problem to calculating the distribution of y in the neighbor-
hoods of type A and type B individuals at a given global value
of ȳ. In general, s at any point in time will depend on the
full configuration of the type B individuals on the network.

However, using key assumptions about the dynamics, we
can often significantly reduce the degrees of freedom on
which s depends. In the above example, by assuming no
locality and noting the random connectivity of the network,
we reduced the complexity of the process to a single degree of
freedom: ȳ.

Figures 3(b) and 3(c) show that our theory accurately
predicts the results of numerical simulations of the process for
various degrees of sparsity. Moreover, we show in Fig. 3(b)
that the simple condition N |S(y) − S(y∗)| = 1 accurately
predicts transitions between selection regimes. In particular,
the black arrows are the predictions for transitioning from
initially neutral selection at small y to negative selection,
which is visible on the log-log plot as a change from a straight
line to a downward bending shape of Preach(y). The white
arrows are the predictions for transitioning from the negative
selection regime to the positive selection regime (which
manifests visually as a transition from a downward bending
trend to flat Preach(y).

While a precise treatment of the additional effects of
locality is beyond the scope of this work, we can provide
some intuition for its effects. Locality slightly increases the
chances of the extreme outcomes of having zero type B
neighbors as well as the chances of having many type B
neighbors (see Supplemental Fig. 2 [43]). This is because
type B nodes are created by definition only if they are initially
in contact with another type B individual, so they are slightly
more likely than chance to be found next to each other. They
are also more likely than chance to be connected to each
other in a locally “treelike” structure [33]. Because the true
distribution of y is slightly wider than in our approximation,
the variance is slightly higher and thus the effect on selection
is slightly more positive than predicted. This explains the
slight underestimation of Preach and Pfix in Fig. 3 by our
approach. We have confirmed that these discrepancies
disappear in a modified version of the simulation where node
identities are shuffled on the graph at every time step (making
the no locality assumption exactly true). As the specific
form of the nonlinearity interacts with the distribution of y
through its higher moments, the differences in the distribution
of y compared to the no locality approximation could
potentially lead to larger discrepancies between our theory
and simulations for different nonlinearities. Nonetheless, the
approximation allows us to build a quantitative and intuitive
picture that captures important aspects of the true process.

IV. COMMUNITY-BASED NETWORKS

A. Approach

Next we consider the effect of community structure, where
the impact of within-community locality is essential to the
contagion dynamics. To analyze this effect, we consider
random graphs that consist of randomly connected commu-
nities of m individuals each. In particular, we assume every
individual has exactly ki random connections within the com-
munity and ke outside of it, where ki + ke ≡ k. By tuning
ki/k, we can vary the strength of community structure. As
ki
k → 1, we have very strong and cohesive communities,
while ki

k → m
N reduces to the case of a random regular graph

of degree k.
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(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

FIG. 3. Network structure and the dynamics of complex contagions. For simplicity we omit the bar for ȳ in all panels. (a) Illustration
of networks that are more (right) or less (left) sparse. (b) Theoretical predictions (solid lines) and simulated results (for N = 10 000; dots)
for Preach(y) for networks of different sparsity. Theoretical predictions for the transition to the regime of negative and positive selection are
shown as black or white arrows respectively. (c) Theoretical predictions (solid lines) and simulated results (dots) for the fixation probability
Pfix(y) as a function of network size N . We show results for five values of k, corresponding to sparsity above (blue; top line), approximately
on (purple; second line from top), and below (red; second line from bottom) the phase transitions allowing for global spread, as well as for
a large value (yellow; bottom line) that approximates a fully-connected graph (dotted line). (d) Illustration of networks with more (right) or
less (left) community structure. (e, f) Theoretical predictions (solid lines) and simulated results (dots) for Preach(y) (e) and Pfix (f) for networks
with different strengths of community structure. (g) Illustration of networks with high (right) or low (left) variance in degree distribution. (h, i)
Theoretical predictions (solid lines) and simulated results (dots) for Preach(y) (h) and Pfix (i) for networks with mean degree k = 10 and standard
deviation in degree distribution σk = 30 for contagions with β = 0.1 (h), β = 0.05 (i), and three different values of α corresponding to initially
positive, initially neutral, and initially negative selection on a regular graph with equal mean degree. Dotted lines show theoretical predictions
for those equivalent regular graphs (i.e., with equal k = 10 but σk = 0). Large σk decreases Preach for positive selection and increases Preach for
negative selection. In both cases the absolute effect of selection is lessened by higher degree variance. Parameters: α = 1.0, β = 0.1 (b), α =
0.4, β = 0.04 (c), α = 0.88, β = 0.1, m = k = 20 (e), α = 0.2, β = 0.025, m = k = 20 (f), α = (2.5, 1.0, 0.71) (h), α = (1.25, 0.5, 0.36)
(i). All parameters correspond to positive frequency dependence and are chosen so that the curves’ distinguishing features are clearly visible
within a reasonable range of magnitudes and computational budget. All line labels are ordered top to bottom in the legend in the same order as
they appear in the plot itself. The dashed lines in (h) and (i) have the same top to bottom ordering as the corresponding solid lines.

