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A one-dimensional nonlinear dynamical system of gauge-coupled intrasite excitations and lattice vibrations
on an infinite one-dimensional regular lattice is studied. The system as a whole is shown to be integrable
in the Lax sense and it admits the exact four-component analytical solutions. Two mutually P7T -conjugated
symmetry broken solutions are explicitly isolated in the framework of the Darboux-Bécklund dressing tech-
nique. Each of the obtained four-component solutions demonstrates the pronounced interplay between the
interacting subsystems in the form of an essentially nonlinear superposition of two principally distinct types of
traveling waves characterized by two physically distinct spatial scales and by two distinct running velocities.
Depending on the relationships between the spatial scaling parameters the system can manifest itself in three
qualitatively distinct dynamical regimes referred to as the monopole regime, dipole regime, and threshold regime.
The threshold value of the localization parameter separating the monopole and dipole dynamical regimes is
strictly established in terms of basic physical parameters. The phenomenon of dipole-monopole crossover for
the spatial distribution of pseudoexcitons is shown to initiate the partial splitting between the pseudoexcitonic
and vibrational subsystems in the threshold dynamical regime specified by the threshold value of the localization
parameter. This partial splitting is manifested by the complete elimination of one pseudoexcitonic component
accompanied by the actual conversion of another pseudoexcitonic component into a pseudoexcitonic chargeless
half mode. The integrable nonlinear pseudoexciton-phonon system under study is expected to be applicable for

modeling the nonlinear dynamical properties of properly designed P7T -symmetric metamaterials.
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I. INTRODUCTION

The development of a nonlinear exciton-phonon dynami-
cal system on a regular one-dimensional molecular chain by
Davydov and Kyslukha about 50 years ago [1,2] is known
to be in line with the pioneering works of Landau and
Pekar [3], Bogolyubov [4], Frohlich [5], Peierls [6], as well
as Holstein [7] on the fundamental role of electron-phonon
or exciton-phonon coupling in the formation of spatially
confined nonlinear clusters (polarons or solitons). More-
over, such a type of interaction causes the Frohlich-Peierls
instability [5,6] originating superconducting states [5,8] or
charge-density waves [9-11] in quasi-one-dimensional met-
als [10,11]. A similar sort of intersubsystem coupling is
responsible also for the formation of charge-density wave
packets in armchair silicene nanoribbons [12].

The Davydov-Kyslukha system [1,2] has been suggested
to model the energy and charge transport in long macro-
molecules of both synthetic and natural (chiefly biological)
origins. In its concise classical formulation it reads as a
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dynamical system characterized by the Hamiltonian func-
tion [13,14]

H=—J Y [ my@m+ 1)+ ¢ myim—1)]

m=—00

+ Y {7Pm)/2M + (¢/2)[B(m) — B(m — DI’}

m=—00

+x Z [B(m+1) — B(m — DIy *(myy(m), (1.1)

m=—00

with the quantities ¥ *(n) and v (n) serving as the complex
conjugate field amplitudes of an exciton (or electron) on the
nth site of a lattice, while 7 (n) and B(n) stand for the momen-
tum and coordinate variables associated with the displacement
of the nth structural element (atom or molecule) from its
equilibrium position. Each pair of quantities ¥ *(n), ¥ (n) and
m(n), B(n) serves as a pair of canonical field variables gov-
erned by a respective pair of Hamiltonian equations

+ifidy (n)/dt = JH/dy* (),
—ihdy*(n)/dt = dH/dy (n),

(1.2)
(1.3)
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and

dm(n)/dt = —3H/3B(n), (1.4)

dpB(n)/dt = +0H/dm (n). (1.5)
The parameters J and x, appearing in the Hamiltonian func-
tion (1.1), characterize the intersite resonant coupling in an
exciton subsystem and the coupling between the involved
subsystems (i.e., between the subsystem of displacements and
the exciton subsystem), respectively. The parameters M and s
stand, respectively, for the mass of the structural element and
for the elasticity coefficient related to the subsystem of dis-
placements. The spatial variable n is supposed to be a discrete
one and it spans all integers from minus to plus infinity, while
the time variable 7 is assumed to be a continuous one.

