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Stability of ecosystems under oscillatory driving with frequency modulation
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Consumer-resource cycles are widespread in ecosystems, and seasonal forcing is known to influence them
profoundly. Typically, seasonal forcing perturbs an ecosystem with time-varying frequency; however, previous
studies have explored the dynamics of such systems under oscillatory forcing with constant frequency. Studies of
the effect of time-varying frequency on ecosystem stability are lacking. Here we investigate isolated and network
models of a cyclic consumer-resource ecosystem with oscillatory driving subjected to frequency modulation. We
show that frequency modulation can induce stability in the system in the form of stable synchronized solutions,
depending on intrinsic model parameters and extrinsic modulation strength. The stability of synchronous
solutions is determined by calculating the maximal Lyapunov exponent, which determines that the fraction of
stable synchronous solution increases with an increase in the modulation strength. We also uncover intermittent
synchronization when synchronous dynamics are intermingled with episodes of asynchronous dynamics. Using
the phase-reduction method for the network model, we reduce the system into a phase equation that clearly
distinguishes synchronous, intermittently synchronous, and asynchronous solutions. While investigating the role
of network topology, we find that variation in rewiring probability has a negligible effect on the stability of

synchronous solutions. This study deepens our understanding of ecosystems under seasonal perturbations.
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I. INTRODUCTION

Oscillations in ecological communities are omnipresent,
often characterized by peaks and valleys of species abundance
[1,2]. The oscillating species abundance can show a plethora
of nonequilibrium dynamics, including periodic, quasiperi-
odic, and chaotic motions over time [3—-5]. The prevalence of
oscillatory species dynamics is of significant interest, as their
generation and persistence can support biodiversity mainte-
nance [6,7]. Theoretical and empirical studies have shown that
there are primarily two reasons for these oscillations: One
reason is due to the interaction complexities among species
in a community [3,8] and the other reason is due to the
external driving in the form of regular seasonal forcing [5,9].
While previous studies have argued that oscillations in species
abundance can be short lived without external driving, a recent
study by Blasius et al. [10] has shown long persistence of
self-sustained prey-predator cycles by employing a combi-
nation of laboratory experiments and mathematical analysis.
Nevertheless, the effects of regular seasonal forcing on popu-
lation cycles have been extensively studied [2,5,9]. In contrast,
how perturbation or variation in seasonality can affect cyclic
dynamics in species abundance is yet to be understood.

Perturbations in seasonal cycles are generally attributed
to year-to-year variations in weather conditions. Moreover,
many species span large geographical areas where the char-
acteristic features of seasonal fluctuations, e.g., amplitude
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and frequency, can vary significantly [11]. Taylor et al. [12]
have studied how variation in seasonality (in the form of
breeding season length) affects cycles in a prey-predator pop-
ulation by introducing an exponent to the sinusoidal forcing
term. Further, they have shown that variation in the forc-
ing exponent can result in various bifurcations, including
saddle-node, period-doubling, and Neimark-Sacker bifurca-
tions [12]. Nonlinear systems are also known to respond
differently with variation in forcing frequencies [13]. The ef-
fect of perturbations on the driving frequency (i.e., frequency
modulation) of a phase oscillator and the van der Pol os-
cillator have been studied recently [14]. It has been shown
that the stability region (in terms of the size of Arnold’s
tongue) of the system increases with an increase in the
strength of frequency modulation and that is determined by
negative values of the maximal Lyapunov exponent (MLE).
Similar results also hold for a network of identical phase
oscillators [15]. However, study of the interaction between en-
dogenous population dynamics (e.g., nonlinear prey-predator
interactions) and seasonal forcing with perturbed or time-
varying frequency is lacking. Owing to current environmental
changes [12], an inclusive theory for nonlinear population
models, forced with perturbed seasonal cycles, is therefore
necessary.