We will provide a brief description of the approach, for
more details we refer to “Community based networks” in
[43]. To analyze the contagion on such a graph, we must un-
derstand how type B individuals distribute themselves across
the network. For clarity, let use z to denote the fraction of
type B individuals within a given community. We are then
interested in the distribution of the z values, as seen across
all communities in the network. Let us denote this distribu-
tion with a(z), which gives the fraction of communities at
a fixed value of z. Note that z is discretized in units of 1

m ,
and we have

∑
z za(z) = ȳ. Because the connections on the

network are random within and between communities, we
will assume that each node sees a random sample of size
ki from within the community with its internal edges, and a
random sample of size ke of the rest of the graph with its ke

external edges. This is effectively a targeted version of the
no-locality assumption: for the same reasoning as with the
regular random graph, while the distribution of node types
across communities a(z) matters, the location of type B indi-
viduals in a given community does not, and neither does how
the communities are shuffled for a fixed a(z). We demonstrate
the validity of our assumptions in Supplemental Fig. 2 [43].
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This allows us to determine the distribution of y as seen by a
given node:

y = ii + ie
ki + ke

, (9)

where ii and ie are Hypergeometric random variables just like
in the section on sparse networks representing the number of
type B neighbors coming from edges internal to the commu-
nity and external to it, respectively, that is,

ii ∼ Hypergeometric (m − 1, zm, ki ),

ie ∼ Hypergeometric (N − m, Nȳ − zm, ke). (10)

Intuitively, in addition to discreteness effects as before, the
distribution of y for a given node is now a weighted mixture
between the z of the community that the node is located
in, and the global value of ȳ. It is now more clear how the
distribution a(z) will affect the local distribution of y as seen
by a given individual: if the distribution a(z) is tightly cen-
tered around the global ȳ, we expect the overall results to be
very similar to a regular random graph of degree k, i.e., no
significant effect of community structure. On the other hand,
if the distribution a(z) has significant departures from ȳ, (for
example, most communities could be either “full” or “empty”
and only spend little time in between), most nodes will either
see very high values of y or very low because of the partial
effect of z (which is modulated by the community strength ki

k ).
This increases the variance in the distribution of y (without
affecting its mean), which similarly to the case of the regu-
lar random graph will change the effective selection on the
graph through the higher moments appearing in Eqs. (1), (2)
and (4).

To find the distribution a(z), we make the key assumption
that for any given ȳ, the distribution of y values seen within
communities reaches a quasi-steady state before ȳ can change
significantly across the whole graph. This distribution will de-
pend on the connectivity of the network as well as the details
of the transition probabilities. The steady-state approximation
assumes that within-community dynamics are fast compared
to global changes of y across the whole network; we expect
this to hold when selection is weak [ f1/2(y) � 1] and when
communities are small and well-connected compared to the
overall network.

