
PHYSICAL REVIEW E 108, 024303 (2023)

Efficient simulations of epidemic models with tensor networks: Application
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The contact process is an emblematic model of a nonequilibrium system, containing a phase transition between
inactive and active dynamical regimes. In the epidemiological context, the model is known as the susceptible-
infected-susceptible model, and it is widely used to describe contagious spreading. In this work, we demonstrate
how accurate and efficient representations of the full probability distribution over all configurations of the contact
process on a one-dimensional chain can be obtained by means of matrix product states (MPSs). We modify and
adapt MPS methods from many-body quantum systems to study the classical distributions of the driven contact
process at late times. We give accurate and efficient results for the distribution of large gaps, and illustrate the
advantage of our methods over Monte Carlo simulations. Furthermore, we study the large deviation statistics of
the dynamical activity, defined as the total number of configuration changes along a trajectory, and investigate
quantum-inspired entropic measures, based on the second Rényi entropy.
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I. INTRODUCTION

Accurate and efficient mathematical modeling of complex
systems, composed of many interacting constituents, poses a
formidable challenge in many biophysical and socioecologi-
cal systems [1–6]. Due to the random nature of biochemical,
social, or ecological interactions, models are often defined
stochastically in terms of discrete-state Markov chains, de-
scribing the continuous-time evolution of a probability vector
over the set of all possible system states [7–10]. As the num-
ber of system states grows exponentially with system size,
exact methods quickly become intractable and one is often
forced to rely on Monte Carlo simulation [11] or mean-field
approximations [12–14]. In the mean-field approximation, the
focus is often to compute average quantities, disregarding
variances around these quantities. This can lead to prob-
lems in the context in which systems are non-self-averaging,
which is often the case for processes with reproduction and
annihilation, such as branching processes in epidemic model-
ing, population dynamics [15,16], or nuclear reactor physics
[17]. A concrete and urgent application where this is relevant
concerns the modeling and forecasting of contagion spread-
ing [10,18–21], imperative in light of the recent COVID-19
pandemic.

The problem of finding accurate and efficient descrip-
tions of high-dimensional vectors is a familiar one in the
study of emergent collective behavior in composite quantum
systems. Many-body quantum systems are characterized by
an exponentially large Hilbert space, although this is of-
ten merely a facade [22]. The subset of physically relevant
states is often much smaller (and scaling polynomially in
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system size), allowing for efficient representation using tensor
networks (TNs) [23–25]. TNs exploit an internal structure
of high-dimensional composite wave functions by represent-
ing them as a set of lower-dimensional tensors, contracted
along internal (bond) indices. The bond dimension of the
tensor network represents the size of the effective state space
of the system, which is often much smaller than the full
Hilbert space. Efficient representations, where the bond di-
mensions scale at most polynomially with system size, are
usually possible when interactions between the constituents
are local.

In this regard, stochastic models of composite complex
systems display similarities with quantum many-body
systems [26–33]. The high-dimensional probability vector
is an element of the tensor product space of the probability
vectors of the constituents and interactions are defined
locally [10]. A natural question is whether and when these
high-dimensional probability vectors can be efficiently
represented using TNs. In other words, is it possible to use
TNs to find an optimal compression of large-dimensional
probability distributions, while remaining as close as possible
to the original distribution?

TN methods are known to be effective for stochastic ki-
netic models such as the totally asymmetric simple exclusion
process (TASEP) [34–38]. Methods based on the density ma-
trix renormalization group (DMRG) have been applied to
stochastic out-of-equilibrium systems in Refs. [39–42]. More
recently, methods based on projected entangled pair states
(PEPSs) have been applied to stochastic models of nonequilib-
rium systems [43,44] and matrix product states (MPSs) have
been used for studying large deviation statistics of dynami-
cal stochastic systems [45–49]. The majority of work in this
direction is, however, based on stochastic systems satisfying
local detailed balance, an assumption that does not necessarily
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hold for all relevant biophysical systems, and certainly not
for most epidemic models. In this paper, we investigate the
use of TNs for epidemiological modeling by constructing
an MPS representation for the one-dimensional (1D) contact
process [50–53], known in the epidemiological literature as
the susceptible-infected-susceptible (SIS) model [18,21]. The
contact process contains sites that may be occupied (infected)
or empty (susceptible), and it allows transitions from the
empty to the occupied state only if a neighboring site is
occupied (infection). In turn, occupied sites may transition
to empty regardless of their neighbor’s state, modeling the
recovery of individuals. The process has been called “the Ising
model of absorbing state transitions,” and it serves as a natural
starting point for developing new methods for nonequilibrium
problems [54]. The special aspect of this work lies in the
fact that the contact process does not satisfy local detailed
balance, such that there is no map between the Markov gener-
ator and a Hermitian matrix. Hence, known MPS algorithms
used for Hermitian time-evolution have to be adapted for
the purely stochastic evolution of the contact process, with
applications to more generic biophysical and socioecological
models.

Successful application of TNs to stochastic models pro-
vides an alternative simulation framework, complementary to
Monte Carlo (MC) sampling methods, frequently used for
analyzing nonequilibrium stochastic systems. The power of
TNs lies in providing an efficient description for the 2N -
dimensional probability vector of the model, by finding a
lower-dimensional representation that keeps only the rele-
vant physical states. Instead of computing empirical averages
over a large number of numerically generated trajectories,
the tensor network is capable of directly providing accurate
information on observables averaged over the ensemble of all
dynamical trajectories. This makes it possible to efficiently
compute marginals, conditional probabilities, expectation val-
ues, and higher moments for any macroscopic observable one
might be interested in, even when variances are large [55].
There is hence great potential for TNs as a modeling and
forecasting tool, which will be able to provide more detailed
information on correlations and variances than conventional
methods. To illustrate the complementary nature of tensor
networks and Monte Carlo methods, we showcase three dif-
ferent computations where tensor networks offer advantages
over Monte Carlo simulations. These computations involve
the efficient calculation of large gaps in the occupancy of
the chain, the computation of the scaled cumulant-generating
function, and the computation of the Rényi entropy and Rényi
mutual information.

First, computing large gaps in the occupancy of the chain
constitutes an analysis of extremely rare events in both the
absorbing and active phases of the dynamical process. These
events are challenging to obtain accurately using Monte Carlo
simulations due to their exponentially vanishing probability.
However, tensor networks, particularly the MPS representa-
tion, provide an efficient means of computing such rare events.
While MC methods become increasingly difficult for larger
gap sizes, the efficiency of the MPS computation hardly de-
pends on gap size, and hence TNs are capable of providing
accurate information on the distribution of rare large gap sizes.

