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Collapse transition in epidemic spreading subject to detection with limited resources
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Compartmental models are the most widely used framework for modeling infectious diseases. These models
have been continuously refined to incorporate all the realistic mechanisms that can shape the course of an
epidemic outbreak. Building on a compartmental model that accounts for early detection and isolation of
infectious individuals through testing, in this article we focus on the viability of detection processes under limited
availability of testing resources, and we study how the latter impacts on the detection rate. Our results show that,
in addition to the well-known epidemic transition at R0 = 1, a second transition occurs at R�

0 > 1 pinpointing
the collapse of the detection system and, as a consequence, the switch from a regime of mitigation to a regime
in which the pathogen spreads freely. We characterize the epidemic phase diagram of the model as a function of
the relevant control parameters: the basic reproduction number, the maximum detection capacity of the system,
and the fraction of individuals in shelter. Our analysis thus provides a valuable tool for estimating the detection
resources and the level of confinement needed to face epidemic outbreaks.
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I. INTRODUCTION

The COVID-19 pandemic has affected the entire world,
causing significant loss of life, economic hardship, and
widespread disruption of social and cultural norms. As a re-
sult, it is essential to understand how communicable diseases
spread and what can be done to mitigate their impact. Math-
ematical models are particularly useful in this regard [1,2],
as they allow researchers to gain valuable insights into the
transmission dynamics of infectious diseases [3,4], inform
public health policies [5,6], and guide efforts to control [7,8]
and prevent future outbreaks [9].

Compartmental models are the most widely used frame-
work for modeling infectious diseases [10,11]. In these
models, a population is divided into compartments or states,
with transitions between them mediated by different param-
eters. While simple and widely used, these basic models,
such as the susceptible-infectious-recovered model [12], have
limitations in accounting for complex demographic or social
factors that may impact transmission dynamics and the effec-
tiveness of containment policies.

Over the past years, researchers have made significant ef-
forts to overcome the limitations of compartmental models
used for modeling infectious diseases. One approach has been
to incorporate various elements that make the models more
realistic, thus broadening their range of applicability. These
refinements cover the use of complex networks to model inter-
actions through which the pathogen can spread [13,14], thus
allowing researchers to better capture the heterogeneity of

the connection between individuals and its impact on disease
transmission dynamics. Another refinement has been its com-
bination with diffusion processes [15], which mimic mobility
flows between densely populated areas [16], enabling the de-
velopment of metapopulation frameworks to analyze the role
of travel and movement patterns in the spread of infectious
diseases [17–19]. Additionally, researchers have coupled the
spreading dynamics of infectious diseases with behavioral
factors that impact the acceptance of interventions [20,21].
This refinement acknowledges the importance of human be-
havior in the success of disease control measures and allows
for the exploration of interventions more likely to be adopted
by the population [22,23].

Following this line of research, recently new compartmen-
tal models have been developed to study how early detection
and isolation of infectious individuals through testing and
the subsequent activation of contact tracing strategies can
interrupt the advance of transmission chains [24–27]. In this
study, we explore how limited availability of testing resources
alter the viability of detection processes and their impact on
the ongoing epidemic outbreak. We propose a minimal com-
partmental model that can simulate the effects of different
interventions, such as lockdowns and testing, and derive the
epidemic phase diagram analytically.

Our results show that, in addition to the well-known epi-
demic transition that occurs when the basic reproduction
number R0 is Rc

0 = 1, a second transition takes place at
R�

0 > 1, which depends on the maximum detection capacity
of the system. When R0 > R�

0, the system moves from a
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FIG. 1. In panel (a) we show the flux diagram of the SLIDR
model. The model has five compartments: susceptible (S), locked
(L), infectious (I), detected (D), and recovered (R). Arrows indicate
the possible transitions between different states. In panel (b) we
sketch the dependence of the detection rate on the fraction of infected
individuals in the population, given by Eq. (6).

phase where detection can mitigate the epidemic outbreak to
a phase where the pathogen spreads freely. By characterizing
this transition, we can determine the precise value of R�

0 as
a function of both the detection capacity of the system and
the fraction of individuals in shelter. Our model provides
a valuable tool for estimating the detection resources and
confinement needed to face epidemic outbreaks and can be
adapted for use in more elaborate models.