If we assume that we know the distribution a(z), we can
use the definitions of the contagion dynamics together with
our knowledge of how the individual types are distributed to
determine the rate at which z changes in each community.
Specifically, the rate of change of a(z) for each value of z will
depend on the number of type B and type A individuals in
those communities [mz and m(1 − z), respectively], as well
as the rates at which individuals in communities of a given
z change types [which through Eq. (4) depend on their local
distribution of y, which we can in turn obtain from Eqs. (9)
and (10)]. These transitions change the value of z for a given
community and thus cause transition rates between entries of
a(z) for neighboring values of z. This allows us to write a non-
linear dynamical system for the temporal evolution of a(z). By
numerically finding the steady state of this system subject to
the normalization conditions

∑
z a(z) = 1 and

∑
z za(z) = ȳ,

we can compute the equilibrium distribution for a(z) (this

ultimately becomes a nonlinear algebraic system of equa-
tions that can be solved using zero-finding routines; see
“Computing the equilibrium value of a” in [43]).

The equilibrium distribution for a(z) then allows us to com-
pute the local distribution of y as seen by a given node by using
Eqs. (9) and (10) and the law of total expectation to marginal-
ize over z using a(z). We show that our approximations
accurately predict this distribution of local y in Supplemental
Fig. 5 [43]. As in the case of regular networks, the local
distribution of y implies an effective selection strength s(ȳ)
acting on the contagion [Fig. 2(d)]. Overall, assuming that
a(z) is at equilibrium for any global ȳ allows us to com-
pute numerically an effective selection strength s(ȳ), which
determines the behavior of the contagion. The agreement be-
tween our theoretical predictions and numerical simulations
are shown in Figs. 3(d)–3(f).

B. Results

When community strength is weak ( ki
k → m

N ), the equilib-
rium distribution of a(z) is narrowly peaked around the global
value of ȳ. In this case, each community simply behaves like
a random sample of nodes from the overall network, and we
have the same behavior as for the regular random network.
By contrast, when communities are cohesive ( ki

k → 1), the
equilibrium distribution of a(z) has the same mean, but is
now more peaked at the extremes of z = 0 and z = 1. This
“U-shaped” distribution of z means that type B individuals
are concentrated in just a few communities. The resulting
distribution of local y as seen by individuals is also more
peaked at the extremes, since individuals see mostly edges
from within their own communities, and those communities
are either mostly type A or mostly type B. This wider distri-
bution of local y enhances the spread of the contagion (for the
same reason that higher variance in local y enhances selection
for the regular random graph).

We provide here some intuition for the transition of a(z)
between the narrowly peaked and U-shaped regimes as a
function of ki

k . In the section “Continuum approximation”
in [43] we provide a more quantitative justification based
on an effective diffusion process for z in a given commu-
nity for fixed ȳ. For high ki, the U-shaped distribution of
z arises because the many connections within a community
can “conduct” influence between the types and thus cause
rapid fluctuations of z within the community, but only slow
fluctuations between communities. The rate of fluctuations are
fastest when there are approximately equally many type B and
type A individuals in a community. By contrast, fluctuations
are slow when nearly all the nodes within a community have
the same type. The values of z within a community (which
are subject to random diffusion) will therefore spend most
of their time at extreme values of z → 0 or z → 1. This
intuition is confirmed in that we observe a critical level of
community strength ki

k above which the equilibrium distribu-
tion of z within a community turns from a narrow distribution
(concentrated around the global ȳ across the whole network)
to a U-shaped distribution (same mean, but concentrated at
the extreme values), as shown in Supplemental Fig. 5 [43].
The resulting variance in y as seen by individuals is high,
and selection is enhanced. Intuitively, it is much easier for
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the contagion to randomly reach a “critical mass” of pop-
ularity within a single community and experience positive
selection there, compared to across the whole network. The
contagion simply fixes one community at a time, as visu-
alized in Supplemental Fig. 6 [43] as well as Supplemental
Videos 1–3 [43]. These effects also explain our observations
on the role of clustering and community strength on real
social networks in Fig. 1. It is important to note that the un-
equal distribution of type B individuals among communities
(just like the broader distribution of y in sparse networks)
is again a feature purely of the network structure and arises
with or without complex contagion. However, it is only in
the former case that this distribution has an effect on the
spread.

