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Perfect synchronization in complex networks with higher-order interactions
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Achieving perfect synchronization in a complex network, specially in the presence of higher-order interactions
(HOIs) at a targeted point in the parameter space, is an interesting, yet challenging task. Here we present a
theoretical framework to achieve the same under the paradigm of the Sakaguchi-Kuramoto (SK) model. We
analytically derive a frequency set to achieve perfect synchrony at some desired point in a complex network
of SK oscillators with higher-order interactions. Considering the SK model with HOIs on top of the scale-
free, random, and small world networks, we perform extensive numerical simulations to verify the proposed
theory. Numerical simulations show that the analytically derived frequency set not only provides stable perfect
synchronization in the network at a desired point but also proves to be very effective in achieving a high level of
synchronization around it compared to the other choices of frequency sets. The stability and the robustness of the
perfect synchronization state of the system are determined using the low-dimensional reduction of the network
and by introducing a Gaussian noise around the derived frequency set, respectively.
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I. INTRODUCTION

Higher-order structures, such as three- and four-way inter-
actions in addition to pairwise interactions, are widespread in
neurological, biological, ecological, and sociological systems
[1–14]. In ecological systems such higher-order interactions
(HOIs) where three or more species interact with each other
can stabilize large ecological communities [15–17]. On the
other hand, recent studies have suggested that the mesoscopic
organization of the brain through higher-order interactions
allows efficient information processing and offers useful
guidelines for performing complex tasks [14,18–20]. Moti-
vated by these practical implications, the network science
community is also concentrating on understanding the various
types of collective behavior ranging from synchronization to
epidemic spreading that can go beyond conventional paired
interactions [2,3,21–23].

Synchronization observed in the flocking pattern of birds,
or rhythmic flashing of fireflies, can be modeled with the
interacting nonlinear dynamical units [24–29]. The classic
Kuramoto dynamics, one of the celebrated dynamical mod-
els used for studying synchronization [30,31], encodes the
phase evolution of each node. In a complex network, nodes
with nonidentical natural frequencies are connected to one
another via paired linkages. Depending on the coupling con-
figuration or particular frequency design, such complicated
pairwise connections could cause the entire system to reveal

*jitprosen.math@gmail.com
†pinaki.pal@maths.nitdgp.ac.in

“continuous,” “discontinuous,” or “optimal” synchronization
[22,30,32–37]. However, a slight phase-lag between the os-
cillators may destabilize or erode the stable synchronization
states and destroy the switchlike discontinuous synchro-
nization transition for certain cases [38–44]. Against this
backdrop, we explore the impact of HOIs in a network of
coupled phase-lag oscillators. Particularly, in the presence of
HOIs and fixed coupling strength, we seek a suitable fre-
quency set which can lead the system to a perfect [39] global
synchronization state where all phases are in unison.

The HOI can induce abrupt synchronization transitions
between the incoherent state and the coherent state without
any correlations between network structure and dynamical
functions. These synchronized states are stable even in the
presence of repulsive pairwise coupling due to such higher-
order interaction [45]. In a system, three-way interactions
in addition to pairwise interactions can cause abrupt desyn-
chronization transitions without any abrupt synchronization
transitions, and extensive multistable partially synchronized
states [22] may appear.

In particular, interactions in 2-simplexes are important in
describing correlation in neuronal activity in the brain [46],
providing a missing link between the structure and the dynam-
ics. In fact, considering HOIs is useful where different types of
correlation exist between the nodes in a coupled oscillator sys-
tem. Despite these findings, enhancement of synchronization
in phase-frustrated dynamics with higher-order interaction has
not been explored so far.

It has been demonstrated that a trade-off between
pairwise and higher-order interactions can result in a
higher level of synchronization (optimal synchronization) in
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relatively weaker coupling strength [47] by using an opti-
mal frequency set obtained from the dominant eigenvector of
the composite Laplacian, which encodes both pairwise and
triangular interactions in the absence of phase frustration.
Although phase frustration or phase lag has been shown to
have nontrivial effects on the dynamics of paired networked
systems [39,40,42,43,48–50], its impact on networks with
higher-order interactions has received the least attention.

In this paper, we focus on the topic of targeted global
synchronization in phase-frustrated (-lag) complex networks
in the presence of pairwise as well as higher-order interactions
and ask the question “Can we determine a set of frequen-
cies to achieve perfect synchronization at a targeted point of
the parameter space in such networks?” In the process, we
employ the analytical approaches reported in Refs. [39,51]
and develop a framework based on linear theory to achieve
the goal of perfect synchronization at a targeted point. The
analytical approach eventually leads to the determination of
a set of frequencies involving the structural and dynamical
properties of the network for the achievement of perfect syn-
chronization. Detailed numerical demonstration with different
networks following the analytic finally confirms the achieve-
ment of targeted perfect synchronization using the derived
frequency.