The exact analytical solitonlike solutions to the Davydov-
Kyslukha model (1.1)—(1.5) were found only in the con-
tinuous spatial approximation since the model as such is
not integrable both in the Lax and Liouville sense. One of
the way to circumvent this stumbling block is to construct
an integrable nonlinear exciton-phonon system which could
reproduce at least some features of a physically motivated
one. Considerable progress in the development of integrable
pseudoexciton-phonon nonlinear dynamical systems on quasi-
one-dimensional lattices has been reported in several of our
previous papers [15-18].

The main objective of the present paper is to analyze
the most important implications concerning the basic prop-
erties of an integrable gauge-coupled pseudoexciton-phonon
nonlinear dynamical system on a regular one-dimensional
lattice, which will be interesting for the physical scien-
tific community. In particular, we pay attention to the

J

A+ gy (n)g—(n) — p(n)

L(n|x) = g (VT
—Qexp[—g(n)]
A
Any = g-(—DVT

—S2exp[—g(n — 1)]

Here, the two sets g, (n) = g.(n|t),g—_(n) = g_(n|r) and
p(n) = p(n|t), g(n) = q(n|7) of field functions are related to
the subsystem of Dirac pseudoexcitons and to the subsystem
of Toda vibrations, respectively. The greek letter T stands for
the continuous-time variable. The spatial position of a lattice
site is marked by the integer n running from minus infinity
to plus infinity. The real-valued constant parameters J and €2
are responsible for the intersite resonant coupling in a sub-
system of pseudoexcitons and for the intersite elasticity in a
vibrational subsystem, respectively. The auxiliary spectral pa-
rameter A is assumed to be a time- and coordinate-independent
one.

Due to its integrability the suggested system (2.1)-(2.4)
possesses an infinite hierarchy of conservation laws. The most
physically important conserved quantities are the total energy

PT symmetry of an announced system widely requested
in modeling the physical properties of metamaterials. We
thoroughly describe the phenomenon of a dipole-monopole
crossover in the spatial distribution of pseudoexcitons, and
point out that the pseudoexcitonic subsystem degrades into
a subsystem characterized by a chargeless half mode under a
critical value of the localization parameter.

II. INTEGRABLE GAUGE-COUPLED
PSEUDOEXCITON-PHONON
NONLINEAR DYNAMICAL SYSTEM

The gauge-coupled pseudoexciton-phonon nonlinear dy-
namical system of our interest,

dgi(n)/dt =Jgy(n+1)—Jgi(n)

+pn) — g+(mg—(m)g+(m),  (2.1)
dg-(n)/dt =Jg_(n)—Jg_(n—1)
—[p(n) — g (Mg_(W]g—(n),  (2.2)
dp(n)/dt = Q*exp[+q(n+ 1) — q(n)]
—Q%exp[+q(n) —gq(n—1)],  (2.3)
dg(n)/dz = p(n) — g1 (m)g—(n), 2.4)

is designed to be integrable in the Lax sense inasmuch as it
admits the semidiscrete zero-curvature representation
d
d—L(n|/\) =A@+ 1|M)L(n|)) — L(n|M)A(n|A),  (2.5)
T

with the spectral L(n|A) and evolution A(n|A) operators sub-
stantiated by the following 3 x3 square matrices:

g (mVIT Qexp[+q(n)]
J 0 , (2.6)
0 0
g+ (VT Qexpl+q(n)]
J 0 2.7
0 0

(

associated with the Hamiltonian function,

1 oo
H=2 ) [pom)—gi(mg-(m)P

m=—00

+Q7 Y {expl+qm) — qm — D] — 1)

m=—00

—J Y lgrtmg_(m—1) =g (m)g_(m)l, (2.8)

m=—00

as well as the total charge of the pseudoexcitonic subsystem,

C= ) g+mg-_(m),

m=—0Q

(2.9)
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and the total momentum of the vibrational subsystem,