Second, we study the thermodynamics of dynamical tra-
jectories [56–58] and the large deviation theory [59] for the
dynamical activity in the 1D contact process using the MPS.
The moment-generating function for the dynamical activity
(defined as the number of configuration changes per unit
time) with dual parameter s can be obtained as the norm of
a tilted probability vector, which evolves in time by a tilted
generator [42,56]. This is obtained from the Markov generator
by exponentially tilting the off-diagonal terms by es, such
that for s > 0 active trajectories become more likely, while
s < 0 tilts the dynamics towards inactive trajectories. The
scaled cumulant-generating function (SCGF) for the dynam-
ical activity at late times can then be obtained as the leading
eigenvalue of the tilted generator [57], which we obtain using
variational MPS methods. We find that this leads to a clear
kink in the SCGF, indicating a discontinuous phase transition
between the active and inactive phases as a function of control
parameter s, in accordance with previous studies using DMRG
methods [42]. Furthermore, through the large deviation prin-
ciple, the SCGF relates to “rare trajectories” which contain
activity deviating from the average. Although rare trajectories
are generated by the tilted operator, this is not a stochastic
operator, and hence these rare trajectories cannot be sampled
directly [60].

Lastly, the computation of the Rényi entropy and Rényi
mutual information (RMI) [61–63] in the context of the one-
dimensional contact process is a task in which tensor networks
offer a significant advantage. Classical information measures,
such as the full Shannon entropy and mutual information,
are computationally demanding to compute accurately over
the space of all state configurations, because undersampling
can lead to biased results, and convergence to the true val-
ues is slow [64,65]. While these measures remain hard to
compute using TNs, the MPS representation does enable ef-
ficient computation of the second Rényi entropy and related
quantities. Here we compute Rényi entropies and RMI for
the one-dimensional contact process, and we find that, in
accordance with phase transitions in equilibrium models [66],
the RMI can be used to detect the absorbing state transition.
This demonstrates that the RMI also provides a way to detect
nonequilibrium phase transitions independent of a choice of
order parameter.

In the following sections, we present the model and dis-
cuss different driving protocols to remove the absorbing state,
leading the system to a nonequilibrium steady state (NESS)
at late times (Sec. II). We introduce the MPS representation
used to approximate the complete 2N -dimensional probability
distribution of the chain (Sec. III). The thermodynamics of
trajectories and the large deviation principle are reviewed in
Sec. IV. We provide details on the variational MPS method,
its accuracy, and its efficiency, and we construct the MPS
representation of the NESS to study the distribution of gaps in
the chain in Sec. V. Results on the scaled cumulant-generating
function for the dynamical activity are presented in Sec. VI.
Section VII focuses on entropic measures based on Rényi
entropies obtained from the MPS representation. Finally, in
the discussion section (Sec. VIII), we summarize our findings
and explore potential future directions for utilizing tensor
networks in the context of complex system modeling. The
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FIG. 1. Left: The possible transitions for the contact process are transmission (each infected site can infect a susceptible neighbor with rate
λ) and recovery (infected sites become susceptible with rate 1). Additionally, to maintain the process out of equilibrium, we consider three
possible driving terms: the spontaneous infection of a site either at the boundaries or anywhere on the lattice, or the spontaneous infection of
a site only when the absorbing state has been reached. Right: The infinite chain contains a continuous phase transition between an absorbing
phase λ > λc and an endemic phase λ < λc. Typical (finite-size) trajectories are shown for the boundary-driven system in the absorbing,
critical, and endemic regimes, where the horizontal direction corresponds to the length of the chain, and the vertical direction is time.

software developed to perform all computations described in
this paper is publicly available in [67].

II. THE MODEL

The contact process, or SIS model, on a one-dimensional
lattice is defined in terms of an array of N binary variables
(n1, . . . , nN ), where ni ∈ {0, 1} indicates the occupancy of the
lattice site i. Occupied sites ni = 1 are considered infected,
while empty sites ni = 0 are susceptible. Infected sites can
transition back to being susceptible following a Poisson pro-
cess with recovery rate γ (see Fig. 1). Infected sites can also
infect their direct neighbors with a transmission rate β. As a
result, susceptible sites become infected with a rate k β, where
k = 0, 1, or 2 is the number of its infected neighbors.

After rescaling time t → γ t , the only relevant parameter in
the system is the dimensionless ratio: λ = β/γ . The probabil-
ity vector over all configurations of the chain |P(t )〉 satisfies
a master equation ∂t |P(t )〉 = Ŵ |P(t )〉 with Markov generator
Ŵ , which can be written in a quantum notation [32,42,68] as

Ŵ = λ

N−1∑
i=1

(
n̂iŵ

0→1
i+1 + ŵ0→1

i n̂i+1
)

+
N∑

i=1

ŵ1→0
i + Ŵdriv(α), (1)

where n̂i, ŵ
0→1
i , ŵ1→0

i are local operators on site i. When
represented in terms of a 2D vector space with basis states

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
, (2)

these operators are n̂ = |1〉〈1|, ŵ0→1 = |1〉〈0| − |0〉〈0|, and
ŵ1→0 = |0〉〈1| − |1〉〈1|, which corresponds to the matrices:

n̂ =
(

0 0
0 1

)
, (3a)

ŵ0→1 =
(−1 0

1 0

)
, (3b)

ŵ1→0 =
(

0 1
0 −1

)
. (3c)

The subindex i on the operators in (1) indicates that these
operators act only on the local sites i. Explicit construction
of the operators involves a tensor product over all sites, where
only site i is acted upon by the appropriate matrix in (3), and
all other sites are multiplied by the two-dimensional identity
matrix.

In the absence of the driving term Ŵdriv(α), the Markov
chain defined by Ŵ in (1) is a much used example of a system
with a nonequilibrium absorbing state transition (see Fig 1).
In the limit of infinite system size, N → ∞, there is a critical
value λc of the control parameter λ below which the system
relaxes to the absorbing “healthy” state in which no site is in-
fected. Above the critical threshold λ > λc, the system goes to
a stationary (endemic) state with a nonzero density of infected
sites. The critical point of the infinitely long one-dimensional
contact process is determined accurately in the literature to be
λc = 1.648 96 (see [69] and references therein). As shown in
Fig. 1, typical trajectories in the critical region display gaps in
the density of all sizes.

