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Jun Yamamoto 1,2,* and Kousuke Yakubo 1,†

1Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan
2School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom

(Received 24 April 2023; accepted 14 July 2023; published 7 August 2023)

The presence of large-scale real-world networks with various architectures has motivated active research
towards a unified understanding of diverse topologies of networks. Such studies have revealed that many
networks with scale-free and fractal properties exhibit the structural multifractality, some of which are actually
bifractal. Bifractality is a particular case of the multifractal property, where only two local fractal dimensions
dmin

f and dmax
f (> dmin

f ) suffice to explain the structural inhomogeneity of a network. In this work we investigate
analytically and numerically the multifractal property of a wide range of fractal scale-free networks (FSFNs)
including deterministic hierarchical, stochastic hierarchical, nonhierarchical, and real-world FSFNs. Then we
demonstrate how commonly FSFNs exhibit the bifractal property. The results show that all these networks
possess the bifractal nature. We conjecture from our findings that any FSFN is bifractal. Furthermore, we
find that in the thermodynamic limit the lower local fractal dimension dmin

f describes substructures around
infinitely high-degree hub nodes and finite-degree nodes at finite distances from these hub nodes, whereas dmax

f

characterizes local fractality around finite-degree nodes infinitely far from the infinite-degree hub nodes. Since
the bifractal nature of FSFNs may strongly influence time-dependent phenomena on FSFNs, our results will be
useful for understanding dynamics such as information diffusion and synchronization on FSFNs from a unified
perspective.
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I. INTRODUCTION

Large-scale networks describing real-world complex sys-
tems usually have inhomogeneous structures with large
fluctuations in the degree, the number of edges incident to a
node. In fact, many complex networks exhibit the scale-free
property with power-law degree distributions [1–3]. In order
to understand properties of these inhomogeneous networks
theoretically, we need to simplify structures of networks.
One such simplification is based on an approximation that
ignores degree correlations in networks. Owing to the gen-
erating function technique, this type of approximation has
successfully provided many insights into uncorrelated com-
plex networks [4]. There exist, however, networks whose
degree correlations play significant roles. For investigating
such strongly correlated networks, it is helpful to focus the
fractal nature of a network. A network is fractal with the
fractal dimension Df if the minimum number of subgraphs
(boxes) NB(l ) with fixed diameter l required to cover the
entire network is proportional to l−Df . Fractal networks are
often contrasted with small-world networks in which NB(l )
decreases exponentially with l . Since the discovery of real-
world scale-free networks exhibiting the fractal nature [5],
the fractality of complex networks has been extensively stud-
ied [6–16]. These studies reveal that many real networks are
fractal [10,17–21], at least, on shorter scales than the average
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shortest-path distance 〈l〉 even if the networks exhibit the
small-world property on longer scales [12,22].

If a network possesses both the scale-free and fractal prop-
erties, a single fractal dimension may not be sufficient to
fully describe the fractal nature of the network because the
fractal scale-free network (FSFN) could have a multifractal
structure [23]. Multifractality is a property of inhomoge-
neously distributed quantities (probability measures) defined
on a fractal object [24]. Although the multifractal nature was
initially argued for fractal systems embedded in Euclidean
space, it is possible to extend the argument to networks by
replacing Euclidean distance with shortest-path distance. In
particular, if a measure is evenly assigned to each node,
but the distribution of the measure is multifractal, then the
network structure itself is considered multifractal. In recent
years, numerous studies have presented various efficient al-
gorithms for the multifractal analysis of complex networks
and examined the multifractality of many synthetic and real-
world networks by utilizing these algorithms [16,25–33]. As
an important aspect of FSFNs, it has been shown that a spe-
cific class of FSFNs possess bifractal structures in which two
local fractal dimensions fully characterize the fractal nature of
networks [23]. More precisely, an FSFN G is always bifrac-
tal if the number of nodes included in a supernode of the
renormalized network of G is proportional to the degree of
the supernode. In fact, FSFNs formed by the (u, v)-flower
model [11] and the Song-Havlin-Makse model [6] have been
identified as bifractal networks. Since the bifractal property
of a network suggests that two qualitatively different behav-
iors are expected in various local dynamics on the network
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[11,34–36], it is imperative to clarify to what extent FSFNs
commonly exhibit bifractal structures. This, however, remains
to be revealed. Furthermore, the relationship between the two
local fractal dimensions of a bifractal network and the network
structure has yet to be elucidated.

In this work we investigate the bifractal property of
broader classes of FSFNs. To this end we analyze four types
of FSFNs, namely deterministic hierarchical FSFNs formed
by the single-generator model [37], stochastic hierarchical
FSFNs formed by the multigenerator model, nonhierarchi-
cal FSFNs at the percolation critical points, and real-world
FSFNs. The combination of these types of networks covers
a wide range of FSFNs with a variety of fractal, scale-free,
and clustering properties. Our results show that all FSFNs we
examined have bifractal structures and we conjecture that any
FSFN is bifractal. Furthermore, we study how the bifractality
of an FSFN relates to its local fractal structures. In order to
identify which part of the network each local fractal dimen-
sion df describes, we compute df around each node in the
FSFN by counting the number of nodes ν̃i(l ) within shortest-
path distance l from a node i [31]. Our results demonstrate
that there exist two distinct substructures with two local fractal
dimensions dmin

f and dmax
f in an infinite FSFN. The dimension

dmin
f describes the fractality of a region including an infinite-

degree hub node, while dmax
f characterizes a region including

only finite-degree nodes.
The rest of this paper is organized as follows: Sec. II briefly

summarizes the multifractal property of complex networks
and the possibility of structural bifractality of FSFNs found
by previous studies. Section III shows the bifractal property
of various types of FSFNs including deterministic FSFNs
formed by the single-generator model, stochastic FSFNs con-
structed by the multigenerator model, nonhierarchical FSFNs,
and real-world FSFNs. In Sec. IV we clarify that each of the
two local fractal dimensions of an FSFN characterizes which
substructures of the network. We give our conclusions in
Sec. V. Hereafter, the terms distance, diameter, and radius are
used in the sense of shortest-path distance (chemical distance).