]

P = Z p(m).

m=—0o0

(2.10)

III. BASIC FEATURES OF GAUGE-COUPLED
PSEUDOEXCITON-PHONON NONLINEAR
DYNAMICAL SYSTEM

It can be readily verified that the set of semidiscrete
equations under consideration (2.1)—(2.4) corroborates its
canonical dynamical formulation

dgy(n)/dt = —9dH/dg_(n), (3.1
dg_(n)/dt = +0H/dg, (n), (3.2)
dp(n)/dt = —0H [dgq(n), (3.3)
dq(n)/dt = +3H/3p(n), (3.4)

with the Hamiltonian function H specified in the previ-
ous section (2.8). Considering the expression (2.8) for the
Hamiltonian function H we clearly disclose the origin of
the interaction between the involved subsystems as a sort
of gaugelike coupling known from the field theory [19,20].
Evidently, this type of coupling is principally distinct from
that exhibited by the Davydov-Kyslukha model (1.1)—(1.5).
On the other hand, the parts performed by the involved sub-
systems in the gauge coupling typifying our Hamiltonian
function (2.8) turn out to be opposite to those performed
by the involved subsystems in the gauge coupling typifying
the famous polaron Hamiltonian function considered by Lee,
Low, and Pines [21,22].

Another unusual feature of our dynamical system
(2.1)~(2.4) is the pseudoexcitonic form of intersite
resonant coupling between the intrasite excitations,

which proved to be distinct from the standard form
of intersite resonant coupling typical of molecular
excitons [14,23]. To elucidate this statement one simply
should compare the structures of resonant coupling terms

—J Yo lgrm)g_(m—1) — g (m)g_(m)] and
=Iy o )y (m 4+ 1) + Y (m)yr(m — 1)] in

expressions (2.8) and (1.1) for the Hamiltonian functions
H and H, respectively.

The system under study (2.1)—(2.4) is proved to exhibit
symmetry under space and time reversal (P7 symmetry),
implying that the transformed field functions g, (n)=
g, (nt), g_(n) = g_(n|t) and p(n) = p(n|7), q(n) = q(nl7),
defined as

g, (n|t) = g_(—n| — 1) exp(+0H), (3.5
g_(n|t) = g+ (—n| — 1) exp(—0), (3.6)
and
p(n|t) = +p(—n| — 1), (3.7
q(n|t) = —g(—n| — 1), (3.8)

are governed by the same set of equations as that (2.1)—-(2.4)
for the original field functions g (n), g_(n) and p(n), g(n).
Here, 6 is an arbitrary constant parameter.

Presently the P77 -symmetric models become increasingly
applicable in physical sciences [24-28] inasmuch as they per-
mit to obtain physically meaningful results without invoking
the rather restrictive condition of Hermiticity [24,25,27]. This
trend is inspired by current progress in the fabrication and
treatment of so-called metamaterials [29-38].

In order to estimate the potential place of our nonlinear
dynamical system (2.1)—(2.4) in modeling the excited states
of appropriate metamaterials it is reasonable to perform its
low-amplitude analysis relying upon the following linearized
equations,

dG,(n)/dt =JGy(n+ 1) — J G, (n), (3.9)

dG_(n)/dt =JG_(n) —JG_(n—1), (3.10)
d’Qn)/dt* = Q*[Q(n+ 1) —20(n) + O(n — 1]. (3.11)

The final result of the low-amplitude analysis is as follows,

Gi(n) = Gyexp[—y(k)t]cos[kn — w(k)T + ¢4], (3.12)
G_(n) = G_exp [+y(k)t]cos [kn — (k)T +¢_], (3.13)
0(n) = Qcos [kn — wy(k)T + ¢], (3.14)

where
y (k) = 2J sin®(k/2), (3.15)
w(k) = —J sin(k), (3.16)
wo(k) = 2|Qsin(k/2)), (3.17)

and the quasimomentum £ is assumed to be a real-valued one.
Here, all the newly involved parameters G4, G_, O, ¢4, ¢_,
¢ are the real-valued constants.