For finite system sizes, the absorbing state is always
reached, even above the critical point. It is therefore common
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[42] to include an additional driving process by spontaneous
creation of infected sites. There are several possibilities to
include this driving term. For instance, one could introduce
infected sites only at the boundary of the chain with rate α.
This is done by taking the driving term Ŵdriv to be

Ŵ bdy
driv (α) = α

(
ŵ0→1

1 + ŵ0→1
N

)
. (4)

Alternatively, it is also possible to spontaneously occupy any
empty node in the chain by including the driving term

Ŵdriv(α) = α

N∑
i=1

ŵ0→1
i , (5)

where taking α ∼ 1
N2 ensures the effect of the driving term

will vanish in the limit N → ∞. This choice has the advantage
of being translation-invariant. A final possibility to remove the
absorbing state is to occupy a random empty site only when
the absorbing state has been reached, which is implemented
by the driving term

Ŵdriv(α) = α

n∑
i=1

N∏
j=1
j �=i

v̂ jŵ
0→1
i . (6)

Here v̂ = |0〉〈0| is the number operator for empty sites.
The presence of a driving term removes the absorbing

state and drives the system into a nonequilibrium steady state
(NESS) at late times. It would therefore make more sense to
talk about inactive and active regimes in the driven contact
process, instead of the absorbing and endemic phases. No
known analytical solutions exist for the NESS of the driven
contact process, but it is possible to obtain accurate and ef-
ficient representations of it using variational matrix product
state methods, as we will demonstrate in this paper.

III. MPS REPRESENTATION OF THE MANY-BODY
PROBABILITY VECTOR

The probability vector over all configuration |P(t )〉 is a 2N -
dimensional vector, with components equal to the probability
P(x, t ) of being in a certain configuration x ∈ {0, 1}N at time
t . This vector can be expanded in the product basis of N two-
dimensional vectors |ni〉:

|P(t )〉 =
∑

n1,...,nN

P(x = n1, . . . , nN , t )|n1, . . . , nN 〉, (7)

with

|n1, . . . , nN 〉 = |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nN 〉, (8)

where ⊗ denotes the tensor product. We wish to approximate
the high-dimensional object |P(t )〉 by a lower-dimensional
MPS |�〉, while retaining as much information on the state
of the system as possible. An MPS is a vector composed out
of an array of tensors Ani

i ,

|�〉 =
∑

n1,...,nN ={0,1}
An1

1 An2
2 , . . . , AnN

N |n1, . . . , nN 〉. (9)

Each Ai is a (d × D × D)-dimensional rank-3 tensor, where
d is the physical dimension of the variables ni (d = 2 in our
case), and D denotes the bond dimension of the tensor. The

tensor Ai is multiplied to the left by the tensor Ai−1 along
D dimensions and to the right by Ai+1 along its other D
dimensions. The d = 2 dimensions remaining correspond to
the two states of the physical variable |ni〉. In the case of
open boundary conditions, as we will use here, the first and
last tensors are rank-2 (matrices) of dimension 2 × D. The
MPS hence has of the order of N × 2D2 parameters (the total
number of coefficients in the tensors), which can be much
smaller than the original 2N parameters of |P(t )〉, depending
on the choice of D. If D ∼ 2N/2, the system is represented
with all 2N parameters, and no information is lost. The goal is
to compress the representation of |P(t )〉 by reducing the bond
dimension D [and therefore the number of parameters used
to represent |P(t )〉], while retaining as much information as
possible about the system.

Graphically, the MPS is often depicted as a network, where
the nodes represent the tensors, and links are the indices.
Two connected nodes are contracted over these indices. Equa-
tion (9) is graphically represented by

(10)

The open indices represent the two-dimensional physical basis
of states ni at each site. The thicker internal links are the
D-dimensional bond indices, which are contracted over in
Eq. (9).

For quantum states, the bond dimension D limits the
amount of entanglement between sites in the chain, as the
entanglement entropy SA(L) of a connected subset A of L sites
is bounded by SA � 2 log D. Ground states of gapped, local
Hamiltonians in 1D are known to obey the area law of entan-
glement [70], implying that SA does not scale with the volume
of A, but only with the size of the boundary of A, which
in 1D is a constant. For these cases, the MPS provides an
efficient representation of the many-body wave function, even
for infinite systems. In the case of critical states in 1D, there is
a logarithmic correction to the area law, SA(L) ∼ log L, and in
this case D scales polynomially with system size. If D is taken
of order 2N/2, any many-body vector can be represented as
an MPS. The other limiting case of D = 1 corresponds to the
mean-field approximation, where no information about corre-
lations in the chain is taken into account. Hence, by varying
the bond dimension between 1 and 2N/2, one systematically
goes beyond the mean-field approximation.

In this work, we will use the MPS ansatz (9) to find efficient
approximations for many-body probability distributions over
the ensemble of dynamical trajectories for the contact process.
In that case, the bond dimension D can be thought of as the ef-
fective number of relevant configurations in the model, which
might be much lower than the total number of configurations
in the system. Any many-body vector can be put in MPS form
by a sequence of singular value decompositions (SVD) [24],
and D represents the number of singular values kept between
the bonds after truncating the smaller singular values. The
SVD constitutes a linear transformation on the basis states (in
this case, the configurations of the chain), and by truncating
the bonds to the largest singular values, only the most relevant
linear combinations of basis states are kept.
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IV. THERMODYNAMICS OF DYNAMICAL
TRAJECTORIES AND LARGE DEVIATION STATISTICS

The time-evolving stochastic process traces out a trajectory
ωtk = {x0(t0), x1(t1), . . . , xk (tk )} by hopping to configuration
xl at hopping time tl . To study the statistics of the trajecto-
ries in the system, we consider the dynamical activity K (ωt ),
defined as the total number of configuration changes along
a trajectory ωt of duration t [56,71]. The dynamical activity
is an order parameter for the phase transition between active
and inactive trajectories; this transition is dynamical in nature.
Below, we will review how the moment-generating function
for the dynamical activity, in the ensemble of all possible tra-
jectories, can be expressed as the norm of a tilted probability
vector.

A. Dynamical activity

The dynamical activity K (ωt ) is a trajectory-dependent
random variable, which forces us to track the probability
vector |P(k, t )〉 = ∑

x P(x, k, t )|x〉 that the system is in any
configuration x and has activity k at time t . Thus P(x, k, t ) =
〈x|P(k, t )〉. The moment-generating function ZK (s) for the
dynamical activity is

ZK (s) = 〈esK (ωt )〉ωt =
∞∑

k=0

〈1|es k|P(k, t )〉. (11)

Here the brackets 〈 〉ωt denote the ensemble average over all
dynamical trajectories ωt leading up to time t from an initial
configuration x0 ∈ {0, 1}N . The unit column vector 〈1| is the
flat state, such that the contraction of 〈1| with a many-body
vector returns the L1-norm of that vector.