The organization of the paper is as follows. Sections II
and III describe the model and the analytical frame work
for deriving a frequency set for the achievement of perfect
synchronization at a targeted point. Section IV presents the
detailed numerical results on perfect synchronization in dif-
ferent networks. Then, the stability and robustness of the
synchronization states are presented in Secs. V and VI. A
general discussion and conclusions are made in Sec. VII. We
proceed with the model description in the next section.

II. MODEL DESCRIPTION

We consider different networks of coupled Sakaguchi-
Kuramoto (SK) [26,43] phase oscillators of size N with
higher-order interactions along with pairwise interactions
[22,45,52]. The dynamics of each oscillator in the network
is governed by the equation

θ̇i = ωi + K1

N∑
j=1

Ai j sin(θ j − θi − α)

+ K2

2

N∑
j=1

N∑
l=1

Bi jl sin(2θ j − θl − θi − β ),

i = 1, 2, . . . , N, (1)

where θi is the phase and ωi is the intrinsic natural frequency
of the ith oscillator. α and β act as the frustration terms
in the system, corresponding to the pairwise and the triadic
interactions, respectively. K1 and K2 are the coupling strengths
associated with the 1-simplex (pairwise interaction) and the
2-simplex (triadic interaction), respectively. Ai j is the i jth
element of the adjacency matrix A = (Ai j )N×N associated with
the 1-simplex, where Ai j = 1, if the ith and jth nodes are
connected, and Ai j = 0, otherwise. Similarly, Bi jl is the ad-
jacency tensor associated with the 2-simplex, where Bi jl = 1

if there is a triadic connection between the ith, jth, and lth
nodes, and Bi jl = 0, otherwise. Note that the networks under
consideration are undirected. As a result, we have Ai j = Aji

and Bi jl = Bil j = Bjil = Bl ji = Bli j = Bjli for all admissible i
and j. Here we choose the 2-simplicial complex, which leads
to the consideration of the triadic and pairwise interactions
only. By the definition of a simplicial complex, every link
in that triangle will be in the simplicial complex. So, the
adjacency tensor can be written in the form Bi jl = Ai jA jl Ali.

To quantify the level of synchronization in the network, we
use the Kuramoto order parameter r given by

reiψ (t ) = 1

N

N∑
j=1

eiθ j , (2)

where ψ (t ) is the average phase of the oscillators at
time t . The value of the order parameter lies between 0 and
1. r = 0 indicates the system is in the incoherent state, while
r = 1 indicates the fully synchronized state of the system.
The coupled equation (1) is used to develop an analytical
framework for the achievement of perfect synchronization in
the network. The details are described in the next section.

III. ANALYTICAL FRAMEWORK

Here we describe the analytical framework used to de-
rive a frequency set for achieving perfect synchronization
at a targeted point in the parameter space following the ap-
proach reported in Refs. [39,51]. Linearization of the system
(1) about the synchronized state (|θ j − θi| → 0) leads to the
equation

θ̇i = ωi + [ − K1k(1)
i sin α − K2k(2)

i sin β
] − K1 cos α

[
k(1)

i θi

−
N∑

j=1

Ai jθ j

]
−K2 cos β

[
k(2)

i θi −
N∑

j=1

Ai j

(
N∑

l=1

AjlAli

)
θ j

+ 1

2

N∑
j=1

Aji

(
N∑

l=1

Ail Al j

)
θ j

]
(i = 1, 2, . . . , N ). (3)

The above equation can be written in vector form as

θ̇ = ω + d − Lθ, (4)

where d = −K1k(1) sin α − K2k(2) sin β and L =
K1 cos αL(1) + K2 cos βL(2) is the composite Laplacian
consisting of the Laplacian of pairwise interaction and the
Laplacian of triadic interaction, L(1) and L(2), respectively.
Here, L(1) and L(2) are defined as

L(1) = D(1) − A(1) and L(2) = D(2) −
(

A(2) − A(2)T

2

)
,

where A(1) denotes the adjacency matrix A, D(1) =
diag(k(1)

1 , k(1)
2 , . . . , k(1)

N ), A(2) = A ∗ (A2)T , and D(2) =
diag(k(2)

1 , k(2)
2 , . . . , k(2)

N ), with ∗ denoting the Hadamard
product. Also, k(1)

i = ∑N
j=1 Ai j is the degree of the

ith node considering the pairwise interaction only and
k(2)

i = 1
2

∑N
j=1

∑N
l=1 Bi jl is the degree of the ith node while

considering the triadic interactions.
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Now, we derive the steady-state solution by suitably vary-
ing the reference frame as ω → ω − �, where � is the group
angular velocity, and putting ψ = 0. Therefore, θ̇ = 0 in
Eq. (4) gives the stationary points as

θ∗ = L†(ω + d ), (5)

where L† is the pseudoinverse of the Laplacian L, which is of
the form

L† =
N∑

j=2

λ−1
j v jv j

T , (6)

where 0 = λ1 < λ2 � · · · � λN are the eigenvalues of L and
v j ( j = 1, 2, . . . , N ) are the eigenvectors of L with respect to
the eigenvalues λ j .