For a self-sustained periodic oscillator, the phase on a limit
cycle is free; however, the phase on a periodic cycle of an
externally forced system is related to the phase of the force.
The key effect is phase locking and frequency entrainment
of the oscillation to that of the force, resulting in synchro-
nization between them [16,17]. Synchronization in nonlinear
systems can also occur by noisy forcing [18,19]. The driven
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(response) system “forgets” its dynamics and initial condition
and follows that of noisy forcing. Here we do not consider a
population dynamics model with noisy forcing; instead, we
perturb the natural forcing frequency by a time-dependent
function. This translates a periodic driving force into a driving
force with time-varying frequency or a frequency that expe-
riences deterministic perturbation. Synchronization in such
systems driven with an external oscillatory forcing with time-
varying frequency has been studied by considering replicate
systems with random initial conditions. It has been shown
that for a constant driving frequency, the replicate systems
do not forget their initial phase with variations in intrinsic
system parameters; however, for a time-varying frequency
perturbation, they may forget their initial phase and exhibit
synchronous dynamics or synchronous dynamics interspersed
with asynchronous dynamics. Once the system has attained
a synchronous solution, its stability against perturbation can
be determined by evaluating the MLE. A negative MLE sig-
nifies a stable synchronous solution [19]. These results have
important implications in ecosystem dynamics, as spatial syn-
chronization in species abundance is strongly connected with
biodiversity maintenance [6,20].

Recently, the phenomenon of intermittent synchroniza-
tion, i.e., when synchronous dynamics are interspersed with
asynchronous dynamics, has attracted attention in the stud-
ies of complex population dynamics [21,22]. For a spatially
coupled consumer-resource model, it has been shown that
local species properties and dispersal strength can determine
the occurrence of intermittent synchronization [21]. Inter-
mittent synchronization is also observed in systems with
time-varying coupling functions [23]. Fan er al. [22] have
shown intermittent cluster synchronization in a spatial eco-
logical network where the local dynamics is chaotic. None of
these studies have considered forced models with frequency
modulation. Suppose an oscillatory system that shows asyn-
chronous dynamics without any frequency modulation can
exhibit intermittent synchronization in the presence of fre-
quency modulation. In that case, the intermittent synchronous
dynamics can be considered as transient, and in ecosystems,
the importance of transient dynamics has been increasingly
recognized [24].

To explore the role of frequency modulation in deter-
mining the dynamics of cyclic ecosystems, we consider the
Rosenzweig-MacArthur [25] model of consumer-resource in-
teraction. The growth rate of a dimensionless model is then
perturbed with a sinusoidal forcing whose frequency changes
depending upon a time-dependent function. With variations
in model parameters, the forced system exhibits a variety of
collective dynamics that includes synchronous, intermittent
synchronous, or asynchronous dynamics; however, in the ab-
sence of forcing, these dynamics were absent. Similar results
have also been obtained for a spatial network model. We
reduce the network model to a phase equation by applying
the phase-reduction method, which clearly distinguishes syn-
chronous, intermittent, or asynchronous dynamics between
nodes in terms of phase differences. The stability of the
observed collective dynamics has also been determined by
calculating the MLE. Our results are robust as they occur in a
large region of system parameter space and network topology.
Notably, intermittent synchronization has never been reported

in a forced ecological system and enriches our understating of
temporally perturbed population dynamics.

II. MATHEMATICAL MODELS

A. Consumer-resource model with frequency modulation

Here we consider a consumer-resource model following
Rosenzweig and MacArthur [25], consisting of a resource
density X and a consumer density Y. The two-species model

is given as
dX X aXY
—=rX{l-=)—-—, (1a)
dt K b+ X
dy caXY
— = —mY, (1b)
dt b+ X

where r denotes the intrinsic growth rate, K is the carrying
capacity of the resource X, a represents the predation rate,
b is the value of X where predation is at half maximum, c
denotes the efficiency of Y through predation, and m is its
natural mortality rate.

In earlier studies, the intrinsic growth rate of resource r was
considered as either constant or varying periodically, having
a constant frequency to discern consumer-resource dynamics
under periodic forcing [13]. Here, to study consumer-resource
dynamics in a fluctuating environment, we incorporate per-
turbation in the resource growth rate r of Eq. (1) with
time-varying frequency, mathematically modeled as an os-
cillator with time-varying frequency. We consider r — r[1 +
n sin(fy)], i.e., the resource growth rate is forced with strength
n (=0) and phase 8y. The phase 6, evolves in time as % =
wo[l + yg(wst)], where g is a single-tone periodic function
of the form g(wyt) = sin(wyt), wy is the nonmodulated fre-
quency, and y and w; are the strength and frequency of the
imposed modulation or perturbation on the natural driving
frequency wy, respectively. Note that when y = 0, 6y = wyt
and the system is periodically forced.