Irrespective of the sign of the hopping parameter J, the one
pseudoexcitonic component is exponentially growing in time
while the other pseudoexcitonic component is exponentially
decaying in time. Nevertheless, their product Gy (n)G_(n)
is seen to be finite and appears as a sort of charge-density
wave. Due to the robust balance between the gain factor
exp[+]y (k)|7] and the loss factor exp[—|y (k)|t] the respec-
tive charge current —JG(n + 1/2)G_(n — 1/2) also appears
as a physically meaningful quantity. Such a gain-loss balance
is known to be the most desirable property of real PT-
symmetric systems [27,30,39].

On the other hand, the low-amplitude pseudoexcitonic sub-
modes w(k) — iy (k) and w(k) + iy (k) are characterized by
the common cyclic frequency w(k) which demonstrates the
dependence —J sin(k) on the quasimomentum k typical of
one-dimensional Dirac metamaterials.

In view of its above described basic features the suggested
semidiscrete nonlinear integrable system of gauge-coupled
Dirac pseudoexcitons and Toda-like vibrations (2.1)—(2.4) can
apparently be applicable to modeling the physical properties
of Dirac metamaterials characterized by properly designed
quasi-one-dimensional lattice superstructures.
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IV. MUTUALLY PT-CONJUGATED SYMMETRY BROKEN ANALYTICAL SOLUTIONS

Due to its complete integrability the nonlinear dynamical system of our interest (2.1)—(2.4) admits the exact solutions to be
found in the framework of one or another well-developed integration technique. In this respect, the most straightforward approach
to isolate a certain nontrivial analytical solution explicitly is proved to be the Darboux-Bécklund dressing method [17,18].

In the course of searching for a physically meaningful solution to the system under study (2.1)—(2.4), we have revealed that
the nontrivial result for the crop solution is obtainable by dressing the symmetry broken trivial seed solution within the Darboux-
Bicklund integration technique. Having applied the Darboux-Bicklund method we have managed to obtain both irregular and
regular solutions to our system (2.1)—(2.4) in closed analytical forms. Bearing in mind its potential physical applicability we
prefer to present here the regular four-component analytical solution,

2] cosh [p(n — x(t) + 1/2)] + |g+g-lexp [v(n — y(z) + 1/2)]

=gy — — , 4.1

§+ ) = 8 = 8 O o cosh [k — (1) — 1/D)] + |18 exp [v(n — ¥(2) — 1/2)] @D
g (1) = 20 g_|R2|[cosh(v) — cosh(u)]exp [v(n — y(T) + 1/2)] “2)

- || cosh [pu(n — x(t) + 1/2)] + |g4g—lexp [v(n — y(r) 4+ 1/2)] '

p(1) = 0 Q |2] cosh [u(n — x(7) 4+ 3/2)] + |8+ 8- |[2 cosh(u) — exp(—v)]exp [v(n — y(7) + 1/2)]
12| cosh [p(n — x(7) + 1/2)] + [g+g-lexp [v(n — y(z) + 1/2)]

o0 |€2| cosh [p(n — x(7) + 1/2)] + [g+g—|[2 cosh(p) — exp(—v)]exp [v(n — y(z) — 1/2)] @3)

2| cosh [pu(n — x(t) — 1/2)] + |g+g-Iexp [v(n — y(r) — 1/2)] ’ '
4(n) = g +1In { 12| cosh [p(n —x(7) + 1/2)] + [g+g-|exp [v(n — y(v) + 1/2)] } @.4)

|2[ cosh [1u(n — x(v) — 1/2)] + 1g+&-| exp [v(n — y(x) — 1/2)]
with the running position coordinates x(t) and y(7) of two nonlinearly superposed waves specified by the formulas

ux(t) = —o tQsinh(w) + ux(0), 4.5)
vy(t) = +ot2[cosh(n) — exp(+v)] + vy(0). (4.6)