The order parameter in Eq. (2) is then approximated as

r ≈ 1 − ‖ θ∗ ‖2

2N
, (7)

where

‖ θ∗ ‖2 = 〈θ∗, θ∗〉
= 〈L†(ω + d ), L†(ω + d )〉

=
N∑

j=2

λ−2
j 〈v j,ω + d〉2.

Now, by substituting the above expression in Eq. (7), we get
the order parameter as

r = 1 − 1

2N

N∑
j=2

λ−2
j 〈v j,ω + d〉2

= 1 − 1

2
J (ω, L), (8)

where J (ω, L) = 1
N

∑N
j=2 λ−2

j 〈v j,ω + d〉2 is known as syn-
chrony alignment function. Here we note that in Eq. (8), the
J (ω, L) → 0 limit leads to r = 1, which denotes the perfect
synchronization state. Therefore, for the achievement of per-
fect synchronization at a given point, we choose

ω + d = 0. (9)

Thus, the frequency set for the achievement of perfect syn-
chronization at a targeted point in the parameter space is given
by

ω = K (p)
1 k(1) sin α + K (p)

2 k(2) sin β, (10)

where K (p)
1 and K (p)

2 are the targeted coupling strength for
pairwise and triadic interaction, respectively. We now proceed
with the numerical verification of the proposed framework
for achieving perfect synchronization at targeted coupling
strengths for fixed phase-lags α and β, considering different
networks.

IV. NUMERICAL VERIFICATION

The achievement of perfect synchronization in complex
networks at a targeted point in the parameter space using the
frequency set (analytically derived by the method described
in the previous section) is numerically verified in this section.
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FIG. 1. Perfect synchronization for different networks. Numeri-
cally computed order parameter r as a function of pairwise coupling
strength K1 shown for phase lags α = 0.1 (blue) and 0.5 (magenta).
The triadic coupling K2 is set to 0.5. The green dots indicate perfect
synchronization states at targeted coupling K1 = 0.1. (a) The ER
network achieves r = 1 at K1 = 0.1 in both forward and backward
simulations. (b) and (c) The SF network with γ = 2.5 and 3.2 attains
r = 1 at K1 = 0.1 in both forward and backward simulations. (d) The
SW network achieves perfect synchronization at K1 = 0.1 in forward
and backward simulations only for α = 0.1. For the other lag, the
backward path only attains r = 1.

For that purpose, we numerically simulate the Sakaguchi-
Kuramoto model with higher-order interactions on top of four
different complex networks of the same size (N = 103). The
considered networks are one Erdős-Rényi (ER) [53–55] net-
work; two scale-free (SF) [56] networks with exponents γ =
2.5 and 3.2; and one small-world (SW) [57] network. The SF
network with exponent 2.5 is of mean degree 〈k〉 = 6 and each
of the other three networks have mean degree 〈k〉 = 8. Numer-
ical simulations are performed using the fourth-order Runge-
Kutta method with step size δt = 0.01 for a sufficiently long
time after removing the transients. For the next few numerical
illustrations, we take α = β and set the target points at K (p)

1 =
0.1 and K (p)

2 = 0.5. In each case, we numerically continue the
solutions in both forward and backward directions.

First we fix K2 = 0.5 and vary K1 around the target point
K (p)

1 = 0.1 for the achievement of perfect synchronization
in each of the considered networks for different values of
α = β = 0.1 and 0.5 (0.3 and 0.7 are shown in Fig. 12 in
the Appendix). For each α, we use the frequency set derived
by Eq. (10) and obtain the statistically steady solutions after
integrating the system for a sufficiently long time. Although
here we have chosen α = β, using the derived frequency set,
perfect synchronization can be achieved at a targeted point for
α �= β. This fact is illustrated towards the end of this section.

Starting from K1 = 0, the solution is then continued in the
forward direction by changing the value of K1 in small steps
and using the last values of the phase variables of the previous
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FIG. 2. Synchronization diagram for fixed K2 = α = 0.5 with
natural frequencies drawn from the normal, uniform, and derived
(perfect) frequency will ensure perfect synchronization at K1 = 0.1
in different networks of size N = 1000: (a) r vs K1 for the ER
network; (b) and (c) r vs K1 for the SF networks with γ = 2.5 and
3.2, respectively; and (d) r vs K1 for the SW network. For the green,
red, and blue curves in panels (a)–(d), the natural frequencies are
drawn from the normal, uniform, and derived (perfect) frequency
distributions, respectively.