By the substitutions x = ¥,y = %t = tr,a = b/K, ¢ =
€%, and u = ** and incorporating the perturbation in r, Eq. (1)
is transformed into the nondimensional model

d

d—); = [1 4+ nsin(6p)]x(1 — ax) — %, (2a)
dy _ ¢xy

dy _ ¢y 2b
dar ~ 1+x 7 20

with nonautonomous perturbation in the forcing frequency,
y

following 6y = wolt — wr cos(wyt)]. The dimensionless pa-
rameters «, ¢, and p represent the strengths of prey
self-regulation, prey-to-predator conversion rate, and preda-
tor mortality rate, respectively [26], which determine the
species’ local dynamics. Unlike other well-studied seasonally
forced population models [5,13,27], the model (2) does not
have a periodic forcing as 6y in Eq. (2a) varies with time.
Such a variation in resource growth rate can be considered
time-varying driving, which may arise due to irregular en-
vironmental changes. We consider parameter values of the
uncoupled model of n =03, ¢ =03, ¢ =2, u=1, wg =
0.541, and w; = 0.01 throughout this paper unless mentioned
otherwise.
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B. Spatial ecological network of consumer-resource
interactions with frequency modulation

Next we study a spatial network of consumer-resource
interactions, where the population dynamics in each patch or
node is governed by Eq. (2). The species dynamics in the ith
patch are modeled as

i _ 1 4 psin@o) (] — ax) — —2
— = sin X (1 —ax;) — ——
dt 7 0 1+ x;
N
+e€ ZAU(XJ - X), (3a)
=1
N
dy;  ¢xpy;i
- = — Wi Aij(yj — v, 3b
i +€2; NTR) (3b)
where i =1,2,...,N and N denotes the total number of

nodes. We assume identical dynamics in all the nodes, and
species follow diffusive dispersal between the nodes [26].
Like the uncoupled model (2), here also the seasonal forcing
frequency is modulated as 6y = wo[t — wlf cos(wyt)]. The pa-
rameters € and €, represent resource and consumer dispersal
rates, respectively. For simplicity, we consider the parameters
€] = €5 = €. The interaction matrix A determines the species’
dispersal between nodes. An element A;; of A is equal to 1 if
nodes i and j are connected and O otherwise. The number of
links in each node (the degree of each node) is represented by
k;, where k; = Z?’:] A;;. Elements of the matrix A can change
depending on the connectivity patterns of species, which have
been widely used to study the collective dynamics of coupled
oscillators [26,28]. We consider that species dispersal follows
the Watts-Strogatz network, which can form three types of
interaction network structure depending upon the rewiring
probability p: regular, small world, and random. For example,
the network is regular if p = 0, totally random when p = 1,
and small world for 0 < p < 1. Without loss of generality,
in all our simulations for a particular network, we choose a
fixed value of the average degree k. We use the fourth-order
Runge-Kutta method with adaptive step size for numerical
simulation of the models.

III. RESULTS

A. Complex dynamics of the consumer-resource
model with oscillatory driving

1. Cyclic species abundance and sensitive
dependence on initial phase

The driven consumer-resource model (2) can produce an
array of interesting complex dynamics that includes quasiperi-
odicity, chaos, and synchronization via a common driving
force. In the absence of any forcing or perturbation (i.e.,
n = 0), the model (2) has three equilibrium points: one coex-

istence equilibrium point at (ﬁ, W), one resource

only equilibrium point at (é, 0), and one trivial equilibrium
point at (0,0). The coexistence equilibrium point changes its

stability via a supercritical Hopf bifurcation at « = H and
there exists a stable limit cycle when o < (’Z%Z Figure 1(a)

presents the bifurcation diagram of (2) with variation in the
parameter «. For the chosen parameter values, the Hopf bifur-
cation occurs at o ~ 0.33.
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FIG. 1. Bifurcation diagram and time series of the population
model (2) in the absence of external driving (n = 0). (a) Bifurcation
diagram depicting the transition from a stable equilibrium point to a
limit cycle with decreasing parameter o. The solid curve before the
bifurcation point represents a stable equilibrium point and circled
curves after the bifurcation point present upper and lower amplitudes
of the limit cycle. The dashed curve represents an unstable equilib-
rium point. Also plotted are five trajectories for randomly chosen
initial conditions when (b) ¢ = 0.3, (¢) @« = 0.201, and (d) @ =
0.173. The other parameters are ¢ = 2 and u = 1.

Figures 1(b)-1(d) depict time series of (2) for different
values of the parameter « when n = 0 (strength of seasonal
perturbation). In each figure we present five trajectories sim-
ulated using five randomly chosen initial conditions. Note
that, with a decrease in «, the oscillation period increases and
hence the oscillation frequency decreases. However, none of
the trajectories forget their initial phase and all maintain a
constant phase difference throughout time. In the presence of
perturbation (nonzero values of 1 and y), the periodic oscilla-
tion can turn into quasiperiodic or chaotic oscillations and the
system may experience phase-forgetting behavior [19].