II. MULTIFRACTAL PROPERTY OF NETWORKS

First, we summarize the argument of the multifractal and
bifractal properties of complex networks. Consider a simple,
connected network G with the set of nodes V (G) and the set
of edges E (G). Let us cover G with the minimum number
of boxes (subgraphs) with a fixed diameter and assume that
a probability measure μi is defined at each node i ∈ V (G).
The measure μi is normalized as

∑
b

∑
i∈V (b) μi = 1, where

V (b) is the set of nodes in a box b of diameter l and the first
summation is taken over all the boxes. If the qth moment Zq(l )
of the coarse-grained box measure μb ≡ ∑

i∈V (b) μi satisfies

Zq(l ) =
∑

b

μ
q
b ∝ lτ (q) , (1)

and the mass exponent τ (q) is nonlinear with respect to q,
then we say that the distribution of μi is multifractal. Since
τ (0) is identical to −Df, the multifractal distribution of μi

requires the fractality of G. Moreover, if the relation Eq. (1)
stands for a constant measure μi = μ0 for all i ∈ V (G), the
network structure itself is considered multifractal. In this case

the Hölder exponent α(q) defined by α(q) = dτ (q)/dq is
equivalent to the local fractal dimension df describing a sub-
structure in G, because the box measure μb is proportional to
lα(q), i.e.,

∑
i∈V (b) μi ∝ lα(q), where again l is the box diame-

ter. Due to the nonlinearity of τ (q), α(q) takes various values
depending on q, so a structurally multifractal network is, in-
tuitively, a network in which there exist various substructures
described by different values of local fractal dimensions. Pre-
vious studies have proposed a number of efficient algorithms
for examining the multifractal nature of networks and reported
the multifractality of a wide range of synthetic and real-world
fractal networks [16,25–33].

If the network G is not only fractal but also scale-free,
G may possess a bifractal structure in which two local frac-
tal dimensions suffice to characterize the fractal nature of G
[23]. In particular, when covering a fractal scale-free network
(FSFN) G with the minimum number of boxes, G is always
bifractal if we have

νb ∝ kb, (2)

where νb is the number of nodes in a box b and kb is the
number of neighboring boxes of b [23]. The quantity kb is
considered to be the degree of the supernode b in the renor-
malized network of G. As shown in Appendix A, if Eq. (2)
holds, the mass exponent τ (q) is given by

τ (q) =
⎧⎨
⎩

(q − 1)Df for q < γ − 1

qDf

(
γ − 2

γ − 1

)
for q � γ − 1

, (3)

where γ is the degree exponent describing the asymptotic
power-law behavior of the degree distribution P(k), such that
P(k) ∝ k−γ for high degree k. In general, the mass expo-
nent becomes a nonlinear function of q if the measure μi

varies with site i and is distributed in a multifractal manner.
A typical τ (q) asymptotically approaches τ (q) = αmaxq for
q → −∞, while it approaches τ (q) = αminq for q → ∞. The
function τ (q) describing a conventional multifractal system
smoothly (nonlinearly) connects these two asymptotic straight
lines with different slopes at intermediate q. Thus, the Hölder
exponent takes multiple values. We emphasize that the mass
exponent given by Eq. (3) has the same form as such a general
profile of τ (q), in which the two asymptotic regions meet each
other at q = γ − 1 and no intermediate region exists. This
implies that a bifractal system is a special case of a multifrac-
tal system with inhomogeneous local fractality. From Eq. (3),
the local fractal dimension equivalent to the Hölder exponent
takes two values,

dmax
f = Df,

dmin
f = Df

(
γ − 2

γ − 1

)
. (4)

Bifractality of FSFNs has been shown [23] analytically
for the (u, v)-flower model [11] and numerically for the
Song-Havlin-Makse (SHM) model [6]. The theoretical ex-
pression of τ (q) for the (u, v)-flower model has often been
used to benchmark newly developed numerical algorithms for
multifractal analysis [26,27,30,32,33]. However, the validity
of Eqs. (3) and (4) has been verified only for these two kinds
of FSFNs, and it remains unclear how common the bifractal
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(a)

(b)

FIG. 1. (a) Example of a generator Ggen (top) and the edge re-
placement by Ggen. Two white nodes in Ggen represent the root nodes,
and four black nodes are the remaining nodes. (b) Box covering
[green (left top) and red (other) closed curves] of the third generation
network G3 formed by Ggen shown in (a). The six boxes constitute the
network G1 (blue dashed lines). The green, emphasized node is the
central node of the green box b. The diameter (l = 9) of a box is
equal to the diameter of G2.

property of FSFNs is. In this work we investigate how wide
a range of FSFNs satisfies Eq. (2) and exhibits bifractality by
examining various conceivable types of FSFNs.

III. BIFRACTALITY OF FSFNs

A. Deterministic hierarchical FSFNs

In order to examine the validity of Eq. (2) [and thus Eqs. (3)
and (4)] for a wide range of FSFNs, we first investigate
a class of deterministic hierarchical FSFNs formed by the
single-generator model [37]. In this model, the t th generation
network Gt is recursively constructed by replacing every edge
in Gt−1 with a small graph Ggen called a generator, so that two
root nodes predefined in Ggen coincide with the two terminal
nodes of the replaced edge, as illustrated by Fig. 1(a). The root
nodes of Ggen must not be adjacent to each other and have
degrees at least two. For simplicity, we concentrate below
on the symmetric generator in which a subgraph constructed
by removing one root node and its incident edges from Ggen

has the same topology as a subgraph formed by removing
another root node and its incident edges from Ggen. It is easy
to extend our argument below to the case of an asymmetric
generator. We initialize the network G0 with a single edge with
two terminal nodes, so the first generation network G1 is Ggen

itself.
Let us consider a generator Ggen with mgen edges, in which

the two root nodes have degree κ and they are separated by
distance λ. The number of nodes in the t th generation network

Gt by the single-generator model is [37]

Nt = 2 + nrem(mt
gen − 1)

mgen − 1
, (5)

where nrem is the number of “remaining nodes” defined as
nodes other than the root nodes in the generator Ggen. For
t 	 1, Gt becomes fractal and scale-free. The degree exponent
γ and fractal dimension Df are given by

γ = 1 + log mgen

log κ
, (6)

Df = log mgen

log λ
. (7)

In addition to γ and Df, various properties of Gt , such as
the clustering coefficient, degree correlation, and percolation
properties, can be analytically obtained by using the quan-
tities determined by the structure of the generator [37]. We
can obtain a wide range of deterministic hierarchical FSFNs,
including the (u, v)-flower and those by the SHM model, by
choosing from a variety of generators.

Here we show that Eq. (2) holds for FSFNs formed by
this single-generator model. To this end let us cover the t th
generation network Gt with boxes of fixed diameter l so that
the boxes constitute the network Gt ′ as shown by Fig. 1(b),
where 0 � t ′ � t . Since the boxes in this covering scheme
correspond to the supernodes of the renormalized network
Gt ′ , the number of boxes NB(l ) coincides with the number
of nodes in Gt ′ , namely Nt ′ given by Eq. (5). While it is not
obvious whether NB(l )(= Nt ′ ) provides the minimum number
of covering boxes for Gt , NB(l ) would be at least proportional
to the minimum number, because we can easily show the
relation NB(l ) ∝ l−Df with the fractal dimension Df given
by Eq. (7).