simulation as the initial condition for the present simulation.
In the process, we continue the solution till K1 = 0.3 and then
continue the solution similarly in the backward direction by
gradually reducing the value of K1 in steps of δK1 = 0.001
right up to the starting value of K1. The variations of the syn-
chronization order parameter (r) with K1 for fixed K2 = 0.5
obtained from the simulation data are shown in the Fig. 1.
From Figs. 1(a), 1(b), and 1(c), one can observe that in the
cases of the ER network and the SF networks with γ = 2.5
and 3.2, perfect synchronization is achieved at the targeted
point (marked by a green dot) during forward as well back-
ward continuation for all values of α. However, for the other
case [Fig. 1(d)], perfect synchronization is achieved at the
targeted point during backward continuation for all considered
α, while for forward continuation it is achieved at the targeted
point for lower values of α. Since prior studies with only pair-
wise interactions suggested that the frustration parameter had
a negative impact on the hysteresis loop, this is an unexpected
result in the presence of higher-order interactions [40]. It
follows from the foregoing explanation that, given high values
of the frustration parameter, perfect synchronization can be
accomplished in a variety of networks using the analytically
derived frequency set.

Further, the analytically derived frequency which has
functional dependence on both the pairwise and the triadic
interactions not only provides perfect synchronization at a tar-
geted point in the parameter space but also helps in achieving
a very high level of synchronization around the targeted point
compared to other standard frequencies. Figure 2 shows the
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FIG. 3. Synchronization of the SK model with HOIs for different
networks. Synchronization diagrams describe the order parameter r
as a function of triadic coupling K2 for fixed K1 = 0.1. The blue
and magenta curves present the transitions for α = 0.1 and 0.5, re-
spectively. The green dots denote the perfect synchronization states.
(a) The ER network achieves r = 1 at K2 = 0.5 for considered lags in
both paths. (b) and (c) The SF networks with γ = 2.5 and 3.2 attain
perfect synchronization at K2 = 0.5 for considered α values in both
paths. (d) The SW network attains r = 1 at K2 = 0.5 only during
forward transition (except α = 0.1).

comparison of the level of synchronization in the considered
networks for different frequency sets. Here, simulations are
performed with uniform and normal frequencies along with
the derived frequency set. In each case, the derived frequency
set clearly provides a substantially higher level of synchro-
nization around the targeted point.

Next we fix the pairwise coupling strength K1 = 0.1 and
vary the triadic coupling strength K2 around the targeted point
(K (p)

2 = 0.5) and perform numerical simulations using the SK
model on the same complex networks considered above. As
before, in this case also we numerically continue the solutions
both in forward and backward directions by changing K2 in the
steps of δK2 = 0.005 for different values of α. The variations
of r with K2 as obtained from the simulation data in different
cases are shown in Fig. 3, which clearly shows the impact
of triadic interaction in the system. It is observed that for all
four networks perfect synchronization is achieved at the tar-
geted coupling with different transition paths. The ER and SF
networks show continuous transition to synchronization for
small α. Whereas, at α = 0.7 both of the SF networks exhibit
a small window of hysteresis around the perfect synchroniza-
tion point (see Fig. 13 in Appendix). For higher values of α,
the system (phase-lag oscillators in SW network) gradually
reaches to the highest point (r = 1), and then it sharply drops
to 0. We have also observed that during the backward transi-
tion, the perfect as well as the higher degree of synchroniza-
tion is achieved (near the targeted point) only for a small range
of coupling. The reason is as follows: during the backward
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FIG. 4. Synchronization diagram for fixed K1 = 0.1 and α =
0.5 with natural frequencies drawn from the normal, uniform, and
derived (perfect) frequency distributions for achieving perfect syn-
chronization at K2 = 0.5 in different networks of size N = 1000:
(a) r vs K2 for the ER network; (b) and (c) r vs K2 for the SF
networks with γ = 2.5 and 3.2, respectively; and (d) r vs K2 for the
SW network. The color convention is same as the one used in Fig. 2.

transition, the system is already in fully incoherent states, and
thus, it tries to remain in the incoherent state if we decrease
the coupling strength. However, when it comes closer to
K (p)

2 = 0.5, the coupling-strength-dependent frequency drives
the entire system to reach the perfect (or near perfect) syn-
chronization regime. A further decrease of coupling strength
reduces the level or degree of synchronization and drives the
entire system to be fully desycnhronized. These results con-
firm that using the analytically derived frequency set one can
achieve a perfectly synchronized state either in the forward
transition path or in the backward transition path. Subse-
quently, we analyze the analytically derived frequency set.