V. GRAPHS WITH VARIABLE DEGREE DISTRIBUTION

A. Approach

Finally, we consider graphs with variable degree distri-
butions and otherwise random connectivity. We present a
brief description of the approach and refer to “Networks with
degree distributions” in [43] for details. Intuitively, there
are competing effects and it is not immediately clear what
the net impact of varying degree distributions should be on
the spread of the contagion. On the one hand, high-degree
type B nodes are able to convert many other nodes once they
are converted, but they are harder to convert themselves. On
the other hand, it is easier to convert low-degree nodes to
type B for the same reason that low k increases selection
for the random regular graph, but those individuals in turn
will influence fewer neighbors. Given a fixed average de-
gree, it is not clear what effect a greater variance in degree
will have.

In the case of nonregular graphs, the degrees k of the nodes
are distributed according to a degree distribution P(k) (which
for regular graphs has zero variance, an assumption that we
now relax). For a given individual of degree k on the graph,
we will also need the distribution over the degrees k′ of their
neighbors P(k′|k). While this neighbor degree distribution can
in principle be arbitrary, we expect it without further informa-
tion to have the form P(k′|k) ∼ P(k′)k′ since each node of
degree k′ has k′ edges to which one can be connected (any
departure from this distribution is called “assortativity”).

For networks with a nontrivial distribution P(k), it is no
longer possible to calculate a selection strength s that depends
only on y. Instead, we must work with the fraction of nodes
of each degree k′ that are type B, yk′ . This requires an explicit
analysis of the fraction of type B individuals for each degree
k′, which leads to a high-dimensional diffusion process. Note
that this still reduces the effective degrees of freedom signif-
icantly compared to the true process on the network, but not
as much as in the regular graph case where we track only a
single degree of freedom.

We can solve this multidimensional diffusion process us-
ing the no-locality approximation, i.e., assuming that nodes
of degree k see a random sample of all other nodes on the
graph. The probability distribution of the value of y seen by
a given individual will now depend on the degrees k′ of the
individual’s neighbors through yk′ (the probability of a given

node being type B is y′
k and depends on k′). The degrees

of the neighbors k′ in turn depend on the neighbor degree
distribution P(k′|k). Using the law of total expectation, we
find the simple and intuitive result that nodes of degree k
see a distribution of y identical to that for a k-regular random
graph, with the global frequency ȳ replaced by the “effective
frequency”

zk =
∑

k′
P(k′|k)yk′ . (11)

Using this distribution of the local value of y as seen by a given
node of degree k, we can use the same approach as for the
regular graphs to determine the rates (1) and thus obtain the
diffusion process. This time, however, there is such a process
for each population of NP(k) nodes at each value of k and
they are coupled together through the mixing across degrees
in Eq. (11). This coupled high-dimensional diffusion process
in yk space must therefore be solved numerically.

B. Results

To vary both the mean and variance of the degree distri-
bution continuously, we consider graphs where the degree of
each node is drawn from a Gamma distribution with mean
k and variance σk . Specifically, in order to illustrate the effect
of wide degree distributions, in Figs. 3(g)–3(i) we compare
graphs with σk = 0 (i.e., regular random graphs as studied
before) to networks with high-degree variance (σk = 30) and
equal mean degree. We consider regimes that on a regu-
lar graph with the same mean degree k would consist of
initial positive selection [s(0) > 0], initial neutral selection
[s(0) = 0], and initial negative selection followed by pos-
itive selection [s(0) < 0]. Our theoretical predictions show
excellent agreement with the full numerical simulations. Note
that for graphs with high degree variance, the behavior of
Preach(y) becomes “less extreme,” whether selection is posi-
tive or negative (we find lower Preach in the case of positive
selection and higher Preach in the case of initial negative se-
lection). Overall, we find that broader degree distributions
dampen the effects of selection (whether positive or negative)
on the contagion, both for simple and for complex conta-
gions. Another effect is the consistent suppression of the
contagion for very low y [see Fig. 3(h)], which is enhanced
for distributions with significant degree correlations (see
Supplemental Fig. 8 [43]). We give intuition and a derivation
for this effect in [43] (see the sections “Suppression at low
y” and “Impact of the neighbor degree distribution”). We also
verify the soundness of our modeling approach by compar-
ing the predicted local distribution of y to observations in
Supplemental Fig. 7 [43] showing close agreement.