2. Synchronization by time-varying driving force

Synchronization between a driven (response) system and
a driving system occurs when the driven system forgets its
dynamics and follows the driver. Here we study the driven
system’s sensitivity to perturbation on the driving force, which
appears in Eq. (2) for a nonzero value of y and via the
function g(wt). Following [14,19], in this case synchroniza-
tion can be studied if we compare identical systems driven
with the common perturbed external force but for different
initial conditions. We integrate Eq. (2), considering y # 0
for different initial conditions (xg, yo) chosen randomly from
[0, 3] x [0, 3], to find whether the trajectories synchronize or
not upon the presence of frequency modulation. We find that
the trajectories can exhibit synchrony, intermittent synchrony,
or asynchrony [see Figs. 2(a)-2(c)] depending upon the choice
of the strength of prey self-regulation «. At o = 0.3, all the
trajectories of the replicate systems of (2) synchronize for
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FIG. 2. Sensitivity to perturbation of the driving force wy on the stability of the driven system with variations in prey self-regulation «.
Five replicates of the model (2) have been simulated for randomly chosen initial conditions (xy, yo) € [0, 3] x [0, 3]. Three different dynamics
occur with variations in «: (a) For o = 0.3 all solutions synchronize, (b) for &« = 0.201 solutions exhibit intermittent synchrony, and (c) for
o = 0.173 all solutions behave differently and asynchrony occurs. (d)—(f) Morlet wavelet transform of a trajectory in different dynamical
regions. (d) Frequency entrainment and a stable phase are observed throughout the entire time, (e) frequency entrainment occurs periodically,
resulting in intermittent synchronization, and (f) no frequency entrainment occurs. The other parameter values are ¢ =2, u =1, n = 0.3,

y = 0.1, wy = 0.541, and w; = 0.01.

different randomly chosen initial conditions though they are
not directly coupled. Here synchronization between the driven
replicate systems also corresponds to the stability of the driven
system for internal perturbations [19]. This was not the case
without perturbation (see Fig. 1). In fact, this can be attributed
to phase-forgetting behavior resulting from the forcing with
time-varying frequency. For o = 0.201, the replicate systems
undergo intermittent synchronization when events of syn-
chronous species abundance are interspersed with events of
asynchrony with variations in time. For ¢ = 0.173, complete
asynchrony occurs, i.e., the replicate systems of (2) oscillate
differently and do not synchronize. Therefore, one may also
conclude that the driven system (2) is not stable upon the
perturbation on the driving force when o = 0.173.

With variations in «, the difference in sensitivity to ini-
tial conditions is verified further using the time-frequency
representation or wavelet transform of all the trajectories.
Figure 2(d) represents complete synchrony between all the
oscillators corresponding to Fig. 2(a). Similarly, the wavelet
transforms in Figs. 2(e) and 2(f) represent intermittent syn-
chrony and asynchrony corresponding to Figs. 2(b) and 2(c),
respectively.

The dynamics of the driven system are synchronized if
they are stable against the internal perturbation given in the
driver’s natural forcing frequency wg. This can also be quan-
tified by numerically calculating the MLE. A negative value
of the MLE determines the occurrence of synchronization
[19] and hence stability against the perturbations. Further, a
non-negative value of the MLE determines either asynchrony
or intermittent synchrony of the system. Figure 3 presents the

MLE for the model (2) calculated for combinations of « and
n and different values of the strength of frequency modulation
y . Figure 3(a) depicts the case of no frequency modulation: It
shows a broad region of unsynchronized solution (character-
ized by a positive MLE). However, we find that the stability
region of the system broadens with an increase in y as the
fraction of the negative MLE increases [see Figs. 3(b)-3(d)].

An explanation for the observed dynamics could be the
frequency mismatch between the unforced system’s frequency
and the unperturbed forcing frequency wy. As discussed and
evident from Fig. 1, with a decrease in «, the frequency of the
unforced system decreases. Here a decrease in « leads to an
increased frequency mismatch. Synchronization occurs when
the frequency mismatch is approximately zero. At o = 0.3,
the system’s frequency is almost the same as wy, which leads
to complete synchrony. At « = 0.173, frequency mismatch is
maximum and we observe complete asynchrony.