II. EPIDEMIC SPREADING DYNAMICS

To simulate the time progression of infections during a
single epidemic wave without considering reinfections, we
adopt a susceptible-infected-recovered (SIR) framework. This
compartmental modeling approach divides the population into
three epidemiological states: susceptible (S), i.e., individuals
who lack prior exposure to the pathogen and, therefore, pos-
sess no immunity, infected (I), individuals infected with the
pathogen and carrying a sufficient viral load to infect others,
and recovered (R), individuals who have overcome the infec-
tion and have developed immunity. In addition to the three
typical SIR categories, we introduce two further categories:
locked (L) and detected (D), so that we can refer to our model
as SLIDR. The L category comprises epidemiologically S
individuals who are under strict lockdown measures and thus
cannot contract the disease. The D group denotes those in-
dividuals who were infected but have been detected through
testing, and consequently, are no longer infectious due to their
isolation.

As typical in compartmental models, each individual of a
population can occupy only one state at a given time, and
the transition from one state to another is governed by the
flow diagram illustrated in Fig. 1(a). Initially, a fraction l0 of
the population transitions from S to L, while the remaining
individuals in S are susceptible to infection at a rate β per
contact with an agent in compartment I . Infectious individuals
transition to either recovered, R, at a rate μ, or detected, D, at
a rate g(t ). Note that the detection rate, g(t ), is time dependent,

as it is contingent upon the testing capacity, as we will discuss
in detail below. Finally, detected individuals transition to the
recovered state at a rate γ .

The former transitions allow us to write a set of mean-field
equations by considering that each agent is involved in 〈k〉
contacts per unit time in a population of size N . Considering
the fractions of the population in each compartment (s = S/N ,
l = L/N , i = I/N , d = D/N , and r = R/N) fulfilling s + l +
i + d + r = 1, the differential equations that govern their time
evolution read as

ṡ = −(〈k〉 − 1)βsi, (1)

l̇ = 0, (2)

i̇ = (〈k〉 − 1)βsi − [μ + g(t )]i, (3)

ḋ = −γ d + gi, (4)

ṙ = μi + γ d. (5)

Note that, as explained above, Eq. (2) implies that the fraction
of population initially set under lockdown remains constant
during time [l (t ) = l0]. As mentioned above, the detection
rate g(t ) is not constant in order to capture the limited na-
ture of testing resources. In particular we assume the time
dependence of g(t ) shown in Fig. 1(b), whose mathematical
expression reads

g(t ) =
{

g0 if i(t ) < θ,

g0e−λN (i(t )−θ ) if i(t ) > θ.
(6)

The previous functional form assumes that detection oper-
ates in a normal way, i.e., with a constant rate g0, provided
that the fraction of infectious agents remains below a speci-
fied capacity threshold θ . Under normal conditions, tests are
readily available, and the entire detection process, including
identification of infectious agents, testing, and processing of
results, takes place optimally within an average time period of
1/g0. However, when the number of infected individuals i(t )
exceeds the capacity threshold θ , we assume that a national
health system begins to experience delays, causing a reduction
in detection efficiency. Ultimately, when the detection system
becomes too slow, infected individuals may recover before
being detected, so detection does not alter their infectious
period. To model the collapse of the detection system, we
introduce an exponential decay of the original rate, g0, to-
wards the detection compartment according to the difference
between the availability threshold θ and the demand i(t ). The
exponential decay is regulated by a tunable decay rate λ times
the size of the population N .

In Fig. 2, we study how the interplay between the imple-
mentation of lockdown policies and the existence of limited
testing resources affects epidemic trajectories. To set a ref-
erence, we represent an epidemic trajectory in Figs. 2(a)
and 2(b) with a baseline detection rate g0 = 0.2, unlimited
resources, i.e., θ = 1, and with no lockdown policies at play,
i.e., l0 = 0. First, we explore in Figs. 2(c) and 2(d) the im-
pact of limited resources by setting the capacity threshold
to θ = 0.07 and the decay rate λ = 1. The selection of the
capacity threshold value draws inspiration from the typical
testing ratios observed during the most challenging weeks of
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FIG. 2. In panels (a)-(b) we show the temporal evolution of all the compartments of the SLIDR model in absence of lockdown (l0 = 0),
with unlimited resources (θ = 1), an average connectivity 〈k〉 = 5, a infectivity β = 0.137, a recovery rate μ = 1/7, a transition rate from
D to R regulated by γ = 3/20, and assuming a baseline detection rate of g0 = 0.2. In panels (c)–(d) we appreciate how considering limited
resources, θ = 0.07 [the rest of the parameters are identical to panels (a)–(b)], gives rise to the acceleration of the infected cases growth
once the capacity threshold is reached. This acceleration depends on the decay rate λ = 1 and on the population size N = 700. In panels
(e)–(f) we show how collapse can be avoided when a fraction of population is under lockdown (l0 = 0.1). r∞ reference curves display how
lockdown reduces the attack rate of the diseases even below the one corresponding to unlimited resources [panel (a)]. The rest of the parameters
are identical to panels (c)–(d) (θ = 0.07, 〈k〉 = 5, β = 0.137, μ = 1/7, γ = 3/20, g0 = 0.2). Note that in all panels the basic reproduction
number is fixed to R0 = 1.6 and time is measured in arbitrary units.