The moment-generating function ZK (s) is more conve-
niently computed as the L1-norm of a tilted probability vector
|P(s, t )〉, defined as the Laplace transform of |P(k, t )〉 [57]:

ZK (s) = 〈1|P(s, t )〉, (12a)

|P(s, t )〉 =
∑

k

es k|P(k, t )〉. (12b)

The tilted probability vector evolves in time by the action of a
tilted generator W̃ (s), which can be obtained from the Markov
generator (1) by multiplying all off-diagonal elements with es

[41,42,56,57,71],

∂t |P(s, t )〉 = W̃ (s)|P(s, t )〉, (13)

with

W̃ (s) = λ

N−1∑
i=1

(
n̂iw̃

0→1
i+1 (s) + w̃0→1

i (s)n̂i+1
)

+
N∑

i=1

w̃1→0
i (s) + W̃driv(α, s), (14)

such that

w̃0→1(s) =
(−1 0

es 0

)
, w̃1→0(s) =

(
0 es

0 −1

)
. (15)

At s = 0, the tilted generator reduces to the Markov generator
(1). Away from s = 0, the tilted generator is neither Hermitian
nor stochastic, so it will not conserve total probability. For

stochastic processes with local detailed balance, there does ex-
ist a similarity transformation to a Hermitian matrix [46,57].
In the case of the contact process, the infection transmission
requires nearest-neighbor interactions, while recovery is a
purely local process, and hence the process does not satisfy
local detailed balance.

The exponential tilting weighs trajectories by their activ-
ity. When s > 0, active trajectories are exponentially favored,
while for s < 0 they are exponentially suppressed. In the case
of the boundary driven system, the tilted generator becomes
diagonal in the extreme inactive limit s → −∞, with lead-
ing eigenvalue −2α, due to the boundary driving term. The
corresponding eigenvector is the completely healthy state: the
product state with all sites in the |0〉 state. |P(s, t )〉 reduces to
the time-dependent probability vector |P(t )〉 at s = 0, which
at late times becomes the NESS of the driven system. This is
not a product state, but contains correlations between the sites
in the chain. No known analytical solution for the NESS exists
in the literature to the best of our knowledge.

B. Large deviation principle

For the driven contact process, the absorbing state is elim-
inated and the system is driven into a NESS. In that case, the
probability distribution P(k, t ) of observing activity k at time
t satisfies a large deviation (LD) principle, such that at late
times, P(k, t ) ∼ e−tφ(k/t ), with φ(k) the LD rate function [59].
The moment-generating function ZK (s) similarly satisfies a
LD principle:

ZK (s) ∼ et
(s), 
(s) = lim
t→∞

1

t
log〈es K (ωt )〉. (16)

The scaled cumulant-generating function (SCGF) 
(s) plays
the role of dynamical free energy and is related to the LD rate
function φ(k) by Legendre transform [59],

φ(k) = sup
s

(s k − 
(s)). (17)

As the tilted probability vector is |P(s, t )〉 = eW̃ (s)t |x0〉, the
SCGF becomes the leading eigenvalue λ0 of the tilted gen-
erator W̃ (s),


(s) = λ0(W̃ (s)). (18)

Here, the similarity between the tilted generator and a many-
body Hamiltonian comes into play. Using the MPS ansatz
for the many-body probability vector |P〉, we can obtain the
leading eigenvalue of W̃ (s) by a variational search over MPS
states:


(s) = max
|�〉

〈�|W̃ (s)|�〉
〈�|�〉 , (19)

where |�〉 is a many-body vector and 〈�| its complex con-
jugate. In the coming sections, we will use variational MPS
algorithms to find efficient representations for the leading
eigenvector of W̃ (s) and use this to compute the NESS, the
SCGF, and other observables directly in the ensemble average
over all trajectories.
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V. NESS COMPUTATION BY VARIATIONAL MPS

Here we show how the NESS of the 1D contact process
can be found by a variational search over MPS states (9).
We comment on the difference with sampling-based (Monte-
Carlo) methods, and we demonstrate the accuracy of our
approximations. To illustrate the effectiveness of the MPS
representation, we compute the distribution of gaps of length
k in the NESS, including the expectation values for large gaps,
which are difficult to obtain accurately using sampling-based
methods.

A. Variational MPS methods

The NESS is the leading right eigenvector of the Markov
generator (1), which corresponds to an eigenvalue of 0. The
eigenvector is found in MPS form by sequentially optimizing
for a single tensor Ai in (9), while keeping all other tensors
constant, and iteratively sweeping over the chain until con-
vergence. There are many good reviews detailing variational
MPS algorithms for many-body quantum systems, such as
[24,25,72]. Here, we will focus mainly on the differences with
the usual MPS algorithms arising from the fact that we are
optimizing for a probability distribution and not a complex-
valued wave function.

The Markov generator Ŵ is not a Hermitian matrix, and
hence its left and right eigenvectors are not related to each
other by complex conjugation. This does not, however, pose
any serious problem, as long as we consistently update the
MPS using the right eigenvectors of Ŵ . The Markov generator
is first represented as a matrix product operator (MPO), with
constant bond dimension DW = 4 (see [24] for a review on
the construction of MPOs). Schematically, this is done by
representing Ŵ as a chain of rank-4 tensor of dimensionality
(2,2,4,4), except at the boundaries of the chain, where the
tensors are of rank 3. In the case of the boundary driven
system, the MPO is constructed as follows:

(20)

with

M =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

λŵ0→1 0 0 0

λn̂ 0 0 0

ŵ1→0 n̂ ŵ0→1 1

⎞
⎟⎟⎟⎟⎠ (21)

and

L = (ŵ1→0 + αŵ0→1 n̂ ŵ0→1 1), (22)

R =

⎛
⎜⎜⎝

1
λŵ0→1

λn̂
ŵ1→0 + αŵ0→1

⎞
⎟⎟⎠. (23)

The single tensor optimization problem for site i is then
constructed by removing the local tensors Ai and A†

i from
the contraction 〈�|Ŵ |�〉, which creates a D2d-dimensional

matrix Ŵ i
eff . For instance, for N = 5 and i = 3, the effective

generator Ŵeff is

(24)

The tensor Ai in the MPS is then replaced with the leading
right eigenvector of Ŵ i

eff . This vector is found by the implicitly
restarted Arnoldi method [73], iteratively optimizing for the
eigenvector corresponding to the largest real eigenvalue. In
practice, it is computationally more efficient to contract Ŵ i

eff
with the local tensor Ai in the iterative eigenvector search di-
rectly, instead of explicitly constructing the dD2-dimensional
matrix (24). In this way, the eigenvector search comes at a
computational cost which scales as D3. It is also beneficial to
form the optimization problem for two sites simultaneously.
The resulting effective generator is then a d2D2-dimensional
matrix, and its eigenvector can be brought back to the MPS
form by performing a singular value decomposition (SVD).
After the SVD, we truncate the singular value spectrum by
dropping all singular values below a fixed threshold ∼10−16.
This procedure dynamically adjusts the bond dimension and
keeps only singular values that are relevant. In practice, we
need to provide also an upper bound on the bond dimension,
usually taken to be around Dmax ∼ 200, to prevent the bond
dimension from becoming too large. There are hence two
ways to dynamically control the bond dimension of the MPS,
one by truncating the SV spectrum on each bond, and another
by controlling the maximal bond dimension for each bond.