At this point let us recall that the derived frequency set pro-
motes a very high level of synchronization around the targeted
point as the pairwise coupling strength K1 varies for fixed
targeted triadic coupling strength (see Fig. 2). Next, to check
for the similar behavior of the level of synchronization, we
perform simulations by varying K2 around the targeted point
for fixed K1 = 0.1. Figure 4 shows that in this case also the de-
rived frequency provides a very high level of synchronization
compared to other frequency sets. Finally, for fixed K1 and
K2, we check the achievement of perfect synchronization at a
targeted value of the phase frustration. Thus, we set K1 = 0.1
and K2 = 0.5, and we derive the frequency set from Eq. (10)
for achieving perfect synchronization at α = 0.3. Using this
derived frequency set, numerical simulation of the network is
performed and the variation of the order parameter (r) with
the phase lag (α) is computed and is shown in Fig. 5. From
the figure, one can clearly observe that perfect synchrony is
achieved at the targeted phase frustration α = 0.3. In Fig. 5,
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FIG. 5. Synchronization diagram for fixed K1 = 0.1 and K2 =
0.5 with natural frequencies drawn from the normal, uniform, and
derived (perfect) frequency distributions for achieving perfect syn-
chronization at α = 0.3 in different networks of size N = 1000: (a) r
vs α for the ER network; (b) and (c) r vs α for the SF networks with
γ = 2.5 and 3.2, respectively; and (d) r vs α for the SW network.
The color convention is same as the one used in Fig. 2.

apart from the variation of r with α (blue curve) for the derived
frequency, the same variation of r with α have been shown
also for the other two frequency sets showing very low levels
of synchronization compared to the derived one. Although,
in the preceding discussion, we have used networks of size
N = 1000, the proposed framework is independent of the
network size N and we have verified it for larger networks
in some test cases.

Now, to understand the contributions of pairwise and
triadic interactions in the derived frequency for achieving
perfect synchronization at a targeted point, we analyze the
frequency distributions corresponding to the pairwise (ω1 =
K (p)

1 k(1) sin α) and triadic interactions (ω2 = K (p)
2 k(2) sin α) in

the expression (10) along with the total derived frequency
distribution. Figure 6 shows the distribution of the derived
frequency for perfect synchronization from Eq. (10) for four
different networks of size N = 1000 and two phase-lag values
(0.1 and 0.7). The figure also displays the distributions of ω1
and ω2 separately in the insets of each panel. It is observed that
the range of the frequencies increases substantially with lag.
As the sets ω1 and ω2 are linearly correlated with the pairwise
degree k(1) and the triadic degree k(2), the distributions also
look like the distribution of the pairwise and triadic degrees,
respectively. Since the ER network has a small number of
triangles, from the distribution of ω2 it is clear that the effect
of triangular interactions is less than the effect of pairwise
interactions [Figs. 6(a) and 6(b)]. For the SF networks also
there are more pairwise interactions than triadic interactions
[Figs. 6(c)–6(f)]. For these networks perfect synchronization
is attained at the targeted coupling even for large phase-lag
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FIG. 6. Distribution of the frequency for perfect synchronization using the four different networks, namely, (a) and (b) ER (blue); (c) and
(d) SF with γ = 2.5 (red); (e) and (f) SF with γ = 3.2 (purple); and (g) and (h) SW (brown), of network size N = 1000. In the first row the
frequency is calculated for the phase lag α = 0.1 and in the second row it is calculated for the phase lag α = 0.7. We take the pairwise coupling
strength K (p)

1 = 0.1 and the higher-order coupling strength K (p)
2 = 0.5.

values. Only in the case of the SW network there are a higher
number of triadic interactions [Figs. 6(g) and 6(h)], which is
a reason the effect of triadic interaction in the constructed
frequency is much higher compared to that of the ER or
SF networks. This effect of triadic interaction increases the
heterogeneity in the system and prevents the system from
synchronizing [58], although the predicted frequency is able
to overcome this constraint and reach the global synchrony for
a small vicinity of the parameter space. Note that the derived

FIG. 7. Distribution of mean of average frequencies over 50 real-
izations of networks is shown as a function of network size for (a) the
ER network; (b) and (c) the SF networks with γ = 2.5 and 3.2,
respectively; and (d) the SW network. The error bars represents the
standard deviation over 50 realizations of networks and the dots on
the blue curve represents the mean of the same. The insets represent
the distribution of the mean of average frequencies of network sizes
N = 1000 and 3000.

frequency is dependent on the considered connectivity net-
work. Changing the network structure will lead to the change
in the derived frequency set. However, we have plotted the
frequency distribution of ω for network size N = 5000 across
100 realizations to give an idea of how the distribution of the
frequency will appear for networks with large size (see Fig. 14
in appendix).