the COVID-19 epidemic in Europe [28]. The time evolution of
each compartment clearly shows that, once the infectious pop-
ulation reaches the value θ noticed by the horizontal dashed
red line in Fig. 2(d), the fraction of detected agents decays
and, as a consequence, the increase of the infectious popula-
tion speeds up. As a consequence, a much larger attack rate
r∞ = limt→∞ r(t ) is observed. For longer times we observe
that detection has a second peak, pinpointing that after the
epidemic peak the infectious population falls back under the
threshold θ . Finally, Figs. 2(e) and 2(f) show what happens
when θ = 0.07, but a finite fraction l0 = 0.1 of the suscep-
tible population is under lockdown. In this case, the pool
of susceptible individuals available to be infected is smaller
and, as a result, the capacity threshold θ is more effective
in stopping the disease spreading, leading to a better miti-
gation of the outbreak and, consequently, to a smaller attack
rate.

The overall effect of detection and its limited capacity can
be analyzed by computing the epidemic diagram, i.e., the
impact of the contagion wave, measured by the value of r∞, as
a function of the basic reproduction number of the pathogen,
R0, whose expression for the SLIDR model considering an
initially fully susceptible population is given by

R0 = β(〈k〉 − 1)

g0 + μ
. (7)

In Fig. 3(a), we show (thin curves) the epidemic diagrams,
r∞(R0), in the case l0 = 0 and a force of detection charac-
terized by a baseline rate g0 = 1, a capacity threshold θ =
0.07, and two different values of λ. From these diagrams,
we observe that there exist two transition points. First, the
well-known epidemic threshold at R0 = Rc

0 = 1, pinpoint-
ing that beyond this point the infective power β(〈k〉 − 1) is
larger than the effective recovery rate (g0 + μ). In addition to

the epidemic threshold, a second transition point appears at
R�

0 > 1 which corresponds to the collapse transition.
To better illustrate the collapse transition point, we also

show the epidemic diagrams (thick curves) corresponding to
free propagation, r∞

FP(R0), i.e., in the absence of the detec-
tion policies, and that corresponding to perfect mitigation,
r∞

PM(R0), which is computed assuming the availability of un-
limited resources (θ = 1). With these two phase diagrams as
limiting cases, it is clear that the collapse point R�

0 corre-
sponds to the minimum reproduction number that a pathogen
needs to jeopardize the detection capacity and decrease the
mitigation effects of the early removal of infectious agents.
Beyond this point, the epidemic diagram separates from the
one corresponding to unlimited detection resources and even-
tually reaches that corresponding to null detection at a value
R0 > R�

0 for which the mitigation power of detection is com-
pletely suppressed.

It is also important to discuss the role played by the decay
rate λ. Although λ does not intervene in the precise value
of R�

0, it controls the transition between perfect-mitigation
and the free-propagation regimes. In particular, the larger the
values of λ become, the more abrupt the collapse transition
becomes. For large values of λ, the explosive nature of the
collapse transitions implies that once the system reaches the
collapse transition R�

0, the attack rate will be equivalent to
the one observed in an uncontrolled scenario. The increase
of the sharpness of the collapse transition is clear from
Fig. 3(b) where r∞(R0) is reported for a continuous range of λ

values.
To better characterize the collapse transition shown in

Fig. 3 we have introduced the mitigation efficiency η, which
quantifies the global impact of the detection collapse. The
mitigation effectiveness η compares the actual epidemic di-
agram r∞(R0) for a given detection force (g0, θ , λ) with
that obtained with the same detection rate g0 and unlimited
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FIG. 3. In panel (a) we show the SLIDR attack rate r∞ for two
values of λ in the absence of lockdown (l0 = 0). The lower value
of λ yields to a second-order collapse transition, while the higher
displays a first order transition. The gray curve corresponds to a
perfect mitigation case and the red to the free propagation dynamics.
In panel (b) the complete phase diagram is shown. The horizontal
dashed lines indicate the values of λ corresponding to the parameters
used to represent curves in panel (a). The vertical black dashed line
indicates the critical value R�

0 computed according to Eq. (17). In
both panels simulations are performed for the range of infectivity
values β ∈ [0, 0.75], assuming a baseline detection rate g0 = 1, a
capacity threshold θ = 0.07, a population size N = 700 with average
connectivity 〈k〉 = 5, a recovery rate μ = 1/7, and a transition rate
from D to R regulated by γ = 3/20.

resources (θ = 1) and is defined as

η =
∫
R0

[
r∞

FP(R0) − r∞(R0)
]
dR0∫

R0

[
r∞

FP(R0) − r∞
PM(R0)

]
dR0

. (8)

It takes values in the range [0,1], with η = 0 when the miti-
gation effect is null and η = 1 when the mitigation attained is
the best possible one.

Figure 4 shows the mitigation effectiveness as a function
of θ and λ. The latter parameter becomes more relevant when
little resources are available, yielding a great variance in the
parameter η when considering low θ values. However, as
the availability of resources increases, the transition is de-
layed and the nature of the transition is less relevant. This
is because for high basic reproduction number diseases the
free-propagation and the perfect-mitigation curves are quite
close, as shown in Fig. 3(a).

III. THE COLLAPSE THRESHOLD R�
0

Once characterized numerically the existence of a collapse
transition leading to the failure of the epidemic containment
through detection of infectious agents, we now proceed to
derive analytically the precise value of R�

0. This analysis will

FIG. 4. The mitigation effectiveness η (color code) is reported
as a function of the capacity threshold θ and of the decay rate λ.
Simulations are performed for a large range of infectivity values with
no lockdown polices implemented (l0 = 0). We assume a baseline
detection rate g0 = 1, a population size N = 700 with average con-
nectivity 〈k〉 = 5, a recovery rate μ = 1/7, and a transition rate from
D to R regulated by γ = 3/20.

shed light into the dependence of R�
0 on the epidemiological

parameters characterizing the spread of the pathogen.
As mentioned earlier, the collapse threshold R�

0 is the
minimum value of the basic reproduction number to keep
the epidemic curve always below the capacity threshold θ .
Therefore, R�

0 can be determined as the value of R0 that gives
rise to imax = θ . Although our SLIDR model includes two
additional compartments L and D, we can effectively treat it
as an SIR̄ model with an R̄ compartment which aggregates the
populations L, D, and R of the original SLIDR formulation.
Since we assume that the fraction of population in L is con-
tained in the new compartment R̄, we have r̄0 = l0 and s0 =
1 − l0 − i0. Second, using our time-continuous approach, we
obtain the transition rate from the I compartment to the new R̄
compartment by adding the detection rate g0 and the recovery
rate μ. This way, we can transfer the outgoing flow from I to
the effective compartment R̄, neglecting the internal dynam-
ics D → R within the new effective compartment. After this
reformulation we have

ṡ = −(〈k〉 − 1)βsi, (9)

i̇ = (〈k〉 − 1)βsi − (μ + g0)i, (10)

˙̄r = (μ + g0)i, (11)

with initial conditions s0 = 1 − l0 − i0, i0 � 1, and r̄0 = l0.
Note that in the formulation of this effective model we have
fixed the detection rate to g0 as we are interested in the max-
imum possible value of R�

0 not triggering the decrease of the
detection rate during the epidemic evolution.

To obtain an analytical expression of imax we proceed as
usual in the SIR model by dividing Eqs. (9) and (11), yielding

ds

dr̄
= − (〈k〉 − 1)β

(g0 + μ)
s = −R0s, (12)

which can be integrated with the initial conditions above to
obtain the evolution of infectious agents as a function of the
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fraction of susceptible ones:

i(t ) = 1 − l0 − s(t ) + 1

R0
ln

(
s(t )

1 − l0

)
, (13)

where we have set r̄0 = l0 and made the approximation s0 �
1 − l0, considering that, at the beginning of an epidemic, the
number of infectious agents is small, i0 � 1.