VI. PHASE TRANSITIONS

Whenever it is possible to compute an s(y), our frame-
work implies a simple condition under which the contagion
can spread globally with finite probability even in arbitrarily
large networks (i.e., global cascades are possible, see “Phase
transitions” in [43]): the width of a region of negative s(y)
around y = 0 must scale as N−γ , with γ � 1. That is, the
contagion must need to tunnel through at most a finite number
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(a) (b) (c)

FIG. 4. Phase transitions for complex contagions. (a–c) Ratio of Pfix on a network of size N1 = 50000 to Pfix on a network of size N2 = 2000
for contagions with β = 0.025, different values of α and varying sparsity (a), community structure (k = m = 20) (b), or degree distributions
(k = 10) (c). Values close to one correspond to cases where Pfix does not scale strongly with N , so global cascades are possible even in
large networks. Solid white lines in (a) and (b) denote the theoretically predicted phase transition, and the thick dashed white line indicates
an observed ratio of 1/5 = √

N1/N2 (the empirical location of the phase transition). The theoretical value for (a) is found by evaluating
s(0) = 0 using Eq. (8). The theoretical value for (b) is found by numerically evaluating s( m

N ) and finding where it is equal to zero given
the parameters (see the sections on “Phase transitions” in [43] for details). In (b) the location of the phase transition approaches the regular
random graph value [white arrow, can be read off for k = 20 in panel (a)] as the network loses community structure and becomes regular
random (ki → m

N ≈ 0). In (c) the empirical phase transition also correctly approaches the theoretical prediction (regular graph limit, white
arrow) as σk → 0. Since wider degree distributions weaken the effect of selection, the “transition regime” becomes noticeably wider for
large σk .

of individuals to reach a frequency above which it is positively
selected. Otherwise, the process encounters negative selection
and is exponentially unlikely to spread globally for large N .
Using Eq. (8) and setting s(0) = 0, this leads to the critical
sparsity kcrit = 1

yn
= α

β
below which global contagion is pos-

sible [Fig. 4(a)]. Note that this result is in line with previous
work considering locally treelike connectivity [9,33] and has
a simple intuitive interpretation: each individual that sees at
least one type B neighbor has s(y) = s( 1

k ) ≈ α
k − β. If this

minimum selection is nonnegative, the contagion can spread
globally.

For community-based networks, we find that the effective
selection strength has s(0) = −β, but jumps higher as y → m

N
[see Fig. 2(d)]. Global contagion is possible provided that
s( m

N ) � 0, because in that case the contagion only needs to
overcome a fixed size negative selection regime of size at
most m that does not scale with N . Numerically, we find
this implies a critical community strength ki/k above which
complex contagions are able to spread globally by appearing
popular and reaching critical mass in one community at a
time, even though they do not have critical mass on the global
network [Fig. 4(b)]. This is in line with our initial simulations
of contagions on real social networks [Figs. 1(c)–1(e)].

VII. DISCUSSION

These results demonstrate quantitatively how interac-
tions between nonlinear adoption probabilities and network

structure influence the dynamics and outcomes of complex
contagions by modulating the effects of selection and stochas-
ticity. A central idea was the use of targeted approximations
(e.g., no locality on random networks, local vs global equili-
bration timescales on community-based networks) to reduce
the contagion to an effective diffusion process on a lower di-
mensional space (y for regular networks, yk for random graphs
with degree distributions, and the space of per-community
z for community-based networks) and hence obtain its sta-
tistical properties. This allows us to understand the behavior
of both large and small contagions, as well as the emergence
of global cascades. These results help explain why the spread
of even initially unpopular ideas and opinions can be en-
hanced both by overall sparsity as well as by cliques and
other forms of community structure. They also show that in
contrast to simple contagions (where the existence of highly
connected individuals always enhances spread), broad degree
distributions dampen both positive and negative selection for
complex contagions and hence have more subtle effects.
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