Now we investigate the properties of the derived frequency
sets in more detail. For that purpose, the network sizes of
all four networks considered here are varied from 1000 to
3000. Fifty networks of each type and size are generated,
and the frequency is calculated taking the values K1 = 0.1,
K2 = 0.5, and α = 0.5. In each case we calculate the average
〈m〉 = 1

50

∑50
i=1〈ω〉 and the standard deviation of the mean

frequencies. The ω depends on the structure of the graph,
and for each realization a new ω will be generated. We do
statistical analysis to check whether there will be strong vari-
ability of these generated frequency sets. For each form of
network that was taken into consideration, Fig. 7 displays
the changes in mean and standard deviation. We see that for
ER networks [Fig. 7(a)], the mean of the average frequency
grows with the number of nodes, whereas for SF networks,
the mean of the average frequency declines with a very modest
slope. Note that, in the case of ER networks, the connection
probability of the ER network is kept fixed, and as a result
the mean degree is increased with the network size. On the
other hand, for SF networks the minimum degree of the net-
works is kept fixed and for SW networks the average degree
of the networks is kept approximately the same across all
sizes of networks. In the case of SW networks, the mean
of the average frequency almost remains the same for any
significant change in the size of the networks [Fig. 7(d)]. The
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FIG. 8. Synchronization profile for the derived frequency set for
α = 0.2, β = 0.1, K1 = 0.1, and K2 = 0.5 for different networks of
size N = 1000: (a) r vs K1 for the ER network; (b) and (c) r vs K1 for
the SF networks with γ = 2.5 and 3.2, respectively; and (d) r vs K1

for the SW network. The green dots show the perfect synchronization
states at the targeted coupling K1 = 0.1 for all the networks.

error bars in the figures represent the standard deviations over
50 realizations. The dots in the insets represent the distribution
of the average frequency over 50 realizations of networks of
sizes N = 1000 and N = 3000, respectively and the curves
are the best Gaussian fits for those points. The observation
suggests (less variation around the mean frequencies) that
the generated frequencies are not changing drastically if the
network size and link density remain fixed.

As mentioned earlier, although we have presented all the
results by setting α = β, the proposed scheme works in the
general case where α �= β. To check that, we take α = 0.2 and
β = 0.1 and perform the numerical simulation to achieve per-
fect synchronization for K (p)

1 = 0.1 and K (p)
2 = 0.5 using the

derived frequency set given by Eq. (10). Figure 8 shows the
variation of the order parameter computed from the simulation
data around the targeted point K1 = 0.1 for fixed K2 = 0.5
for four considered networks. Also the variations of r with
K2 around the targeted point for fixed K1 = 0.1 for these
networks are shown in Fig. 9. From these two figures also
the achievement of perfect synchronization at the targeted
point for different phase-lags associated with the pairwise
and triadic interactions is quite apparent. Next we perform
low-dimensional reduction of the system to understand the
stability of the achieved synchronization state using the de-
rived frequency set.

V. LOW-DIMENSIONAL REDUCTION

To analyze the stability of the synchronized state around
the targeted parameter values, we reduce the networked sys-
tem in Eq. (1) to its low-dimensional form using the collective
coordinate approach [49,59,60]. In this approach the phase
of each oscillator is approximated by its intrinsic frequency
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1
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0.994

0.996

0.998

1

0 0.5 1
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1
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=3.2
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(a)

(c) (d)

SF
=2.5

(b)

FIG. 9. Synchronization profile for the derived frequency set for
α = 0.2, β = 0.1, K1 = 0.1, and K2 = 0.5 for different networks of
size N = 1000: (a) r vs K2 for the ER network, (b) and (c) r vs K2 for
the SF networks with γ = 2.5 and 3.2, respectively; and (d) r vs K2

for the SW network. All considered networks attain r = 1 (green dot)
at the targeted point K2 = 0.5 for both forward (red) and backward
(blue) continuation.

using

θi(t ) = χ (t )ωi, (11)

where χ (t ) is the collective coordinate, which is time de-
pendent. To ensure the validity of this approach, we aim to
minimize the error given by

εi(χ ) = χ̇ωi − ωi − K1

N∑
j=1

Ai j sin[χ (ω j − ωi ) − α]

− K2

2

N∑
j=1

N∑
l=1

Bi jl sin[χ (2ω j − ωl − ωi ) − β].

(12)

This error will be minimum if it is orthogonal to the tan-
gent space of the solution space given by Eq. (11), which is
spanned by ∂θi

∂χ
= ωi [59,60]. Now, projecting this error to the

specified subspace and using the orthogonality property, we
obtain a one-dimensional evolution equation for χ (t ),

dχ

dt
= g(χ ), (13)

where g(χ ) is given by

g(χ ) = 1 + K1

σ 2

N∑
i=1

ωi

N∑
j=1

Ai j sin[χ (ω j − ωi ) − α]

+ K2

2σ 2

N∑
i=1

ωi

N∑
j=1

N∑
l=1

Bi jl sin[χ (2ω j − ωl − ωi ) − β]