Here, the free constant parameters g, g_, x(0), ¥(0), and p are assumed to be the real-valued ones, while the parameter v is
defined via the physical parameters J and €2 by the formula

/]
exp(+v) = ar 4.7)
In addition, the sign parameter
o= L (4.8)
172
has been introduced and the regularizing constraint relation
8+8-182 = —lg+g-1$2 4.9)

has been adopted.

We see that each of the four components g, (n), g_(n), p(n), g(n) of the inspected solution (4.1)—(4.4) comprises the nonlinear
superposition of two qualitatively distinct waves characterized by two physically distinct spatial scales 1/|u| and 1/|v| as well
as by two distinct velocities dx(t)/dt = —(02/u) sinh(w) and dy(t)/dt = +(02/v)[cosh() — exp(+v)]. The first spatial
scale 1/|u| can be regulated by the initial conditions attributed to the problem of nonlinear wave packet generation as that,
for example, has been established by the theory of soliton generation in the noninertial spatially continuous version of the
Davydov-Kyslukha model [40]. On the contrary, the second spatial scale 1/|v] is strictly prescribed by the system’s physical
parameters J and 2 according to the previously written expression (4.7).

Having analyzed the suggested four-component solution (4.1)~(4.4) we clearly observe that g.(n|t) #
g-(—n| —t)exp(+0), g-(n|t) # g+(—n| —1)exp(—0), p(n|t) # +p(—n| —1), q(n|t) # —q(—n| — 7). Thus, the PT
symmetry within the inspected solution (4.1)—(4.4) is seen to be broken.

Fortunately, the above observation opens the door to initiate one more symmetry broken solution being P7 -conjugated to the
one already considered (4.1)—(4.4). Precisely, relying upon the formulas of P77 conjugation (3.5)—(3.8), we obtain

20 g_|R2|[cosh(v) — cosh(u)] exp[+8 — v(n —y(r) — 1/2)]
2] cosh[p(n — X(1) — 1/2)] + [g+8—| exp[—v(n — y(v) — 1/2)]

12| cosh[u(n — x(v) — 1/2)] + |g+g-| exp[—v(n — y(r) — 1/2)]
Q| cosh[(n — x(7) + 1/2)] + |g4&- | exp[—v(n — y(z) + 1/2)]’

g, (n) = (4.10)

g (n) = g1 exp(—=0) — g4 exp(—0 —v) (4.11)
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|$2] cosh [p(n — x(7) — 3/2)] 4 |g+g-|[2 cosh(u) — exp(—v)]exp [-v(n — y(r) — 1/2)]

p(n) =0 Q

[€2] cosh [u(n — x(7) — 1/2)] + g1 g-lexp[—v(n — y(r) — 1/2)]

_ g glStlcoshiu(n — x(x) — 1/2)] + |g+g-[[2 cosh() — exp(=v)lexp [—v(n — y(r) + 1/2)]

, 4.12
12 cosh [121 — x(0) + 1/2)] + [g.g_| exp [—v(n — y(z) + 1/2)] 12
_ { || cosh [p(n — x(7) — 1/2)] + g1 g—| exp [—v(n — y(7) — 1/2)] }
qn) = —g—1In , (4.13)
|2 cosh [p(n — x(7) + 1/2)] + |g+g-lexp [-v(n — y(7) + 1/2)]
with the running position coordinates x(t) and y(t) specified by the formulas
ux(t) = —o Tsinh(w) — ux(0), 4.14)
vy(t) = +otQ[cosh(it) — exp(+v)] — vy(0). (4.15)

The obtained four-component analytical solution (4.10)—(4.13) should be treated as the symmetry broken counterpart solution

PT -conjugated to the initiating one (4.1)—(4.4).