In order to count the number of nodes νb in a box b under
this box-covering scheme, we define the central node bc of the
box b as the node in Gt corresponding to the supernode b in
Gt ′ . In Fig. 1(b) the green node is the central node of the green
box b. The quantity νb is the number of nodes whose nearest
central node is bc. We remark that a superedge [a blue dashed
line in Fig. 1(b)] of the renormalized network Gt ′ represents
Gt−t ′ having Nt−t ′ nodes and half of these nodes are contained
in the box b. More precisely, the half of the nodes in Gt−t ′

other than the two central nodes contribute to νb from a single
superedge. Note that for any node that is equidistant from two
central nodes, we consider that half of the node belongs to one
box while the other half belongs to another. Such a treatment
is justified in the mean-field sense. Denoting the degree of
the supernode b as kb, νb is given by kb(Nt−t ′ − 2)/2 + 1,
where “+1” is the contribution from the central node itself.
Therefore, using Eq. (5), we obtain

νb = 1 + kb

nrem(mt−t ′
gen − 1)

2(mgen − 1)
. (8)

This relation can be also explained by counting the number of
nodes that appear in the growth process from Gt ′ to Gt , whose
nearest node belonging to Gt ′ is the supernode b. The second
term of Eq. (8) dominates the first term for t 	 t ′, thus we
have Eq. (2) for the network Gt if the box size is much smaller
than the size of Gt .
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FIG. 2. Mass exponents τ (q) for deterministic hierarchical
FSFNs generated by the single-generator model. Solid lines repre-
sent τ (q)’s calculated theoretically by Eq. (9) and symbols indicate
those computed numerically by using the sandbox algorithm [27].
Different colors stand for results for different FSFNs. For graphical
reasons, the red (second from the bottom), blue (second from the
top), and green (top) results are shifted upward by 10, 20, and 30,
respectively. The generators employed for our calculations are indi-
cated by small networks in the same colors. Open nodes represent the
root nodes. For numerical calculations, the seventh, sixth, fifth, and
sixth generation networks formed by the black, red, blue, and green
generators are used, which contain 39 064 (78 125), 27 995 (46 656),
18 726 (32 768), and 46 657 (46 656) nodes (edges), respectively.

Since Eq. (2) holds for any Gt with t 	 t ′ 	 1, determinis-
tic hierarchical FSFNs formed by the single-generator model
exhibit bifractal structures. Using Eqs. (3), (6), and (7), the
mass exponent τ (q) is given by

τ (q) =

⎧⎪⎪⎨
⎪⎪⎩

q
log(mgen/κ )

log λ
for q � log mgen

log κ

(q − 1)
log mgen

log λ
for q <

log mgen

log κ

, (9)

and it follows from Eq. (4) that the local fractal dimensions
are dmax

f = log mgen/ log λ and dmin
f = log(mgen/κ )/ log λ. To

confirm the validity of our theoretical prediction, we have
calculated numerically τ (q) for various FSFNs formed by
different generators by applying the sandbox algorithm [27].
As shown in Fig. 2, numerical results agree well with the mass
exponent presented by Eq. (9).

B. Stochastic hierarchical FSFNs

While it has been established that numerous hierarchical
FSFNs generated by deterministic algorithms display bifrac-
tal structures, FSFNs do not necessarily have deterministic

structures. In order to examine the bifractality of stochastic
hierarchical FSFNs, we extend the single-generator model
to a model with stochastic edge replacements by multiple
generators. In this multigenerator model, we prepare a set of
s generators {G(1)

gen, G(2)
gen, . . . , G(s)

gen}. As in the case of the
single-generator model, two nonadjacent root nodes are spec-
ified in advance in each generator, where the degrees of the
root nodes are 2 or higher. For simplicity, these generators
are assumed to be symmetric. To construct the t th generation
network Gt , we replace every edge in the previous generation
network Gt−1 with one of the multiple generators G(i)

gen with
the predefined probability p(i), where

∑s
i=1 p(i) = 1. The edge

replacement method is the same as that in the single-generator
model.

As shown in Appendix B, the number of nodes Nt in the
t th generation network Gt is

Nt = 2 + 〈nrem〉(〈mgen〉t − 1
)

〈mgen〉 − 1
, (10)

where 〈mgen〉 = ∑s
i=1 m(i)

gen p(i) and 〈nrem〉 = ∑s
i=1 n(i)

rem p(i) are
the mean number of edges and the mean number of remaining
nodes in a generator averaged over the multiple generators,
respectively. Here m(i)

gen and n(i)
rem denote, respectively, the num-

ber of edges and the number of remaining nodes in G(i)
gen.

Appendix B also shows that networks constructed by the
multigenerator model exhibit the scale-free and fractal prop-
erties as in the case of the single-generator model. The degree
exponent γ and fractal dimension Df are given by

γ = 1 + log〈mgen〉
log〈κ〉 , (11)

Df = log〈mgen〉
log〈λ〉 , (12)

where 〈κ〉 = ∑s
i=1 κ (i) p(i) is the mean degree of a root node

averaged over the multiple generators, and κ (i) is the degree of
the root node in generator G(i)

gen. In addition, 〈λ〉 represents the
mean inter-root-node distance. This quantity is determined by
the set of distances {λ(i) : 1 � i � s} between the root nodes
in the multiple generators, but not the simple average of λ(i).
Appendix B shows how 〈λ〉 is calculated from {λ(i)}. It should
be emphasized that the multigenerator model encompasses a
much broader class of FSFNs than that of the single-generator
model because 〈mgen〉, 〈κ〉, and 〈λ〉 can take noninteger values.