(14)
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FIG. 10. Variation of g obtained in Eq. (14) as a function of χ under derived frequency for the ER network. (a) Coupling K2 is set to 0.5
and the values of K1 are taken as 0.06 (cyan), 0.08 (green), 0.092 (magenta), 0.1 (blue), and 0.12 (red). (b) Coupling K1 is fixed to 0.1 and the
value of K2 varies as 0.01 (cyan), 0.15 (green), 0.28 (magenta), 0.5 (blue), and 0.8 (red). (c) Derived (perfect) frequency (blue) and normally
(red), and uniformly (green) distributed frequencies are plotted, showing that only the derived frequency reaches the stable synchronization
state.

and σ 2 = ∑N
i=1 ω2

i . The one-dimensional differential Eq. (13)
will have a stable equilibrium if g(χ ) = 0 and g′(χ ) < 0. At
the equilibrium, χ is independent of time and hence Eq. (11)
indicates that all θ ′

i s will be time independent, which implies
the system will exhibit a phase-locked solution. If such a fixed
point occurs at χ = 0, all phases will be 0, resulting in perfect
synchronization.
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FIG. 11. Synchronization error (ρ ) under deviated frequency in
different networks of size N = 1000: (a) ρ vs σ in the ER network;
(b) and (c) ρ vs σ in the SF networks with γ = 2.5 and 3.2, respec-
tively; and (d) ρ vs σ in the SW network. The data represented by the
blue stars are obtained from numerical simulation, and the red lines
represent the analytically obtained function ρ ∼ σ 2.

In Figs. 10(a) and 10(b), we show the behavior of g(χ )
under derived frequency for perfect synchronization ω (tar-
geted at K1 = 0.1 and K2 = 0.5, respectively), for a set of
values of K1 and K2 in the ER network. We now fix K1

to 0.1 and vary K2 in Fig. 10(b). For K2 = 0.01 and 0.15,
g(χ ) does not intersect g(χ ) = 0. Here, g(χ ) touches the
line g(χ ) = 0 for the first time at K2 = 0.28, which provides
a stable phase-locked solution. From this value of K2 on-
ward, g(χ ) crossed the line g(χ ) = 0 with a negative slope,
which indicates that the system has a stable phase-locked
solution [as seen in Fig. 3(a)]. As per expectation the system
exhibits perfect synchronization at K2 = 0.5 [g(χ ) = 0 and
g′(χ ) < 0 at χ = 0]. For larger values of K2 the synchro-
nization remains stable. We do the analysis for the other
two networks (SF and SW), which we found to be very
similar.

In Fig. 10(a), we fixed K2 to 0.5 and chose K1 as 0.06, 0.08,
0.092, 0.1, and 0.12. For K1 = 0.06 and 0.08, g(χ ) does not
intersect g(χ ) = 0; i.e., stable synchronization is not achieved
at this point. At 0.092, g(χ ) touches g(χ ) = 0, which means
stable synchronization occurs for the first time. As the K1

value increases from 0.092, the crossing point tends to 0, and
finally at K1 = 0.1 (targeted value), g(χ ) is 0 and g′(χ ) < 0
at χ = 0; i.e., the perfect synchronization is obtained. For the
values of K1 > 0.1 (0.12) the solution remains stable, as we
see in Fig. 1(a).

Figure 10(c) shows the relation between χ and g(χ ) for
three types of natural frequency ω, namely, frequency for
perfect synchronization, normally distributed frequency, and
uniformly distributed frequency. Here the considered network
is the ER network. We find that the choice of ω which induces
perfect synchronization, derived in Eq. (10), gives stable equi-
librium at χ = 0. For the other two frequency sets (normal
and uniform distributed), g(χ ) never intersects g(χ ) = 0. This
shows that the synchronization is stable only for the choice of
frequency set derived in Eq. (10) among the considered sets
of frequencies.
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VI. ROBUSTNESS OF THE FREQUENCY SET

The robustness of the derived frequency set (ω) for perfect
synchronization is now checked by adding a perturbation to ω

in the form of Gaussian noise such that ωi = ωi + δωi, where
δωi is drawn from a normal distribution, N (0, σωi ), whose
mean is 0 and standard deviation is σωi, which represents
the multiplicative noise proportional to ωi. Due to the effect
of the perturbation in the optimal frequency, the system will
deviate from the perfect synchronized state. We define this
deviation from synchronization state as synchronization loss
and define it as ρ = 1 − r, where r is the synchronization
order parameter defined in Eq. (2). Now, from Eq. (7) we get

ρ = 1

2N
‖ θ ‖2∼ 1

2
Var(θ), (15)

where Var(θ) denotes the variance of θ. Substituting the per-
turbed ω in Eq. (5), we obtain

θ = L†δω.