One iterative sweep across the MPS starts with sequentially
replacing pairs of local tensors Ai, Ai+1, starting from site
(1,2) to the end, followed by sequential pairwise updates in
the other direction. The backward sweep is done for comple-
mentary pair combinations with regard to the forward sweep,
i.e., if in the forward sweep sites (1, 2), (3, 4), . . . are paired
together, the backward sweep pairs the sites . . . , (5, 4), (3, 2)
followed with a single site update of the first site. By repeat-
edly sweeping across the chain in this fashion, the MPS ansatz
converges to the leading right eigenvector |�0〉, which is the
NESS of the Markovian process.

Once the MPS representation |�0〉 is found, we can use
it to compute observables. It is important to note that |�0〉 is
directly corresponding to a probability distribution (and not
its L2 norm), but the optimization procedure does not produce
a normalized vector. Therefore, the probability distribution
P(x) over all configurations x in the NESS is given as

P(x) = 1

〈1|�0〉 |�0〉. (25)

Likewise, we compute observables in the L1 norm, while
dividing by the L1 norm of the total vector 〈1|�0〉. For
instance, the expected density in the chain is computed as

〈n〉 = 〈1| 1
N

∑N
i=1 n̂i|�0〉

〈1|�0〉 , (26)
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FIG. 2. The Kullback-Leibler divergence between the NESS found as the leading eigenvector of the explicit construction of the 2N -
dimensional Markov generator Pexact and the MPS representation of the NESS PMPS for various values of D and N and λ = 1 (left), λ 
 λc

(middle), and λ = 3 (right). Parameters for this plot are ε = 10−8 and α = 1
N2 with spontaneous infection at all empty sites.

and similarly for other observables. The contraction is
implemented efficiently by representing the observable of
interest as an MPO, and performing a horizontal contraction
of the MPO with the state |�0〉 on top and a direct product
of local flat states 〈1| = (1, 1) on the bottom. If one first
contracts the lower physical index of the MPO with the flat
state, followed by the contraction of the resulting tensor with
the local tensors Ai, this can be done with a computational
cost scaling as O(NDMPOD2), where DMPO is the bond
dimension of the MPO.

The local optimization process is repeated until the density
in the chain has converged, meaning that the relative differ-
ence between 〈n〉k after the kth sweep and 〈n〉k−1 has dropped
below a threshold value: | 〈n〉k−1−〈n〉k

〈n〉k
| < ε, with ε = 10−6–10−8

depending on system size. To demonstrate the accuracy of the
MPS representation as a function of the bond dimension D, we
show in Fig. 2 the Kullback-Leibler (KL) divergence between
Pexact, obtained as the leading right eigenvector of the explicit
construction of the 2N -dimensional Markov generator, and
PMPS obtained from the contraction of the MPS representation,
for small system sizes and various values of the maximal bond
dimension D and transmission rate λ. With bond dimensions
D = 2N/2, the MPS is exact and the KL divergence with the
exact solution becomes O(10−16), within machine precision.
For smaller bond dimension the MPS representation is still
very close to the exact solution, however larger system sizes
do require a larger bond dimension to achieve the same accu-
racy, especially near the critical transmission rate λc.

In Fig. 3 we investigate the growth of the bond dimension
with system size N for the three different driving protocols
and three values of the transmission rate λ. We let the algo-
rithm dynamically adjust the bond dimensions for each bond
by truncating the singular values below a lower threshold,
taken to be 10−14. The figure displays the maximal bond
dimension in the chain as a function of system size, and we
observe that in the active and inactive region, the bond di-
mension tends to a constant value for most driving protocols.
At the critical point, the bond dimension is expected to grow
linearly in N due to the emergent scale invariance [74]. In
Fig. 3 the orange curves are close to criticality, but not exactly
at the critical point due to finite size and driving effects,
hence a scaling slower than linear is observed here. In any
case, a growth of D which is at most linear in N ensures the

efficiency of the MPS representation of the NESS, compared
to the maximal exponential growth of D with system size.
By comparing with Fig. 2, we see that the KL divergence
with the exact solution is extremely small (<10−12) for the
smaller system sizes (N 
 8–14). This shows that the MPS
representation is also accurate.

B. Distribution of gaps in the NESS

By searching for an efficient MPS representation, we are
approximating directly the full 2N -dimensional probability
vector in the NESS. Once the optimization process has fin-
ished to the desired accuracy, we can, in principle, compute
efficiently any observable we want directly in the ensem-
ble average over all configurations. This includes global and
local densities, variances thereof, but also all of the higher
moments, the complete moment-generating function for the
observable, or marginals, by projecting the probability vector
on specific microscopic configurations.

This is a fundamentally different approach from more com-
mon sampling-based methods, frequently employed for the
analysis of such systems. Using these methods, one typically
needs to generate a large number of trajectories and then
compute the observables of interest as the empirical averages
over the set of generated trajectories. This makes the accu-
rate computation of expectation values of rare events very
demanding, as it requires one to generate a large set of trajec-
tories to even encounter the rare event once. Using the MPS
method, computing expectation values for events which occur
very infrequently is not more difficult than any other event,
as we have access to an approximation of the full probability
distribution over all possible configurations of the system.

To illustrate this point with an example pertaining to the
current dynamical system, we use our MPS representation
of the NESS to compute the distribution of gaps of length
k in a chain of total length N . A gap of length k is defined
as a configuration with k empty sites in a row, preceded and
followed by an occupied site. The expected number of gaps of
length k in a chain of length N can be computed from the MPS
representation of the NESS by contracting it with an MPO of
bond dimension k + 3, constructed as follows:

Ĝk = LkMk · · · MkRk (27)
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FIG. 3. The dynamically obtained maximal bond dimension D of the MPS representation of the NESS, obtained by truncating singular
values below the threshold value of 10−14, as a function of system size N for three values of λ and three different driving protocols. The three
values for λ were chosen to lie in the absorbing phase (λ = 0.7), the active phase (λ = 3.5), and in the critical region λ = λc = 1.649. The
critical value of λ = λc is the critical value for the system in the thermodynamic limit without driving. The center figure is the closest to that
system and displays the fastest increase in bond dimension close to criticality. The convergence criterion on the MPS was set to ε = 10−8 for
these plots.

with

Mk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 n̂ 0 · · · 0
0 0 v̂

. . .
...

... v̂ 0
n̂

0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(28)

and

Lk = (1 n̂ 0 · · · 0), Rk =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...

0
n̂
1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (29)

When explicitly contracting the MPO (27), one obtains

Ĝk =
N−1−k∑

i=1

n̂iv̂i+1 · · · v̂i+k+1n̂i+k+2. (30)

This operator exactly projects the state on all possible posi-
tions where a gap of length k could be located in the chain.