We cover the network Gt with boxes of a fixed diameter as
we did for the single-generator model. Namely, Gt is covered
so that the covering boxes constitute the network Gt ′ with
t ′ � t , where Gt ′ is a network appearing in the stochastic
construction process from G0 to Gt . A box b contains half
of the nodes within the subgraphs constituting kb superedges
from the supernode b in the renormalized network Gt ′ , as in
the single-generator model, but these superedges stand for dif-
ferent realizations of Gt−t ′ in this stochastic model. However,
if t 	 t ′ 	 1, i.e., the superdegree kb and sizes of networks
Gt−t ′ are large enough, then we can approximate the number
of nodes νb in the box b as νb = kb(Nt−t ′ − 2)/2 + 1, where
Nt−t ′ is given by Eq. (10). This leads to Eq. (8) for νb with nrem

and mgen replaced by 〈nrem〉 and 〈mgen〉, respectively. Since
Eq. (2) holds when Nt−t ′ 	 1 for t 	 t ′, we can conclude that
stochastic hierarchical FSFNs formed by the multigenerator
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FIG. 3. Mass exponents τ (q) for stochastic hierarchical FSFNs
generated by the multigenerator model. Solid lines represent τ (q)’s
calculated theoretically by Eq. (13), and symbols indicate those com-
puted numerically for seventh generation networks averaged over
100 [black (bottom) results] or 50 [red (top) results] realizations by
using the sandbox algorithm [27]. Different colors stand for results
for different combinations of generators indicated by small networks
in the same colors. Fractions beside the generators represent the edge
replacement probabilities. For graphical reasons, the red results are
shifted upward by 10. The inset shows the numerically calculated
second derivatives of τ (q) for fifth, sixth, and seventh generation
FSFNs formed by the combination of black generators. The vertical
dashed line indicates the folding point of τ (q) that is theoretically
predicted.

model possess bifractal structures. Using Eqs. (3), (11), and
(12), the mass exponent τ (q) is given by

τ (q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q
log(〈mgen〉/〈κ〉)

log〈λ〉 for q � log〈mgen〉
log〈κ〉

(q − 1)
log〈mgen〉

log〈λ〉 for q <
log〈mgen〉

log〈κ〉
, (13)

and it follows from Eq. (4) that the two local frac-
tal dimensions are dmax

f = log〈mgen〉/ log〈λ〉 and dmin
f =

log(〈mgen〉/〈κ〉)/ log〈λ〉. The above theoretical prediction has
been confirmed numerically by computing τ (q) for FSFNs
formed by the multigenerator model with two and three gener-
ators. Our results are shown in Fig. 3. Although the numerical
results for seventh generation networks deviate slightly from
τ (q) presented by Eq. (13), they are basically in agreement
with the theoretical results. Such deviations are caused by
finite-size effects. As expected from our analytical argument,
Eq. (2) holds in the multigenerator model when t 	 t ′ 	 1
and the bifractal behavior of τ (q) is realized in large FSFNs.
The sizes of FSFNs employed for numerical calculations (on

average, N7 = 32 030 and 20 085 for black and red results
in Fig. 3, respectively) may not be large enough. To investi-
gate the finite-size effect, we calculate the q dependence of
the second derivative τ ′′(q), namely, the curvature of τ (q).
The results shown in the inset of Fig. 3 demonstrate that
as the generation of FSFNs increases, τ (q) begins to fold
abruptly and the folding point approaches the theoretical value
q = log〈mgen〉/ log〈κ〉. While Fig. 3 shows τ ′′(q) only for the
combination of black generators, we obtained similar results
also for the red generator combination. Furthermore, Eq. (13)
has been confirmed for various combinations of generators
other than those shown in Fig. 3.

C. Nonhierarchical FSFNs

Structures of networks treated so far are, by construction,
hierarchical. Do FSFNs with less clear hierarchical structures
also exhibit the bifractal property? To answer this question,
we investigate giant connected components of uncorrelated
scale-free networks at their percolation critical points. If the
degree distribution of a scale-free random network (SFRN) G
at criticality is given by P(k) ∝ k−γ for high degree k, then the
degree distribution PGC(k) of the giant component GGC of G
follows PGC(k) ∝ k−γ ′

with γ ′ = γ − 1 [38]. In addition, GGC

takes a fractal structure with the fractal dimension Df = 2 for
γ � 4 or Df = (γ − 2)/(γ − 3) for 3 < γ < 4 [39]. These
facts imply that GGC is an FSFN.

Let us cover the giant component GGC with boxes, each of
which consists of nodes within distance l from a central node
of degree k, and count the number of nodes νb in a box b. We
should note here that GGC exhibits a long-range degree corre-
lation though G is uncorrelated. In general, long-range degree
correlations of networks are described by the conditional
probability P(k, k′|l ) of randomly chosen two nodes separated
by l from each other having degrees k and k′ or the probability
P(k′|k, l ) that a node separated by l from a randomly chosen
node of degree k has degree k′ [40]. These probabilities for
the giant component of a random network, PGC(k, k′|l ) and
PGC(k′|k, l ), have been studied by Mizutaka and Hasegawa
[41] for the case that the third moment

∑
k k3P(k) is finite. In

particular, the probability PGC(k′|k, l ) is given by

PGC(k′|k, l ) = 1 − vl−1uk+k′−2

1 − vl−1uk

k′P(k′)
z1

, (14)

where u is the solution of u = G1(u) with the generating
function G1(u) defined by G1(u) = ∑

k kP(k)uk−1/z1, v =
G′

1(u)/G′
1(1), and z1 = ∑

k kP(k). Since u is the probability
that an edge does not lead to the giant component, we have
u < 1 in the percolating phase and u = 1 at the critical point.
Assuming that u = 1 − ε with a small positive quantity ε

near the critical point, we have v = 1 − (z3/z2)ε, where z2 =∑
k k(k − 1)P(k) and z3 = ∑

k k(k − 1)(k − 2)P(k). Substi-
tuting these expressions of u and v into Eq. (14) and taking
the limit of ε → 0, PGC(k′|k, l ) at criticality is given by

PGC(k′|k, l ) = z3(l − 1) + z2(k + k′ − 2)

z3(l − 1) + z2k

k′P(k′)
z1

, (15)

if z3 is finite. We utilize this probability to examine analyt-
ically the validity of Eq. (2) for GGC at criticality under the
condition of finite z3 (i.e., γ > 4).
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In order to calculate the number of nodes νb in the box b,
we first consider the number of nodes of degree k′ at distance l
from a node ik of degree k. Denote this quantity by n(k′|k, l ).
Assuming that GGC at the critical point has a tree structure,
n(k′|k, l ) satisfies the following relation:

n(k′|k, l ) = PGC(k′|k, l )
∑

k′′
(k′′ − 1)n(k′′|k, l − 1). (16)

In this recurrence relation, the sum in the right-hand side
represents the number of nodes at distance l from the node
ik . The quantity n(k′|k, l ) at l = 1 is obviously given by
n(k′|k, l = 1) = kPGC(k′|k, l = 1). Thus, using Eq. (15), we
have

n(k′|k, l = 1) = 1

z1
(k + k′ − 2)k′P(k′). (17)

Under this initial condition, the solution of the recurrence
equation Eq. (16) reads

n(k′|k, l ) = 1

z2
1

[
(l − 1)z3 + (k + k′ − 2)z1

]
k′P(k′). (18)