B. Dynamics of spatial ecological network
under frequency modulation

1. Intermittent synchronization in spatial ecological networks

Next we study the effect of frequency modulation on the
synchronicity of the seasonally forced ecological network
model (3). Here synchronization means spatial synchroniza-
tion between nodes, not sensitivity to initial conditions, as
shown in the preceding section. In the absence of any forcing
(n = 0), we find that the network system exhibits asynchrony
for weak dispersal strength (¢ =277) and variations in «.
However, the weakly coupled system exhibits interesting
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FIG. 3. Maximal Lyapunov exponent calculated numerically in
the (o, n) parameter space for different values of y. We have depicted
the MLE, calculated for a longer time interval, and averaged over 50
initial conditions sampled randomly from [0, 3] x [0, 3]. The MLE
has been calculated for the following values of y: (a) y =0 (no
frequency modulation), (b) y = 0.05, (¢) y = 0.1, and (d) y = 0.4.
The color bar represents the values of the MLE. With an increase
in the modulation strength y, the region of the stable synchronous
solution increases as determined by negative values of the MLE. The
other parameters are ¢ = 2, u = 1, wy = 0.541, and wy = 0.01.

spatial dynamics in the presence of frequency modulation
(n#0and y # 0). Figure 4 shows the spatial dynamics of the
network model (3) with perturbation in the resource growth
rate. As observed, the perturbed system undergoes synchro-
nization, intermittent synchronization, and asynchronization
dynamics for different values of «. At @ = 0.3, we observe
spatial synchronization [see Figs. 4(a) and 4(d)], and for o =
0.173 the system exhibits asynchronization [see Figs. 4(c)

(@) g3 210 (b)

and 4(f)] between spatially separated nodes. However, for
o = 0.201 we obtain intermittent synchronization as depicted
in Figs. 4(b) and 4(e).

The degree of synchronous dynamics between nodes in a
network can also be evaluated via the phase response curve
(PRC) [29]. To calculate the PRC for the considered network
model, one needs to convert the phase-amplitude oscillator
equation into a phase equation by employing the phase-
reduction method. We will discuss this in detail in the next
section.

2. Phase reduction of the forced network model

The phase-reduction method [30] is a useful tool in ex-
plaining the evolution of phases in multidimensional systems,
thereby giving a clearer picture of the stability of synchronous
solutions. Thus far, its application in ecological networks has
been limited [31,32]. Here, using the phase-reduction method,
we derive analytical expressions for the type of phase lock
in the network model (3) and the rate of convergence to the
phase-locked state [33,34]. We begin by expressing the model
(3) in a general form as

X u
= FX) e ) ACKG XD+l X)p(o). ()
j=1
where X; = [x;, yil, F(X;) = [F1(X)), (X)], [(X;) = [x:(1 —
ax;), 0], and p(¢) = sin{wp[t — wlf cos(wyt)]}. The function
F(X;) represents the unperturbed dynamics of the ith node,
C(X;, X;) denotes the effect of the ith node on the jth node,
and /(X;) is the perturbation in the ith node. The A;; is an
element of the interaction matrix A, which represents the
interaction strength between the ith and jth nodes. The system
% = F(X;) exhibits a stable limit cycle S of period T. The
limit cycle S has its natural frequency w = 2TJT and an oscil-
lator state on S is denoted by Xy(6). We denote by ®(X) the
phase function of S and by Z(0) the phase-sensitivity function

9 9.1 9.2

Time x103

93 9 9.1
Time

\
) QZ\LJM

9.2 9.3 9 9.1 9.2 9.3

Time ><10.3

FIG. 4. Space-time and corresponding time series plots of the network model (3) for different values of «: (a) and (d) synchronous species
oscillations when o = 0.3, (b) and (e) intermittent synchronous oscillations for ¢ = 0.201, and (c) and (f) asynchronous oscillations for
a = 0.173. The other parameter values are ¢ =2, u = 1,7 = 0.25, Yy = 0.05, wy = 0.541, w; = 0.01, € = 277 k=1,p=0,and N = 11.