In Fig. 4 we show the distribution of gaps in a chain of
length N = 50 computed by first optimizing an MPS for the
NESS at a given λ, and then contracting the MPO (27) with
the MPS. For this figure, we have used a driving protocol only
on the left boundary of the chain. We notice that for sub- and
supercritical values of λ, the expectation values for gaps drop
exponentially with the length of the gap. For λ ∼ λc the ex-
pected number of gaps remains larger for large k and follows
a power law initially. For larger gaps, the expected value drops
again exponentially, which is due to finite-size effects, as the
gap size starts to become close to the length of the chain.
The right panel of Fig. 4 shows that the expected number of
gaps over N at λ = λc fits a power law E[g(k)] ∼ k−ν , which
is characteristic for scale-invariance at criticality. We find an

exponent of ν = 1.71(6), which corresponds to the fractal
dimension [75,76] for the critical contact process.

In the left panel of Fig. 4, we compare the expected number
of gaps with ensemble averages over trajectories generated by
Markov chain Monte Carlo methods. The solid points with
error bars are data obtained by averaging the observed number
of gaps in 2 × 106 configurations generated by Gillespie’s
algorithm [77]. The sampling-based algorithm gives excellent
agreement with the MPS results for small gap sizes. Large
gaps (of the order of 10–20 sites) are, however, extremely rare
in both the absorbing and the active phase, making it difficult
to obtain accurate statistics using sampling-based methods.
In Fig. 4, the probability to find a gap of length k = 17 is
of the order of 10−7 for both phases, which means that to
compute this probability one must simulate at least 107 MC
trajectories. More generally, because the probability of finding
a gap decreases exponentially with gap length, the number
of samples needed to derive accurate statistics on these rare
events will grow exponentially with gaps size. The MPS,
however, has no problem in providing an accurate prediction
in the expected number of gaps in these cases. Here, the main
computational cost comes from optimizing the MPS at the
desired accuracy, which, as outlined above, scales as O(ND3).
After that, the computation of the expectation value of a gap of
length k amounts to contracting a MPO with bond dimension
DMPO = k + 3, which scales as O(ND2k + NDk2). We find
that these results are robust under varying the maximal bond
dimension D, such that finite D effects are irrelevant for this
observable.

VI. LD STATISTICS FROM VARIATIONAL MPS

In this section, we will compute the scaled cumulant-
generating function (SCGF) (or the dynamical free energy)

(s) by a variational search over MPS states (9), while dy-
namically adjusting the bond dimension for each bond in
the chain. We will use this to study the SCGF and other
observables of interest, such as the dynamical activity at finite
s and the susceptibility χ (s) = ∂2

s 
(s), whose peak character-
izes the active/inactive transition for finite system sizes. The
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FIG. 4. Left: The distribution of gaps of length k in a chain of length N = 50 at three different values of λ. The dotted lines are obtained
from first finding an MPS representation of the NESS, followed by the contraction of this MPS with an MPO which gives the expected number
of gaps of length k. Solid points with error bars are obtained from dynamical Monte Carlo sampling of over 2 × 106 trajectories of the physical
process, recorded once the system has reached stationarity. Right: The distribution of gaps at λc for various system sizes. The dotted line is a
power-law fit for small k.

results show a limiting behavior consistent with a discontinu-
ous phase transition in dynamical activity between the active
and inactive phases, as a function of s, for any value of λ.
The dynamical system hence contains both a continuous phase
transition in the density of the stationary state (while varying
λ) and a discontinuous phase transition in the dynamical ac-
tivity of trajectories (while varying s).

A. MPS methods for the SCGF

To obtain an MPS representation that is both accurate and
efficient, we have to find the optimal bond dimension D. This
should be just big enough to give accurate predictions, but as
small as possible to optimize computational efficiency. The
goal in this section is to obtain the leading eigenvector 
(s)
of the tilted generator from (19). We do this by dynamically
adjusting the bond dimension for each bond, as described in
the previous section. In this case, however, the convergence
criteria on the MPS is based on the variance in 
(s), given by
var[
(s)] = 〈1|W̃ (s)2|�(s)〉 − 
(s)2. When this drops below
a threshold value, taken to be 10−8, we can assure the accuracy
of the MPS. After having found the leading right eigenvector
of W̃ (s) in MPS form for a specific value of s, this state is used
as the initial state for the next value of s.

We investigate the variance as a function of the maximal
bond dimension Dmax for N = 50 and various values of λ and
s in Fig. 5. Here, the SVD cutoff was removed, such that all
bonds in the MPS have bond dimension Dmax. This shows that
even small bond dimensions give a good approximation in
most cases, particularly when λ and s are chosen such that
the process is in the inactive phase.

B. Critical threshold and finite-size scaling

In Fig. 6 we show 
(s)/N for various system sizes at trans-
mission rate λ = 2 > λc. We see that for trajectories tilted
towards the active region (s > 0), all lines lie perfectly on top
of each other. The curves all pass through the origin, as at
this point the tilted generator becomes the Markov generator

with leading eigenvalue equal to zero. Around s = 0, the
SCGF grows linearly in both s and N , i.e., 
(s) ∼ sN . For
large negative s, the SCGF converges to −2, as for inactive
trajectories the only activity comes from the boundary driving
terms. At a critical value for s = sc(N ), a kink in the free en-
ergy appears, leading to a jump in the activity K (s) = ∂s
(s),
illustrated in the middle panel of Fig. 6. This is characteristic
of a discontinuous phase transition. For λ > λc, the critical
value sc(N ) converges to zero in the large-N limit. The activity
K (s) gives the expectation value of the dynamical activity K
at s = 0, and away from s = 0 it represents the activity in
the tilted trajectories. The lower panel shows the rate function
φ(k), computed by performing the Legendre transform (17).
Its value gives the rate of the exponential decay of P(t, k) at
late times, such that its zero gives the expected value for the
activity per unit time in the NESS. The probability of observ-
ing trajectories with activity smaller than average decays at a
rate independent of N , as the inactive regime is dominated by
the boundary driving. In Appendix we display similar plots
for a value of λ = 0.7 < λc in the absorbing phase.

FIG. 5. The variance in 
(s) as a function of the bond dimension
D for various values of s. Different colors indicate different λ values:
Purple lines correspond to λ = 1, reds to λ = λc, and greens to λ =
3.5. This plot was obtained for N = 50 using boundary driving.
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FIG. 6. The scaled cumulant-generating function (top) normal-
ized by system size for various N at λ = 2 > λc using the
boundary driving protocol. The middle panel shows the activ-
ity per site as a function of s, obtained as K (s)/N = ∂s
(s)/N .
The rate function (bottom) clearly shows zeros at the ex-
pected value for the activity. Due to the boundary driving,
inactive trajectories (small k) all have the same constant decay
rate φ(k).