Since L† and δω are approximately independent of each
other, we can write

Var(θ) = (L†)2Var(δω) = (L†)2ω2σ 2. (16)

The above equation confirms that Var(θ) ∝ σ 2, where the
proportion constant is (L†)2ω2, which is independent of σ .
Using this fact, we reach a relation between Var(θ) and σ as
Var(θ) ∼ σ 2. Therefore, from Eq. (15) we get

ρ ∼ σ 2. (17)

A numerical verification is done in Fig. 11 using four
networks, namely, the ER network, the SF networks with
two exponents (γ = 2.5 and 3.2), and the SW network. It
presents ρ as a function of σ . In all four cases, this fig-
ure shows that, for small σ , ρ is small, which means the
deviation from synchronization is small when the deviation of
the frequency from the designed frequency set is small. As the
value of σ increases (the deviation from the derived frequency
set increases), ρ also increases following the rule derived in
Eq. (17). After a certain value of σ , the value of ρ saturates
at 1 because at this stage the high deviation in the frequency
set leads to a complete incoherent state (desynchronized state)
with r → 0, which leads to ρ → 1.

VII. DISCUSSION

In this article, we study perfect synchronization in SK os-
cillators with higher-order interactions at considerably lower
coupling strength. Adapting the framework developed in
Ref. [39] we construct a set of natural frequencies that
ensure perfect synchronization in the presence of HOIs.
We presented a synchrony alignment function that mea-
sures the interplay between network structure and oscillator
heterogeneity and allows us to get a set of frequencies for per-
fect synchronization. Focusing on the Sakaguchi-Kuramoto
model with higher-order interactions, we described the ef-
fect of pairwise coupling as well as higher-order coupling
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FIG. 12. Order parameter r is plotted as a function of pairwise
coupling K1 for K2 = 0.5 and α = 0.3 and 0.7. The green dots denote
the perfect synchronization states. (a) The ER network attains r = 1
at targeted coupling K1 = 0.1 in both forward and backward paths.
(b) The SF network with γ = 2.5 attains r = 1 at K1 = 0.1 except
in the forward path for α = 0.7. (c) The SF with γ = 3.2 achieves
perfect synchronization at K1 = 0.1 for considered lag values in both
paths. (d) The SW network achieves perfect synchronization at K1 =
0.1 in the backward paths only.
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FIG. 13. Order parameter r is plotted as a function of higher-
order coupling K2 for K1 = 0.1 and α = 0.3 and 0.7. The green
dots denote the perfect synchronization states. (a) The ER network
shows perfect synchronization at predicted coupling K2 = 0.5 in both
forward and backward directions. (b) The SF network with γ = 2.5
attains r = 1 at K2 = 0.5 except in the forward path for lag value 0.7.
(c) The SF network with γ = 3.2 achieves perfect synchronization
at K2 = 0.5 for considered lag values in both paths. (d) The SW
network achieves r = 1 at K2 = 0.5 in the forward path only for
α = 0.3.
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FIG. 14. Distribution of the derived frequency using the four different networks, namely, (a) and (b) ER (blue); (c) and (d) SF with γ = 2.5
(red); (e) and (f) SF with γ = 3.2 (purple); and (g) and (h) SW (brown), taking the average across 100 realizations of network size 5000 in
each case. In the first row the frequency is calculated for phase lag α = 0.1, and in the second row it is calculated for phase lag α = 0.7. The
pairwise coupling strength is set to K (p)

1 = 0.1 and the higher-order coupling strength is set to K (p)
2 = 0.5.

to reach the perfectly synchronized state at a targeted cou-
pling strength for four different types of networks. We found
that the analytically derived natural frequencies involve both
structural and dynamical information of the phase-frustrated
Kuramoto model with higher-order interactions. The synchro-
nization is promoted by a strong alignment of the frequency
vector with the most dominant Laplacian eigenvectors and the
pseudoinverse operator. In all the cases, we found that our de-
rived frequency can help the oscillators to reach the perfectly
synchronized state, whereas any other frequency set does not
reach the perfect synchronization state even with much higher
coupling strength. Later, we derive a low-dimensional model
to analyze the stability of the perfectly synchronized state
using the collective coordinate approach. This provides a clear
understanding of the stability of the synchronization state at
different coupling strengths and with different frequency sets.
We also checked the robustness of the derived frequency ω

by adding a small perturbation in the form of Gaussian noise.
This shows that, even when we add some noise in the derived
frequency set, the synchronization state is not lost unless the
frequency deviation is too high.

The codes are available at Ref. [61].
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APPENDIX

Figure 12 shows the variation of order parameter r with
the pairwise coupling strength K1 for α = 0.3, 0.7. The order
parameter shows small hysteresis region near the point of
perfect synchronization for SF networks with α = 0.7. For
SW network hysteresis is observed with both α = 0.3, 0.7.
On the other hand, the order parameter r as a function of
higher order coupling strength K2 is shown in Fig. 13. We
observe that a hysteresis window exist near the desired perfect
synchronization point for SF networks at α = 0.7.

To understand the frequency distribution for larger net-
works, we have considered networks with size N = 5000
across 100 realizations and plot the distribution of the derived
frequency in Fig. 14.
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