The implicit expression i(s) in Eq. (13) allows us to deter-
mine the density of susceptibles when the outbreak reaches
its peak. Setting di

ds = 0 we obtain s(imax) = R−1
0 and, by

inserting this value into Eq. (13), we finally obtain

imax = 1 − l0 − 1

R0
[1 + ln {R0(1 − l0)}], (14)

Once we have derived the expression for imax we set in
Eq. (14) the condition fulfilled at R�

0, i.e., θ = imax, and after
some algebra we obtain the implicit relation for R�

0, given the
values of θ and l0:

R�
0(1 − l0)eR

�
0(1−l0 )[ θ

(1−l0 ) −1] = 1

e
. (15)

To solve the former relation for R�
0 we perform the

change of variables x = (θ/(1 − l0) − 1)e−1 and y = R�
0(1 −

l0)[θ/(1 − l0) − 1]. With these new variables the former ex-
pression reads:

yey = x, (16)

which is a well-known transcendental equation whose solu-
tion is the Lambert function, y = W (x).

In order to assess the validity of the expression in Eq. (16)
to derive R�

0, we recall some of the properties of the Lambert
function. First, we note that the Lambert W (x) function is only
real valuated in the case x � − 1

e . Considering the expression
of x, it is easy to derive that the former condition demands that
θ � 0, which is automatically satisfied. Additionally, for x <

0 (θ + l0 < 1), the Lambert function possesses two branches,
namely y = W0(x) and y = W−1(x). This particular range of x
is of interest, as it corresponds to situations in which both the
capacity threshold and the fraction of locked individuals are
small enough for the collapse transition to show up.

After comparing the numerical solution of R�
0 with the an-

alytical values obtained from the two branches of the Lambert
function predictions, we found that the correct behavior is
captured by the y = W−1(x) branch. Thus, the expression of
the collapse threshold can be finally written as

R�
0(θ, l0) = 1

θ − (1 − l0)
W−1

(
θ − (1 − l0)

e(1 − l0)

)
. (17)

In Fig. 3(b) we show (see vertical dashed line) that the ana-
lytical expression in Eq. (17) works fairly well in reproducing
the precise value of R0 at which the numerical curve r∞(R0)
detaches from the one corresponding to perfect mitigation,
r∞

PM(R0), and starts approaching that corresponding to free
propagation, r∞

FP(R0).
We continue by addressing the question about what is the

minimum amount of resources θ needed to avoid collapse
given that the spreading pathogen is characterized by R0. This
threshold value for θ , hereafter called θ�, can be straightfor-
wardly calculated by just imposing θ = imax(R0) in Eq. (14),

which yields

θ�(R0, l0)

= (1 − l0)

{
1 − 1

R0(1 − l0)
[1 + ln{R0(1 − l0)}]

}
. (18)

Note that the expression (18) can be obtained as the inverse
function of the equation (17) in the parameter range (θ + l0 <

1) prescribed above.
To complete our analytical derivations, we will now fo-

cus on determining the minimum lockdown fraction, denoted
by l0, required to maintain perfect mitigation when facing a
spreading pathogen characterized by the basic reproduction
number R0, assuming a fixed resource capacity θ .

We obtain the threshold value l�
0 by imposing θ = imax(R0)

in Eq. (14). By constructing the Lambert function, we obtain
the following expression for the threshold value:

l�
0 (R0, θ ) = 1 + 1

R0
W−1(−e−θR0−1), (19)

where W−1 denotes the branch of the Lambert function. It is
worth noting that the validity limits of the Lambert function
are always satisfied, since θR0 � 0 by definition of the pa-
rameters. Additionally, the branch W−1 is well defined, as the
condition e−θR0−1 > 0 is always fulfilled.

IV. EPIDEMIC PHASE DIAGRAMS

The analytical results derived in Sec. III allow us to analyze
the epidemic phase diagram of the system as a function of
the relevant parameters: the infectiousness of the pathogen,
R0, the maximum detection capacity of the system, θ , and
the fraction of the population out in shelter, l0. In the first
case when l0 = 0 so that no lockdown is imposed, as shown
in Fig. 5, the phase diagram can be plotted as a function of
R0 and θ . The diagram exhibits three possible phases: the
disease-free phase when R0 < 1, the perfect-mitigation phase
when R0 > 1 and θ > θ�(R0), and the collapse active phase
provided R0 > 1 and θ < θ�(R0). The two former phases are
separated by the curve provided by Eq. (17) [or alternatively
Eq. (18)].