024301-5



BHANDARY, BANERIJEE, AND DUTTA

PHYSICAL REVIEW E 108, 024301 (2023)

of S. Consequently, the phase of the ith oscillator or node
is written as 6;(r) = ©(X;(¢)). Further, we can approximate
X;(t) as a function of X (6;(¢)) on S. The reduced approximate
phase of the ith node is given by

a6 = i(9()(1'(1)) = grady (9()(1')|X~—x<(z)ﬁ
dt dt / T dt
~ grady, O(X;)|x.=x,16:)]
N
x | F(X) + € Y AyC(X;, Xo) + nl (X)p(t)
=1

N
=w -+ € ZAUF(QJ — 9;) + nZ(Gt)I(Gt)p(t)’
Jj=1

where the effect of coupling on a phase of each oscillator is
determined as

1 2
I'(¢) = E/o Z(¢ +E)C(Xo(¢ +8), Xo(§))dE.  (5)

Here ¢ represents the phase difference between two oscilla-
tors. We have calculated the phase coupling function I'(¢),
which represents the effect of one oscillator on another os-
cillator over one period of the limit cycle oscillation. Here

J

d¢y db,  dob;

_— — =€

dt ~ dr dr

The differential equation (8) represents the evolution of
phase differences over time. Here G determines the stability of
the phase-locked state and the rate of convergence of the syn-
chronized state. A constant phase difference or a phase-locked
state occurs when G = 0. The sign of G, negative or positive,
determines if the steady states of the phase equation are stable
or unstable, respectively. We are interested in studying the rate
of convergence to the phase-locked states, i.e., synchrony or
asynchrony for different parameter regimes. Actually, the rate
of convergence to that state helps us understand synchrony in
population abundances, which determines the rate of species
persistence in shorter or longer timescales. Plotted in Fig. 5(a)
is a phase portrait which shows the existence of a stable limit
cycle in the system (3), and the corresponding time series for x
and y are shown in Fig. 5(b). We have also calculated the PRC
Z(6;) from the adjoint variational equations (6) and (7) and it
is plotted in Fig. 5(c). The numerically calculated G function,
which represents the phase change rate between two nodes, is
plotted in Fig. 5(d).

We have numerically obtained intermittent synchrony for
frequency modulation in the system. After applying the phase-
reduction method in (3), we can now clearly differentiate
between synchrony, intermittent synchrony, and asynchrony
by evaluating changes in the phase angle for the spatial eco-
logical network model. For different o, we calculate the phase
difference |6; — 0| of each reduced phase oscillator 6; to the
first oscillator 0, [see Figs. 6(a)-6(c)]. In Fig. 6(a), for high
o (=0.3), phase difference is zero beyond transient time, and

Z(6;) = grady ©(X:)|x,=x,6:1)) represents the phase response
curve which measures the effect of small perturbations on the
phase dynamics. Advance (delay) of the phase is denoted by a
positive (negative) value of the PRC induced by perturbations
in the phase. We numerically computed the PRC using the
adjoint equation considering one stable limit cycle. The PRC
is evaluated by Malkin’s approach [35,36] using the adjoint
equation

azO) _ _ ez,
=g = /O 2@, ©)

with the normalization condition

dXo(6;
20) P00 . ™

Thereafter, we numerically evaluate Z(6) and I'(¢), owing
to the nonlinearity of the considered model. We calculate I"
from Eq. (5) and Z from Egs. (6) and (7). Using the above
calculated PRC value, we can convert our coupled system
[Eq. (3)] into an N-dimensional phase equation and further
study its phase dynamics. To determine a synchronous so-
lution, we calculate the phase differences of all the coupled
oscillators (¢; = 6; — 6;,i = 2,3, ..., N) as shown by

N N
D ALTO; = 01) = Y AT — 6) | + npOIZODIO) — ZOH(0:)] = G(¢ri).  (8)
j=1 j=1

<3

T 2m
Time b1
FIG. 5. (a) Phase portrait of a node depicting a limit cycle and
(b) corresponding time series. The variable x represents resource
abundance shown by the blue solid curve and the variable y denotes
consumer abundance plotted by the red dashed)curve. (c) Phase
response curve, which is the bounded solution Z(t) = (Z(¢), Z,(t))
of the adjoint variational equation (6) for one time period 7 = 11.6
and when 1 = 0. (d) Function G(¢) describes the phase change rate
between two nodes. Here G(¢y;) = 0 signifies the phase-locked state.
The other parameter valuesare p =2, = 0.3, 0 =1,n=0.25,y =
0.1, wy = 0.541, w; = 0.01,e =277, k=1,p=0,and N =11.
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FIG. 6. Averaged phase difference calculated over 100 initial
conditions for the network model in Eq. (8). The phase difference
|é1:] = |6; — 01| of the first oscillator with other oscillators is shown
for different values of prey self-regulation: (a) @ = 0.3, (b) @ =
0.201, and (c) o = 0.173. The other parameter values are ¢ = 2,
w=1,1n=025 1y =005 wy =0.541, w, =0.0l, e =277, k =
I, p=0,and N = 11.