Here we used the equality z1 = z2 at the critical point [42].
Since the number of nodes nl (k) at distance l from the node ik
of degree k is given by nl (k) = ∑

k′ n(k′|k, l ), it follows from
Eq. (18) that

nl (k) = 1

z1
[(l − 1)z3 + kz1]. (19)

Therefore, the number of nodes νb(l ) in the box b(l ) consisting
of nodes within distance l from the central node ik of degree
k, given by νb(l ) = 1 + ∑l

l ′=1 nl ′ (k), is expressed as

νb(l ) = 1 + z3

2z1
l (l − 1) + kl. (20)

On the other hand, the number of neighboring boxes kb(l ) of
b(l ) is equivalent to nl+1(k) under the tree approximation for
GGC, because each of the nodes at distance l + 1 from node ik
belongs to a separate neighboring box. Hence, Eq. (19) gives

kb(l ) = z3

z1
l + k. (21)

When we cover a huge scale-free GGC with the minimum
number of boxes, the degree k of the central node of a box
becomes quite large, and we can approximate Eqs. (20) and
(21) as νb(l ) � kl and kb(l ) � k. Therefore, Eq. (2) holds also
for the giant component GGC of an SFRN at the percolation
critical point, and we can conclude that GGC, an example of
nonhierarchical FSFNs, shows the bifractal property.

The above analytical argument is valid only for γ > 4, but
there is no obvious reason that GGC is not bifractal for γ � 4.
Thus, it is plausible that the giant component in a critical
SFRN is bifractal independently of γ . If this is the case,
considering that PGC(k) ∝ k−γ ′

with γ ′ = γ − 1 and Df = 2
for γ � 4 or Df = (γ − 2)/(γ − 3) for 3 < γ < 4, the mass
exponent τ (q) for GGC is given by

τ (q) =
⎧⎨
⎩

q for q � γ − 2

(q − 1)
γ − 2

γ − 3
for q < γ − 2 , (22)

for 3 < γ < 4, or

τ (q) =
⎧⎨
⎩

2q

(
γ − 3

γ − 2

)
for q � γ − 2

2(q − 1) for q < γ − 2
, (23)

for γ � 4. The local fractal dimensions are then dmax
f =

(γ − 2)/(γ − 3) and dmin
f = 1 for 3 < γ < 4 or dmax

f = 2 and
dmin

f = 2(γ − 3)/(γ − 2) for γ � 4.
To confirm the above arguments numerically, we prepare

SFRNs formed by the configuration model [4,43]. The degree
distribution is chosen as

P(k) = c

kγ + dγ
, (24)

for 1 � k � 1000 and P(0) = P(k > 1000) = 0, which is
proportional to k−γ for k 	 d . The parameter d can control
the moments of P(k) and c is the normalization constant.
The value of d for a given γ is chosen so that the critical
condition 〈k2〉/〈k〉 = 2 [42] is satisfied. We employed two
values of γ , i.e., γ = 4.25 and 3.75. The parameter d for
these values of γ takes d = 1.534 (for γ = 4.25) and 1.075
(for γ = 3.75). The giant components in these networks are
fractal with the fractal dimensions Df = 2 (for γ = 4.25) and
2.33 (for γ = 3.75). As shown in Fig. 4, the mass exponents
τ (q) for the giant components in these SFRNs support the
theoretical prediction for both γ > 4 and γ � 4. As in the
case of stochastic hierarchical FSFNs, the inset in Fig. 4 shows
that the deviation from the theoretical prediction due to the
finite-size effect decreases as the system size increases.

D. Real-world FSFNs

Our arguments so far demonstrate that many types of
FSFNs possess bifractal structures, which leads us to suspect
that any FSFN is bifractal. This is plausible also from the
following considerations. Assume that G is an FSFN. When
G is covered by boxes of diameter l , these boxes and connec-
tions between them construct a renormalized network G ′. As
in the case of deterministic hierarchical FSFNs, we can define
the central node bc of a box b as the node in G corresponding
to the supernode b in G ′. Due to the fractal nature of G,
the renormalized network G ′ can be regarded as a network
with these central nodes and equivalent (in a statistical sense)
superedges connecting central nodes [see Fig. 1(b)]. Thus, the
original subgraphs in G corresponding to these superedges
have almost the same number of nodes n. If the degree of the
supernode b is kb in G ′, kb superedges are connected to the
central node bc. The number of nodes νb in the box b is then
given by νb � nkb/2, which realizes Eq. (2). Therefore, we
can expect that any kind of FSFN exhibits a bifractal structure.

To check the above conjecture, two kinds of real-world
FSFNs have been numerically analyzed. One is the World
Wide Web (WWW) of the University of Notre Dame [44] with
325 729 nodes, and the other is the largest connected com-
ponent of the human protein interaction network (PIN) [45]
with 2217 nodes. Data for both networks are freely available
at the “Netzschleuder Network Catalog and Repository” [46].
Treating the WWW as undirected, we computed the degree
distributions P(k) for these networks and observed the power-
law behaviors of P(k) with the exponents γ = 2.75 ± 0.08
and 2.59 ± 0.22 for the WWW and PIN, respectively. To
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FIG. 4. Mass exponents τ (q) for nonhierarchical FSFNs (open
circles and solid lines) and for real-world FSFNs (open squares and
dashed lines). Solid lines represent τ (q)’s calculated theoretically
for the giant components in SFRNs at the percolation critical point,
which are given by Eq. (22) or (23). Open circles indicate those
computed numerically by using the sandbox algorithm [27] for the
giant components in critical SFRNs (N = 106) formed by the config-
uration model. Black (second from the top) and red (top) data show
results for the degree exponents γ = 3.75 and 4.25, respectively.
Numerical results are averaged over 100 realizations and the aver-
age giant component sizes are 12 829.8 for γ = 3.75 and 14 631.4
for γ = 4.25. The inset shows the numerically calculated second
derivatives of τ (q) for the giant components in critical SFRNs with
5.0 × 105, 7.5 × 105, and 106 nodes and for γ = 3.75. The vertical
dashed line indicates the folding point of τ (q) that is theoretically
predicted. Blue (bottom) and green (second from the bottom) squares
in the main panel indicate the mass exponents τ (q) for the World
Wide Web and protein interaction network calculated by the sandbox
algorithm. Colored dashed lines represent τ (q) given by Eq. (3) with
γ and Df measured for these real-world networks. For graphical
reasons, the red, blue, and green results are shifted upward by 10,
20, and 30, respectively.

ensure consistency with the multifractal analysis, we mea-
sured the fractal dimensions of these networks using the
sandbox method, and found Df = 5.82 ± 0.10 for the WWW
and 4.60 ± 0.60 for the PIN. As shown in Fig. 4, the mass
exponents predicted by Eq. (3) with these observed values of
γ and Df well reproduce τ (q) calculated numerically for these
real networks. These results support our conjecture that any
FSFN including real-world networks is bifractal.