V. MONOPOLE, DIPOLE, AND THRESHOLD REGIMES OF SYSTEM’S DYNAMICS

In general, the product of two pseudoexcitonic amplitudes g, (n)g—_(n) is not obliged to be a positively defined function of its
arguments n and t. This property can be convincingly elucidated on an example of the first system’s solution (4.1)—(4.4). For
this purpose let us consider two alternative but algebraically equivalent expressions,

g+(n)g_(n)=40g,8- Qz[cosh(v) — cosh(w)] cosh(v/2) cosh(it/2)
exp [v(n — y(t))] cosh [p(n — x(7))]

" QI cosh [ — (1) + 1/2)] + Ig+8—| exp [v(n — y(z) + 1/2)]
tanh(v/2) — tanh(x/2) tanh [ (n — x(7))]

and

x , 5.1
|2 cosh [u(n — x(t) — 1/2)] + |g+g-|exp [v(n — y(r) — 1/2)]
g+(m)g_(n) = 20 gyg_|K2|[cosh(v) — cosh(u)]
y { exp [v(n — y(t) + 1/2)]
Q20 cosh [(n — x(x) + 1/2)] + |g1g_| exp [v(n — y(x) + 1/2)]
~ exp[v(n — y(v) — 1/2)] } 52)
[€2] cosh [u(n —x(7) — 1/2)] + |grg-lexp [v(n — y(T) — 1/2)]

for the product g (n)g_(n) of pseudoexcitonic field components g (n) and g_(n).

Having analyzed these formulas (5.1) and (5.2) we are able
to reveal two principally distinct regimes of pseudoexcitonic
dynamics separated by the threshold condition || = |v].

Thus, for the underthreshold values |u| < |v| of the lo-
calization parameter p, the sign of charge density p(n) =
g+(n)g_(n) (5.1) is preserved on the whole infinite spatial
interval so that the total charge C (2.9) must be of an essen-
tially nonzero value. Therefore, in the underthreshold region
|[;| < |v| of the free parameter w, the charge density of pseu-
doexcitons manifests itself as a spatially extended monopole.

In contrast, for the overthreshold values || > |v| of the
localization parameter w, the sign of charge density p(n) =
g+ (n)g_(n) (5.1) changes its sign in a single spatial position,

tanh(v/2)
tanh(1/2) }

running along the chain with a constant velocity dn(t)/dt =
—(02/w)sinh(w). On the other hand, in this overthreshold
region || > |v| each of the two terms in curly brackets of
the second expression (5.2) for the charge density p(n) =
g+(n)g_(n) is finite and quickly tends to zero at both spatial

n(t) =x(t)+ l artanh{ (5.3)
"

(

infinities. Moreover, the functional forms of these two terms
differ only by the primitive translation along the spatial coor-
dinate. Inasmuch as the signs before these terms are distinct
we promptly conclude that the total charge of pseudoexcitons
C (2.9) calculated on the considered charge density (5.2) with
|;| > |v| must be equal to zero. Hence, in the overthreshold
region || > |v| of the localization parameter u the charge
density of pseudoexcitons manifests itself as a spatially ex-
tended dipole.

Consequently, the threshold point |u| = |v| should be
treated as a sort of critical point where the entire system’s
dynamics described by the four-component symmetry bro-
ken solution (4.1)—(4.4) undergoes a substantial qualitative
rearrangement caused by the crucial crossover between the
monopole and dipole scenarios of the charge-density spatial
distribution.