phase synchronization between nodes occur. For an intermit-
tent o (=0.201) value, the phase difference switches between
zero and nonzero values, which represent intermittent syn-
chronization [see Fig. 6(b). In Fig. 6(c) we observe that the
phase difference is always nonzero and asynchronous dynam-
ics occur when o = 0.173. Further, for a fixed «, inclusion
of frequency modulation via a nonzero value of y can flip
the asynchronous dynamics into synchronous dynamics [see
Figs. 9(a)-9(d) in the Appendix].

3. Extent of synchronicity between nodes in the spatial network

Though in the previous sections we have determined var-
ious synchronization patterns between the oscillating nodes
with variations in system parameters, it is further possible to
quantify how good the synchrony is via the synchronization
order parameter p [37]. We measure p, the extent of syn-
chrony with variations in the coupling strength €, the strength
of external forcing n, and species self-regulation « for dif-
ferent values of the strength of frequency modulation . The
synchrony order parameter p is defined as [37]

Z()?
o= —_— ), 9
< ey zi<r>2>

where z;(¢) is the system’s state at time ¢, Z(t) = 1lv vazl zi(1),
and (- - -) denotes the average over a long time 7. The order
parameter value p varies between 0 to 1. A value close to 0
indicates no synchronization and 1 indicates perfect synchro-

nization. If 0 < p < 1, partial synchronization will occur. For
the model (3), at each fixed y, p is computed in the presence
of frequency modulation.

In Figs. 7(a)-7(c), at different y, the synchrony measure
p is shown for varying coupling strength € and prey self-
regulation . We find that for high values of «, the network
exhibits synchronization irrespective of the choice of € and
y. Notably, higher values of y induce synchrony in the
system at a lower value of « than lower values of y do.
Therefore, higher-frequency modulation strength is capable
of better synchronizing the system. Figures 7(d)-7(f) depict
the synchrony measure with variations in € and 7, at different
values of y. We find that a higher value of y results in better
synchronization in the network irrespective of the choice of
€ and 7. Overall, the synchrony order parameter p deter-
mines that for high-frequency oscillations (higher-o value)
high strength external forcing can be detrimental to species
persistence as it induces a higher degree of synchrony in
species abundance.

4. Effect of network structure on the stability
of synchronous solution

We also investigate the impact of network properties such
as rewiring probability p and average degree k on synchro-
nization stability by calculating the MLE with variations in o
and n when N = 21. In Figs. 8(a) and 8(b) we observe that the
stability region of the synchronized solution does not change
appreciably with p. The Lyapunov exponent is either zero
or positive for low « and 5, indicating an unstable synchro-
nization manifold. However, the synchronization manifold is
stable in regions of higher & and 7 values as determined by
a negative Lyapunov exponent. However, a larger average
degree k results in a broader synchronized zone: Figures 8(c)
and 8(d) show that an increase in k has a positive effect on the
stability of the synchronization manifold.

IV. CONCLUSION

Previous research on the dynamics of seasonally forced
ecosystem models has mostly considered oscillatory forcing
with a constant frequency. Thus, they have the limitation
of capturing natural disturbances as, in reality, a seasonal
forcing may not always maintain a constant frequency of
oscillations. Owing to the present environmental changes, ir-
regularity in seasonality is becoming more evident. Here, to
bridge this gap, we studied the dynamics of a driven pop-
ulation model whose forcing frequency of the perturbation
varies over time. We found that frequency modulation can
result in intermittent synchronization, other than complete
synchronization and asynchronization. The occurrence of in-
termittent synchronization in a driven ecological system can
be attributed to transient dynamics. Transients are fundamen-
tally crucial to ecosystems with implications for biodiversity
maintenance and biological control [24]. We also evaluated
the MLE, which measures the stability of the synchronized
solution. Owing to the model nonlinearity and time depen-
dence of the forcing frequency, unlike other studies [38], we
did not obtain a clear Arnold tongue region (region of negative
Lyapunov exponent) over the parameter space of the
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FIG. 7. Extent of synchronicity between the nodes as determined by the synchrony order parameter p. Shown for (a) and (d) y = 0 (no
frequency modulation), (b) and (e) y = 0.1, and (c¢) and (f) y = 0.4 is the synchrony measure in (a)—(c) the (e, o) plane for a fixed value of
n = 0.25 and (d)—(f) the (e, ) plane for a fixed value of &« = 0.15. The color bar corresponds to the value of synchrony order parameter p
in the interval (0.7,1). In both (a)—(c) and (d)—(f), the region of synchronicity increases with an increase in y. The other parameter values are

=2, u=1wy=0541,w,=001,k=1,p=0,and N = 11.

numerically obtained MLE. Nevertheless, from our simulation
results, it is still apparent that with an increase in the strength
of frequency modulation, the Arnold tongue region increases.