IV. LOCAL FRACTAL DIMENSION

The bifractal property of an FSFN implies that there exist
two local fractal dimensions in the network. It is, however,
unclear which substructures of the network are characterized

by dmin
f and dmax

f . To clarify the correspondence between
the substructures and the two local fractal dimensions, we
examine the local structure centered around each node i in
a t th generation network Gt formed by the single-generator
model argued in Sec. III A. Let node i be one of the nodes
that first appears in the t0-th generation (1 � t0 � t), and k be
the initial degree of this node when it first appears. Then the
degree kt of the node i in Gt is given by

kt = kκ t−t0 , (25)

where κ is the degree of the root node in the generator Ggen.
Since we assume t 	 t0, the node i is a hub node with high
degree kt . Now, we count the number of nodes ν̃t ′ in Gt within
distance Lt ′ from the node i, where Lt ′ is the diameter of the
t ′th generation network Gt ′ with 1 � t ′ � t − t0. Since there
exist kκ t−t0−t ′

subgraphs Gt ′ within distance Lt ′ from the node
i, we have

ν̃t ′ = (Nt ′ − 1)kκ t−t0−t ′ + 1

� Nt ′kκ t−t0−t ′
, (26)

where Nt ′ is the number of nodes in Gt ′ . Equation (5) for Nt ′

with t ′ 	 1 gives

Nt ′ � mgenNt ′−1. (27)

Thus, it follows from Eqs. (26) and (27) that

ν̃t ′ =
(

mgen

κ

)
ν̃t ′−1. (28)

On the other hand, since each edge on the longest path in Gt ′−1,
which determines its diameter Lt ′−1, is replaced in Gt ′ with the
generator Ggen whose root nodes are separated by λ from each
other, the diameter Lt ′ of Gt ′ is given by

Lt ′ = λLt ′−1. (29)

Equations (28) and (29) indicate that when the radius Lt ′−1 is
multiplied by λ, the number of nodes ν̃t ′−1 is multiplied by
mgen/κ . This implies that the local fractal dimension around
the node i is log(mgen/κ )/ log λ, which is equal to dmin

f of a
network formed by the single-generator model. This argument
holds even if we take the limit of t → ∞ while keeping t0
finite. In this limit kt in Eq. (25) diverges. Therefore, in the
thermodynamic limit where bifractality in the strict sense is
established, fractality around a hub node with an infinitely
high degree is described by the local fractal dimension dmin

f .
Even in the thermodynamic limit, the fraction of infinite-

degree hub nodes is infinitesimal, and almost all of the nodes
have finite degrees [11]. A substructure around a finite-degree
node located at finite distance l0 from an infinite-degree hub
node will have the same fractality as that around the infinite-
degree hub node at the scale of l 	 l0. Thus, the local fractal
dimension around such a finite-degree node is also dmin

f . The
fraction of these finite-degree nodes near hubs is, however,
still zero, and the overwhelming majority are the remaining
finite-degree nodes that are infinitely far from infinite-degree
hub nodes. This can be also understood from the behavior of
the singularity spectrum f (α), which is the Legendre trans-
form of τ (q). Performing the Legendre transformation on τ (q)
given by Eq. (3), we have f (αmin) = 0 and f (αmax) = Df.
This implies that the hub nodes corresponding to αmin(= dmin

f )
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(a)

(b)

FIG. 5. Distribution of the local fractal dimension df on (a) the
sixth generation (2,2)-flower and (b) seventh generation Sierpinski
gasket. Colors on nodes indicate values of df.

have a pointlike measure, while the nonhub regions corre-
sponding to αmax(= dmax

f ) are extended with the same fractal
dimension as Df for the entire network. The argument on
the fractality around hub nodes cannot be applied to the sub-
structure around such a finite-degree node i. This is because
t − t0 must be finite for the degree kt of the node i to be
finite, and Eq. (26) requiring the condition t ′ � t − t0 is valid
only in a narrow range of Lt ′ . Considering that finite-degree
nodes infinitely far from infinite-degree nodes dominate the
whole network, the local fractality around such a finite-degree
node must be described by the global fractal dimension Df

which is identical to dmax
f . Therefore, the lower local fractal

dimension dmin
f reflects the fractality of substructures around

infinitely high degree hub nodes and finite-degree nodes at
finite distances from these hub nodes, while the higher lo-
cal fractal dimension dmax

f characterizes the local fractality
around finite-degree nodes infinitely far from infinite-degree
hub nodes. We numerically investigate the local fractal di-
mension for the sixth generation (2,2)-flower (N6 = 2732) to
confirm the above argument. For this purpose, we count the
number of nodes ν̃i(l ) within distance l from every node i in
the (2,2)-flower and calculate the local fractal dimension df(i)
according to the relation ν̃i(l ) ∝ ldf (i) [31]. Figure 5(a) indi-
cates the value of df(i) at each node i by color. As expected,
local fractal dimensions df(i) take values close to dmin

f = 1 on
high-degree nodes and close to dmax

f = 2 on low-degree nodes
away from the high-degree nodes. It is due to the finite-size

effect that df(i)’s on some nodes take intermediate values
between dmin

f and dmax
f . Regions around these nodes do not

actually have fractality described by the intermediate df, but
the least-squares fit for ν̃i(l ) of the finite-size network merely
evaluates the dimensional crossover from dmax

f to dmin
f as if

having the intermediate dimension. The scale-free property
is crucial for the distribution of the local fractal dimension.
In a fractal network without the scale-free property, the local
fractality around any node is described by the global fractal
dimension, as shown by Fig. 5(b). In this figure, df(i) on every
node in the seventh generation Sierpinski gasket (N7 = 3282)
is indicated. The computed df(i)’s take values close to the
global fractal dimension Df = log 3/ log 2(= 1.585) regard-
less of the node, except for nodes near the three corners
affected by the finite-size effect.