The susceptibility χ (s) = ∂2
s 
(s) is shown in the left panel

of Fig. 7. It shows a peak at the critical value sc(N ) where the
SCGF kinks and the activity jumps. Similar to [46], we find
that the behavior of the susceptibility for s < sc(N ) is almost
universal: leading into the peak, the susceptibility shows a
scaling behavior χ ∼ (−s)−γ with exponent γ = 1.4498(6)

regardless of system size. This exponent does depend on the
value of λ.

The location of sc(N ) can be estimated by the location of
the peak in χ (s). This reveals that sc(N ) in turn satisfies a
scaling law sc(N ) ∼ −N−α whenever λ > λc. We show the
critical values sc(N ), as obtained from the peak in the suscep-
tibility as a function of 1/N in the middle panel of Fig. 7. The
dashed lines are linear fits used to obtain α, which is shown
against the infection parameter λ in the right panel of Fig. 7.

C. Density of infected sites at finite s

From the optimized tilted probability vector |�0(s)〉, we
can obtain information on the density of infected sites at finite
values of the dual parameter s. This gives the expectation
value for the density on trajectories weighted by their activity;
for s < 0, inactive trajectories are more likely, while s > 0
corresponds to more active trajectories.

The density in the chain is computed efficiently by con-
tracting an MPO as (26), now at finite dual parameter s.
Likewise, the variance in density is computed by contract-
ing the square of the density MPO with the obtained tilted
probability vector. In Fig. 8, we show the density of infected
sites and the variance in density N (〈n̂2〉 − 〈n̂〉2) in the chain
at various lengths as a function of the tilting parameter s at
λ = 2 > λc. It is clear from the plot that less active trajectories
(lower s < 0) correspond to less dense configurations, while
more active trajectories are hardly any denser than those of the
Markovian processes at s = 0. At the critical points sc(N ), the
expected density drops abruptly and the variance in density
shows a peak. The heat plot in the right panel of Fig. 8 shows
the density per site in the chain for N = 103. For s > sc, the
density is uniform over the whole chain. The active-inactive
transition at sc (indicated by the red dashed line) clearly cor-
responds to a sharp drop in density in the middle of the chain.
Below sc, one can observe the diffusion from the boundaries
due to the driving terms (4): only the region close to the
boundary stays infected.

VII. ENTROPIC MEASURES

The formulation of the tilted many-body probability dis-
tribution as an MPS makes it possible to efficiently compute
a variety of entropic measures for the stochastic process. As
we are optimizing for a probability distribution, the Shannon
entropy H (x) would be the first quantity to look at, followed
closely by the mutual information between two halves of
the chain. However, computing H (x) = −∑

x P(x) log P(x)
over all configurations x would require taking the loga-
rithm of an MPS, for which there are no efficient methods
known to us at the moment. Fortunately, entropic mea-
sures based on (second) Rényi entropy can be computed
efficiently [61,63].

The second Rényi entropy, or the collision entropy H2(x),
is defined as

H2(x) = − log2

∑
x

P(x)2. (31)

This can be obtained efficiently in terms of the L2-norm
of the distribution |�0(s)〉, as we can express the collision
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FIG. 7. Left: The susceptibility χ (s) = ∂2
s 
(s) shows a peak for finite N at a critical value of s = sc(N ) which becomes more narrow for

increasing N . Middle: The critical values sc(N ) at different values for the infection rate λ > λc. The results show a scaling of sc(N ) ∼ −N−α

with α > 1. Right: The exponents α as a function of infection rate λ.

entropy as

H2(x) = − log2

( 〈�0|�0〉
〈1|�0〉2

)
. (32)

Here 〈�0|�0〉 is computed efficiently by contracting the fol-
lowing tensor network site by site:

(33)

By computing the Rényi entropy in this way, we can make use
of the MPS approximation of the full 2N -dimensional prob-
ability distribution, without actually ever having to compute
it explicitly. In this way, biases in entropic measures due to
undersampling [64,65] can be avoided.

Considering a partition of the chain in two regions, L and
R, the second Rényi entanglement entropy H2(L) of the region
L is defined as the second Rényi entropy of the states distribu-
tion marginalized over the complementary region R. In terms
of tensor networks, this can be computed by first contracting
all sites in region R with the local flat state 〈1| = (1 1),
followed by contracting the marginal distribution over L with
a copy of itself. Hence, we have

H2(L) = − log2

( 〈�0(L)|�0(L)〉
〈1|�0〉2

)
(34)

with

(35)

Here the green nodes denote local flat states 〈1|. The second
Rényi entanglement entropy H2(R) for region R, defined as
the complement of L, is computed similarly, by marginalizing
over the sites in region L followed by computing the second
Rényi entropy of region R.

Using the above quantities, one can compute the second
Rényi mutual information (RMI) H2(L; R) between the two
subregions L and R:

H2(L; R) = H2(L) + H2(R) − H2(L, R). (36)

Here H2(L, R) = H2(x) is defined above in (32), and H2(L)
and H2(R) are the second Rényi entanglement entropies of
regions L and R, respectively.

The RMI is particularly interesting since it provides a mea-
sure of the amount of information contained in a subregion
of the system about the rest of the system. Conventional
measures based on the correlation length are susceptible to

FIG. 8. The left panel shows the density of infected sites in the chain of various lengths at λ = 2 as a function of s. Trajectories with lower
activity clearly correspond to those with less dense configurations. The middle panel displays the variance in global density, which peaks when
the expected density shows a sudden drop. The right panel show the local node density as a function of s and the node position in the chain for
N = 103, respectively. The dashed red line indicates the critical value sc(N = 103) as determined from the peak in susceptibility.
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FIG. 9. Various observables for the contact process in the chain of length N = 20 in the (λ, s) plane.

overlooking hidden correlations, whereas the RMI is based
on the total amount of information of a subsystem about the
complementing region, without overlooking hidden correla-
tions [61]. Furthermore, it has been shown in [66] that the
second RMI provides a way to detect phase transitions in
classical equilibrium systems, without any prior knowledge
of an order parameter or other thermodynamic quantities.
Below, we demonstrate that the second RMI can be computed
efficiently from the MPS representation of the NESS for the
contact process, and we use it to identify the absorbing state
transition by a finite-size scaling argument.

In Fig. 9, we show and compare various quantities in the
(λ, s)-plane for a chain of length N = 20. For this chain
length, it is still computationally feasible to compute the
complete Shannon entropy and mutual information between
two halves of the chain. These plots have been added for
comparison. The division into subregions in this plot is always
taken to be the half-chain, and driving at both boundaries was
used here.

We find that the second Rényi mutual information shows
a clear peak close to the region where the susceptibility and
mutual information is maximal. However, a closer inspection
shows that the peak in H2(L; R) is shifted slightly towards
higher values of λ. This shows that the second Rényi mutual
information is maximal just above the critical transmission
rate λc.