The phase diagram in Fig. 5 shows that for pathogens with
R0 > 3 the maximum detection capacity should be θ� > 0.3,
pointing out that the sole active detection demands an extraor-
dinary amount of resources to avoid the collapse phase. Thus,
in the following we explore how combining active detection
and lockdown can suffice to achieve the mitigation of the
outbreak. From Eq. (18) it is clear that when lockdown enters
into the game (l0 > 0) two beneficial effects show up. First,
the basic reproductive number turns into an lower effective
one R̄0 = R0(1 − l0) and, second, the maximum capacity
detection is effectively increased from θ� to θ̄ � = θ�/(1 − l0).
These two effects combined allow to increase the area of the
perfect mitigation phase in the (R0, θ ) plane as shown in
Fig. 6(a), which reports the curves θ�(R0) that separate the
perfect mitigation and the active collapse phases for different
values of the fraction l0.
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FIG. 5. Phase diagram of the SLIDR model in the absence of
lockdown (l0 = 0). Rc

0 = 1 is the epidemic threshold that separates
the absorbent phase from the active epidemic region. Within the
active phase, the model allows the computation of the minimum
amount of resources θ� that we need to avoid collapse, given by (18),
as a function of the basic reproduction number R0. Thus, R�

0 is the
critical point related to the transition between that perfect-mitigation
active phase and the active collapse phase. Some R0 values have
been indicated as reference, with their associated θ�.

The beneficial effects of combining partial lockdown with
detection are also illustrated in Fig. 6(b). Here we show for
different values of R0 the lockdown fraction, l�

0 , needed to
remain in the perfect mitigation phase considering a fixed
maximum detection capacity θ .

V. CONCLUSIONS

The implementation of reliable detection systems is key
to ensure that policies such as contact tracing and isolation
of infectious individuals have the desired impact on outbreak
control. In this study, we have introduced and studied a

compartmental model in which detection resources are lim-
ited. Using a mean field approach, we have characterized the
different dynamic regimes of the system as a function of its
parameters.

The most relevant result of this work is the observation
of two transitions as a function of the basic reproductive
number: the epidemic (R0 = 1) and the collapse (R0 = R�

0)
transitions. In the latter transition the health system is unable
to meet the demand for detection (for R0 > R�

0) and we
move from a controlled regime, where detection drives the
mitigation of the epidemic outbreak, to a regime in which the
pathogen spreads freely.

The existence of a collapse transition has motivated the
analysis of a combined implementation of detection and lock-
downs [29]. We have observed that the combination of the
two strategies can help to avoid the collapse point, specially
for those pathogens with a large R0. Besides, our results show
how, for certain values of the decay constant λ, the nature of
the collapse transition turns out to be explosive. This result
is striking because it means that, above the collapse transi-
tion, the attack rate can be the same as in the unmitigated
dynamics. The way on how this explosive behavior shows
up is also remarkable since it arises in the active phase, i.e.,
well beyond the epidemic threshold. Thus, it stands in contrast
to conventional forms of explosivity observed in contagion
models [30,31], in which deliberate delays in epidemic onset
lead to abrupt transitions deviating from the usual smooth
ones [32].

Finally, it should be noted that the analytical results pre-
sented here are based on a mean-field approach and, thus,
some limitations are worth mentioning. First our model does
not account for all observed features of social connections and
pathogen performance. In this context, it would be worthwhile
to refine the mechanisms built into SLIDR to be able to
incorporate real connectivity patterns given by networks of
close contacts. In this area, the inclusion of contact tracing
strategies and not only symptomatic detection could be of
particular interest. This approach could also be applied to
reaction-diffusion processes that simultaneously incorporate
mobility flows and contact patterns [33], paving the way

FIG. 6. In panel (a) we show the critical value θ�(R0, l0) according to Eq. (18). The blue line separates the region of values where the
collapse transition can occur from the region where the transition never exists because there is always perfect mitigation. In panel (b) the
critical value l�

0 (R0, θ ) is drawn according to Eq. (19). The blue line indicates the boundary θ + l0 = 1 and separates the region where R�
0 is

finite from the region where the transition never exists. Note that the contour lines correspond to unequally spaced R0 values.
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for the identification of optimal distributions of detection re-
sources [34,35]. In addition, the lockdown that complements
detection has been implemented in a stylized way, i.e., starting
from the beginning of the epidemic way rather than being
applied in subsequent times. For this particular scenario, we
have checked that the reported results are robust provided the
time elapsed between the start of the epidemic wave and the
lockdown is small enough compared to the time associated
to the epidemic peak. Overall, our model is able to provide
analytical insights as a benchmark for more realistic models

that can capture the full range of complexities involved in
infectious disease outbreaks.
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