@ o5
0.4
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0.2
0
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- 0.1
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0.1 0.2 03 0.1 0.2 0.3
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FIG. 8. Maximal Lyapunov exponent evaluated in the (o, n)
parameter space of the spatial ecological network with frequency
modulation y = 0.1 and for variation in the rewiring probability p
and the average degree k. When k = 2, the MLE is obtained for
different rewiring probabilities: (a) p = 0, representing a regular
network, and (b) p = 0.8, for a small-world network. When p = 0.2,
the MLE is obtained for different average degrees: (c) k =2 and
(d) k = 5. The color bar represents the MLE. The variation in p has
almost no effect. However, the variation in k has a negligible effect
on the stability as determined by negative values of the MLE. The
other parameter values are ¢ =2, u = 1, wy = 0.541, w; = 0.01,
e=2"7,and N =21.

Hence, it signifies that increasing time variability in the sys-
tem induces synchronicity.

We also checked the generality of our results by study-
ing a driven spatial ecological network where the nodes are
connected following the small-world network topology [39].
For the spatial ecological network model, we found that in
the weak-coupling limit (i.e., weak species dispersal strength),
frequency modulation can induce synchrony and intermittent
synchrony that is otherwise asynchronous. Further, we re-
duced the system to a phase equation to distinguish between
synchrony, intermittent synchrony, and asynchrony. Then the
numerically obtained phase differences differentiate the col-
lective dynamics of the driven network. We also calculated a
network synchrony order parameter showing that the degree
of synchrony increases with increasing strength of frequency
modulation. Focusing on the stable synchronous solution, we
found that the rewiring probability has a negligible effect on
the stability, as indicated by the MLE.

Overall, our study signifies that the time-dependent fre-
quency of seasonal forcing can alter the synchronization
pattern in ecosystems. Specifically, an increase in the time
dependence of driving frequency increases the chance of pop-
ulation synchronization. This is fundamentally important for
ecosystem management as synchrony in species dynamics
creates interdependence in their abundance and concurrent
low abundance can lead to concurrent extinction. Here we
consider an ecosystem that exhibits periodic dynamics, and
in the future, it would be interesting to know the dynamics
of chaotic ecosystems under frequency modulation. Further,
the role of oscillation amplitude on complex model dynamics
needs to be uncovered. In the Kuramoto model, a discon-
tinuous or first-order phase transition (also termed explosive
synchronization) from incoherence to synchronization has
been studied. In our model, we found that incoherence to
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synchrony occurs via intermittent synchronization. However,
it will certainly be interesting to investigate whether frequency
modulation can trigger sudden synchronization transition in
our network model.
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APPENDIX: EFFECT OF THE STRENGTH
OF FREQUENCY MODULATION
ON THE REDUCED PHASE EQUATION

For different y (strength of the frequency modulation),
we calculate the difference x; — x; in the abundance of each
node x; to that of the first oscillator x; of the network (3)
[see Figs. 9(a) and 9(b)]. We also plot the phase difference
0; — 6, of each reduced phase oscillator 6; to the first oscil-
lator 6, [see Figs. 9(c) and 9(d)]. The network model and
the corresponding phase-reduced model show similar results;
with an increase in y, the asynchronous dynamics turns into
synchronous dynamics.

@ s (b)

-

() 2

o L
0 500 1000 0 500 1000
Time Time

FIG. 9. Averaged differences in (a) and (b) species abundance
x; —x; and (c) and (d) phase 6; — 6,, depicting (a) and (c) asyn-
chronous (y = 0) and (b) and (d) synchronous dynamics (y = 0.4),
calculated for (a) and (b) the network model and (c) and (d) the
corresponding phase-reduced model, by employing 100 randomly
chosen initial conditions. The other parameter values are ¢ = 2,
a=03,p=1n=025w, =054, w, =001, e =27,k =1,
p=0,and N = 11.
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