In [66], the second RMI was used to detect phase transi-
tions in classical equilibrium models. The analysis relied on
a scaling argument, which shows the RMI contains a con-
stant contribution (i.e., independent of subsystem area) which
changes sign across the critical temperature Tc. This causes the
finite-size RMI curves to “fan out” at Tc for different system
sizes, producing a crossing of the curves. In our case, our
system is driven out-of-equilibrium, however the RMI curves
still show a crossing close to the critical infection rate λc.
This is demonstrated in Fig. 10, which displays the RMI in
the NESS for various system sizes as a function of λ. The
right panel of Fig. 10 displays the crossing points of the
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FIG. 10. The second Rényi mutual information (RMI) (left) in the NESS as a function of λ (with boundary driving). The right panel shows
the locations λ(N ) where the RMI curves for N and 2N cross, as a function of 1/N . The red star marks the critical value of the 1D contact
process λc = 1.6489. The inset shows a detail of the crossing points in the RMI with N = 20, 24, 28, 32, 36, 40, 48, 56, 64, 72, 80. The dotted
line is an extrapolation to N → ∞ based on Eq. (37).

RMI at system sizes N and 2N for increasing N . For small
system sizes, there is a considerable finite-size effect, as the
intersections are not occurring at the same locations. As N
increases, the location of the intersection creeps closer to λc.
For chains of length ∼80, the crossings already occur very
close to the critical infection rate.

We extrapolate the data for the largest available values of
N using the scaling ansatz,

λc(N ) = λc

(
1 + b

Nχ
+ · · ·

)
. (37)

This allows us to derive a critical transmission rate λc =
1.6487(6), independently from using any order parameter.
The obtained value is consistent with the known critical value
for λ. Additionally, we obtain a value for the subleading
scaling with N : χ = 2.77(5). This analysis demonstrates the
ability to detect dynamical phase transitions on the basis of
the RMI alone, without the need for an order parameter.

VIII. CONCLUSIONS AND DISCUSSION

In this paper, we have used the matrix product state to
study the one-dimensional contact process. We have found
that efficient representations for the many-body probability
vector in the thermodynamic limit t → ∞ are obtained in
the active and inactive regimes, while at the critical threshold
for the active/inactive phase transition, the bond dimension
of the MPS grows at most linear with system size. We have
illustrated how the MPS can be used for efficient computation
of the distribution of gaps in a chain, even for large gap sizes
corresponding to extremely rare events. We used the MPS
to obtain accurate approximations of the scaled cumulant-
generating function for the dynamical activity, which is dual
to the large deviation rate function by Legendre transform.
This analysis sheds light on how trajectories with different
dynamical activity contribute to the properties of the system
in the late time regime.

Our approach enables one to study entropic measures in
a straightforward way, which is challenging to do with other
approaches. In particular, we compute the second Rényi mu-
tual information for the contact process. Previous methods

obtained the second RMI for equilibrium models relying on
Monte Carlo simulations of the replicated partition function
(see, for instance, [66]). In our case, we are lacking a Boltz-
mann distribution as we are looking at an out-of-equilibrium
problem, so it is not clear how to obtain the RMI from
applying the replica trick on a partition function. Instead, we
obtained the second RMI directly from the MPS represen-
tation of the NESS, and we demonstrated its use to detect
dynamical phase transitions.

The MPS methods described in this paper are complemen-
tary to the more frequently used Monte Carlo methods. The
MPS allows one to approximate the full probability distri-
bution over all configurations, which allows for the efficient
computation of quantities where detailed knowledge of the
full probability distribution is required. The main computa-
tional cost of the MPS methods comes from the optimization
procedure, after which even higher-order observables may be
computed efficiently. Monte Carlo methods still provide ad-
vantages over the methods described in this paper, especially
in terms of ease of use, generalization to complex network
interactions, and the ability to easily add more complexity
to the microscopic interactions. A precise performance com-
parison between tensor networks and Monte Carlo methods
depends on the details of the simulated systems and on the
types of questions being addressed, i.e., what observables are
computed, the distance to criticality, the desired accuracy,
and the type of observables in which one is interested. It
would be interesting to perform such a detailed performance
comparison in future work.

This work opens the doors to tensor network applications
in mathematical epidemiology. Obvious generalizations are
the extension of these methods to the infinitely long chain with
infinite-MPS techniques [78], to two- and higher-dimensional
arrays using projected-entangled-pair states (PEPS) [79–82],
or to (tree) networks with tree tensor networks [83–85] or
with the multiscale entanglement renormalization ansatz [86].
One could also imagine formulating a tensor network state
for more involved compartmental models of epidemiology
along the lines illustrated in this paper, but with a closer
connection to real-world infectious disease outbreaks. The
tensor network could then be used to obtain probability
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FIG. 11. The scaled cumulant-generating function (top) for var-
ious N at λ = 0.7 < λc using the boundary driving protocol. The
middle panel shows the activity per unit time as a function of s,
obtained as K (s) = ∂s
(s). The rate function (bottom) shows zeros
at the expected value for the activity. Due to the boundary driv-
ing, inactive trajectories (small k) all have the same constant decay
rate φ(k).

distributions over observables of relevance to the tracking
and forecasting of the epidemic state through a population
of interest. Measurements on the populace, such as test and
tracing policies, could then be implemented into the tensor
network by projecting certain sites on the measurement out-
come. In this way, the state will become closer to the actual
state of the population, while retaining the information of past
correlations between sites not projected on.

While the one-dimensional contact process remains an
interesting system for statistical physicists, in mathematical
epidemiology one is more often interested in time-dependent
spreading processes on complex networks [21]. It is therefore
of great interest to explore how the methods described in this
paper can be used to predict and forecast epidemic spreading
in realistic scenarios. Major steps in this direction would be an
extension to study the dynamical evolution by time-evolving
block decimation algorithms (TEBD) [87] and to extend
the methods to spreading processes on real-world, complex
contact networks. We hope to address such questions in
future work.
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APPENDIX: SCALED CUMULANT-GENERATING
FUNCTION FOR λ < λc

Here we display our results for the SCGF 
(s) for values of
λ in the absorbing phase. Figure 11 displays the SCGF 
(s)
for λ = 0.7 < λc. Note that we plot here the SCGF and not
the SCGF per site, as was plotted in Fig. 6 for λ > λc. We
see that in this case for any N , the SCFG is approximately
linear around s = 0 with the same N-independent slope. This
implies that the activity is independent of N , as illustrated as
well by the middle panel of Fig. 11. Only for trajectories tilted
towards the active region (s > 0) is a jump in the dynamical
activity visible.

The lower panel of Fig. 6 displays the rate function
for the dynamical activity when λ = 0.7 < λc. The plot
shows that the likelihood of observing trajectories with
a dynamical activity that is average or lower decays ex-
ponentially with a rate independent of N , which is an
effect of the boundary driving term. For trajectories with
activity larger than average, the decay rate does depend
on N , such that larger N corresponds to a lower rate
function.
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