V. CONCLUSION

In this work we have studied the structural multifractality
of extensive classes of fractal scale-free networks (FSFNs)
and conjectured that any FSFN possesses a bifractal structure
characterized by two local fractal dimensions. It has been
reported in previous work [23] that if the number of nodes
in each of boxes covering an FSFN minimally is propor-
tional to the number of adjacent boxes, namely, Eq. (2) holds,
the network is bifractal. Based on this proposition, we first
showed that deterministic hierarchical FSFNs formed by the
single-generator model exhibit the bifractal nature in their
structures. This result was confirmed for several determin-
istic hierarchical FSFNs by comparing the mass exponents
τ (q) predicted theoretically with those calculated numerically.
Next, we examined stochastic hierarchical FSFNs which have
hierarchical structures but are not deterministic. In order to
construct such FSFNs, we proposed the multigenerator model
in which every edge in the previous generation network is
recursively replaced with one of multiple generators with
a certain probability. Our analytical argument reveals that
FSFNs formed by this model also have bifractal structures.
The bifractal profile of τ (q) for these networks has been
verified numerically by employing several combinations of
multiple generators. Furthermore, we showed that nonhierar-
chical FSFNs exhibit bifractality, by investigating the giant
component of a scale-free random network at the percola-
tion critical point. By evaluating the conditional probability
describing the long-range degree correlation of the giant com-
ponent and by utilizing it to count the number of nodes in
a box and the number of neighboring boxes, we verified
Eq. (2). Finally, we demonstrated that the mass exponents
for two real-world FSFNs are consistent with the bifractal
profiles of τ (q) predicted by their degree exponents and global
fractal dimensions. From these results, we conjecture that any
FSFN is bifractal. Moreover, we studied which substructures
of an FSFN are characterized by its local fractal dimensions
dmin

f and dmax
f . Our arguments clarified that dmin

f describes
substructures around infinitely high-degree hub nodes and
finite-degree nodes at finite distances from these hub nodes,
while dmax

f describes the local fractality around finite-degree
nodes infinitely far from infinite-degree hub nodes.

The bifractality in the strict sense is realized only in in-
finitely large FSFNs. However, even in a finite-size FSFN,
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the fractality cannot be described only by the global fractal
dimension Df. Local structures near high-degree hub nodes
are characterized by dmin

f , and the fractality near low-degree
nodes far from hub nodes is quantified by dmax

f . Mean-
while, we expect a dimensional crossover in the vicinity of
a low-degree node not far from the hub or a node with an
intermediate degree. Therefore, the multifractal analysis for a
finite-size FSFN makes it appear as if the network possesses
multifractality described by an infinite number of local fractal
dimensions, but this is merely a finite-size effect of the bifrac-
tal nature.

It is important to study how the structural bifractality
affects phenomena occurring on FSFNs. Random walks on
FSFNs, for example, can be influenced by bifractality of the
networks. In fact, it has been reported that there are two
distinct values of the spectral dimension ds characterizing
the time dependence of the return-to-origin probability of a
random walker [34–36], though the distance dependence of
the first-passage time is described only by a single walk di-
mension dw [11]. Future research should clarify the relevance
of these two spectral dimensions and the bifractal nature of
the network, which will lead to a systematic understanding of
various dynamics on bifractal networks.
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APPENDIX A: DERIVATION OF EQ. (3)

Here we derive the bifractal mass exponent τ (q), namely
Eq. (3), under the assumption Eq. (2). Given an FSFN G of
N nodes, let us cover G with the minimum number NB(l ) of
boxes of diameter l , and assume that Eq. (2) holds for each
box b. Equation (2) gives the relation

νb = 〈νb〉
〈kb〉 kb, (A1)

where 〈νb〉 and 〈kb〉 are the mean values of νb and kb aver-
aged over the boxes, respectively. Since 〈νb〉 = N/NB(l ), we
have νb = kbN/〈kb〉NB(l ) and the box measure μb = νb/N is
given by

μb = kb

〈kb〉NB(l )
. (A2)

The number of boxes NB(l ) is proportional to l−Df . Then the
box measure μb is written as

μb(kb) ∝ kb

〈kb〉 lDf . (A3)

Therefore, the qth moment Zq(l ) defined by Eq. (1) is calcu-
lated as

Zq(l ) =
∑

b

μ
q
b(kb) � NB(l )

∫ ∞

0
μ

q
b(kb)P(kb) dkb

∝ l (q−1)Df

〈k〉q

∫ ∞

0
kqP(k) dk, (A4)

where P(kb) is the degree distribution of the supernode b in the
renormalized network of G, which is the same as the degree
distribution P(k) ∝ k−γ of the original network G due to the
fractal property of G.

In the case of q − γ < −1, the integral in Eq. (A4),
namely, the qth moment of k, converges to a constant value.
Thus, we have Zq(l ) ∝ l (q−1)Df , which implies that τ (q) =
(q − 1)Df for q < γ − 1. For q � γ − 1, however, the inte-
gral in Eq. (A4) must be evaluated by considering that NB(l )
is sufficiently large but finite. In this case, the degree of
the renormalized network is bounded by the natural cutoff
kc(l ) ∝ [NB(l )]1/(γ−1) ∝ l−Df/(γ−1) [47]. Hence, the qth mo-
ment becomes

Zq(l ) ∝ l (q−1)Df

〈k〉q

∫ kc(l )

kq−γ dk

∝ lDfq(γ−2)/(γ−1). (A5)

This gives τ (q) = qDf(γ − 2)/(γ − 1) for q � γ − 1.

APPENDIX B: PROPERTIES OF NETWORKS FORMED BY
THE MULTIGENERATOR MODEL

Let us consider properties of the t th generation network Gt

formed by the multigenerator model. If Gt−1 contains Mt−1

edges, p(i)Mt−1 edges, on average, in Gt−1 are replaced with
G(i)

gen in the growth process from Gt−1 to Gt , and these edges
proliferate to p(i)Mt−1m(i)

gen in Gt , where m(i)
gen is the number

of edges in G(i)
gen. Thus, the number of edges in Gt is given

by Mt = Mt−1〈mgen〉, where 〈mgen〉 = ∑s
i m(i)

gen p(i) is the mean
number of edges averaged over the multiple generators. Solv-
ing this recurrence equation under the condition M0 = 1, the
number of edges in Gt is given by

Mt = 〈mgen〉t . (B1)

Regarding the number of nodes, p(i)Mt−1n(i)
rem nodes in Gt

emerge from p(i)Mt−1 edges in Gt−1 by the edge replacement
operation with G(i)

gen, where n(i)
rem is the number of remaining

nodes of G(i)
gen. The total number of newly emerged nodes in Gt

is then given by Mt−1〈nrem〉, where 〈nrem〉 = ∑s
i n(i)

rem p(i) is the
mean number of remaining nodes averaged over the multiple
generators. Thus, using Eq. (B1), the number of nodes Nt in
Gt is written as

Nt = Nt−1 + 〈nrem〉〈mgen〉t−1. (B2)

The solution of this recurrence equation under the initial con-
dition N0 = 2 is given as

Nt = 2 + 〈nrem〉(〈mgen〉t − 1)

〈mgen〉 − 1
. (B3)

This expression is the same as Eq. (5) if we replace 〈nrem〉 and
〈mgen〉 by nrem and mgen, respectively. Since Nt is proportional
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to 〈mgen〉t for t 	 1 as can be seen from Eq. (B3), we have

Nt = 〈mgen〉Nt−1, (B4)

for high-generation networks.
Next, we consider the asymptotic form of the degree dis-

tribution P(k) for sufficiently large k and t 	 1. Since p(i)k
edges out of the k edges incident to a node of degree k are
replaced with G(i)

gen, these p(i)k edges increase the degree of
the node by κ (i) p(i)k in the next generation, where κ (i) is
the degree of the root node in G(i)

gen. Therefore, the number
of nodes, Nt−1(k), of degree k in Gt−1 is the same as that
of nodes of degree

∑
i κ

(i) p(i)k in Gt , namely, Nt−1(k) =
Nt (〈κ〉k), where 〈κ〉 = ∑

i κ
(i) p(i) is the mean degree of the

root nodes averaged over the generators. Using the asymptotic
degree distribution P(k) for t 	 1, this relation can be written
as Nt−1P(k) = 〈κ〉Nt P(〈κ〉k), and it follows from Eq. (B4)
that

P(k) = 〈mgen〉〈κ〉P(〈κ〉k). (B5)

The solution of this functional equation is P(k) ∝ k−γ with

γ = 1 + log〈mgen〉
log〈κ〉 . (B6)

Thus, networks formed by this stochastic model possess the
scale-free property.

We can also show that Gt with t 	 1 has a fractal structure.
In order to examine the fractal property of Gt , we consider
the distance lt between two specific nodes in the network Gt .
Considering that edge replacements are performed randomly,
we can expect a relation of lt = 〈λ〉lt−1 with some coefficient
〈λ〉 for t 	 1, where lt−1 is the distance between the same
node pair in Gt−1. It should be emphasized that the mean
inter-root-node distance 〈λ〉 is not given by the simple aver-
age

∑
i λ

(i) p(i), where λ(i) is the distance between root nodes
in the generator G(i)

gen, because the shortest path itself may
change due to the edge replacements. The correct 〈λ〉 can be
calculated using the concept of renormalization. Since 〈λ〉 is
independent of the choice of node pairs, let lt be the distance
between two nodes in Gt corresponding to the two terminal
nodes of the zeroth-generation graph consisting of two nodes
and a single edge. From a renormalization perspective, Gt

takes a structure in which each edge of the generators is
replaced with one of the possible structures from Gt−1 with
equal probability. Therefore, we have

lt =
s∑

i=1

p(i)l (i)
t , (B7)

with

l (i)
t = F (i)

({
l ( j)
t−1

}
,
{

p( j)
})

. (B8)

Here l (i)
t is the average distance between root nodes in the

generator G(i)
gen in which each edge has one of the lengths

{l ( j)
t−1 : 1 � j � s} with probability p( j), and F (i) is the func-

tion mapping from {l ( j)
t−1} to l (i)

t . Given the structures of the
generators, the functional forms of {F (i)} are determined, and
we can iteratively compute l (i)

t by Eq. (B8) and then obtain

lt from Eq. (B7). From the relation lt = 〈λ〉lt−1, the mean
inter-root-node distance 〈λ〉 is given by

〈λ〉 = lim
t→∞

lt
lt−1

. (B9)

Recalling that 〈λ〉 does not depend on the choice of node pairs,
for the diameter Lt of the network Gt we have

Lt = 〈λ〉Lt−1 (B10)

for t 	 1. Although the two nodes determining the diame-
ter of Gt may be slightly distant from the nodes giving the
diameter of Gt−1, Eq. (B10) is valid for sufficiently large t .
The combination of Eqs. (B4) and (B10) implies that as the
network diameter becomes 〈λ〉 times larger, the number of
nodes increases by a factor of 〈mgen〉. This leads to the relation
Nt ∝ LDf

t with

Df = log〈mgen〉
log〈λ〉 . (B11)

As an example, let us calculate Df for the combination of the
black generators shown in Fig. 3. Setting G(1)

gen and G(2)
gen as the

generators with four and six nodes, respectively, the functions
F (1) and F (1) are given by

F (1)(l (1)
t , l (2)

t , p)

= 2l (1)
t p4 + 4 min

(
l (1)
t + l (2)

t , 2l (1)
t

)
p3(1 − p)

+ 2 min
(
2l (1)

t , 2l (2)
t

)
p2(1−p)2+4

(
l (1)
t + l (2)

t

)
p2(1−p)2

+ 4 min
(
l (1)
t + l (2)

t , 2l (2)
t

)
p(1 − p)3 + 2l (2)

t (1 − p)4,

(B12)

F (2)(l (1)
t , l (2)

t , p)

= 3l (1)
t p5 + 2 · 3l (1)

t p4(1 − p) + 3
(
2l (1)

t + l (2)
t

)
p4(1 − p)

+ 6
(
2l (1)

t + l (2)
t

)
p3(1 − p)2 + 3l (1)

t p3(1 − p)2

+ 3
(
l (1)
t + 2l (2)

t

)
p3(1 − p)2 + 3l (2)

t p2(1 − p)3

+ 6
(
l (1)
t + 2l (2)

t

)
p2(1 − p)3 + 3

(
2l (1)

t + l (2)
t

)
p2(1 − p)3

+ 2 × 3l (2)
t p(1 − p)4 + 3

(
l (1)
t + 2l (2)

t

)
p(1 − p)4

+ 3l (2)
t (1 − p)5, (B13)

where p is the edge replacement probability for G(1)
gen, and

the function min(x, y) returns the minimum value of x and y.
These functions F (1) and F (2) enable us to calculate the mean
distance 〈λ〉 from Eqs. (B7)–(B9). For p = 1/2 as in the case
of Fig. 3, for example, 〈λ〉 given by Eq. (B9) rapidly converges
to 〈λ〉 = 2.408. Since 〈mgen〉 = 9/2 for these G(1)

gen and G(2)
gen,

the fractal dimension for p = 1/2 is Df = 1.712. This value,
of course, varies with p from Df = log 5/ log 2 = 1.465 (p =
0) to Df = 2 (p = 1), which implies that we can continuously
control the fractality of FSFNs by using the multigenerator
model.

The above results show that networks built by the
multigenerator model are FSFNs as in the case of the single-
generator model. We should note that the expressions of Mt ,
Nt , γ , and Df are the same as those for the single-generator
model if we replace quantities characterizing the single gen-
erator by their mean values for the multiple generators.
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