In the very threshold point |u| = |v| the g_(n) compo-
nent (4.2) of the pseudoexcitonic subsystem is vanished and
the pseudoexcitonic mode is shrunk to a single g (n) compo-
nent (4.1). The surviving component g, (n) can be referred
to as the pseudoexcitonic chargeless half mode since it is
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unable to maintain the nonzero value of the charge den-
sity (5.1). Moreover, the running position coordinates x(t)
and y(7) calculated in the critical point || = |v| according
to formulas (4.5) and (4.6) are characterized by the same
velocity dx(tr)/dt = —(02/v)sinh(v) = dy(r)/dt. As a
consequence, the simple manipulations with expressions (4.3)
and (4.4) for the components p(n) and g(n) of a vibra-
tional subsystem renormalize them into a two-component
solution typical of the standard Toda model [41-43]. In other
words, the evolution of a vibrational subsystem up to the
mere renormalizing spatial shift turns out to be indepen-
dent of the pseudoexcitonic chargeless half mode, although
the evolution of a pseudoexcitonic chargeless half mode is
still essentially dictated by the vibrational subsystem. This
conclusion is also confirmed by the inspection of a basic
semidiscrete nonlinear system (2.1)—(2.4) with the component
g—(n) being compulsorily eliminated. The dynamical regime
specified by the threshold value || = |v| of the localization
parameter p can be referred to as the threshold dynamical
regime.

From a physical standpoint the effect of a dipole-monopole
alternative encompassing the dipole, monopole, and threshold
regimes of the system’s dynamics is caused by the interplay
between the two waves nonlinearly superposed in each of
four components of the inspected solution (4.1)—(4.4). The
variability of this interplay is supported by the two princi-
pally distinct spatial scales 1/|u| and 1/|v| characterizing
the two physically distinct origins of the involved superposed
waves.

VI. DISCUSSION

The crossover phenomenon between the monopole and
dipole regimes of nonlinear dynamics admitting the existence
of a quite unusual dipole regime in the spatial distribu-
tion of pseudoexcitons is found to be the basic physical
property inherent to the suggested integrable gauge-coupled
pseudoexciton-phonon nonlinear system on a regular one-
dimensional lattice (2.1)—(2.4). Here, it is worth noticing that
the dipole-monopole crossover phenomenon has also been
discovered in the integrable standard-coupled pseudoexciton-
phonon nonlinear system on a regular one-dimensional
lattice [17,18].

We tried to trace similar properties among the model sys-
tems of a nonlinear Schrodinger type considered by some
other authors [44-48]. However, a close inspection of the
above listed papers [44—48] shows that their term “dipole soli-
ton” is actually attributed separately to each of two envelope
functions related to the two complex conjugated components
in a particular solution considered by the respective article.
Evidently, the physically meaningful product of such two
components is obligated to be a positively defined quantity
serving for the positively defined local density. Unfortu-
nately, this positively defined density has nothing to do with
the dipolelike density distribution associated with zero total
charge. Therefore, the term “dipole soliton” used at least in
the above quoted articles [44-48] appears to be a physically
inadequate or even a misleading one. In contrast, our model
system (2.1)—(2.4) was shown to admit the solutions with a
true dipole spatial distribution of relevant local density.

As for the terms “dipole-mode spatial solitons” and “dipole
soliton-vortices” used in other articles on nonlinear op-
tics [49,50], we are unable to analyze properly their physical
adequacy due to the lack of analytical expressions for the
respective solutions. Bearing in mind that the intensity of
any optical beam is an essentially positive quantity, we think
the term “dipole soliton” widely circulated in the field of
nonlinear optics [51,52] to represent the pair of out-of-phase
solitons such as vortex solitons and azimutons sounds some-
what controversial.

VII. CONCLUSION

Inspired by the physical applicability of the Davydov-
Kyslukha soliton model we have suggested a gauge-coupled
exciton-phonon nonlinear dynamical system settled on a reg-
ular one-dimensional infinite lattice and characterized by two
physical parameters. The system is shown to be integrable
in the Lax sense and consequently it admits exact analytical
solutions. In addition, it possesses an infinite hierarchy of
conserved quantities. The three basic physically important
conserved quantities as well as the canonical Hamiltonian
formulation of the system’s dynamics have been explicitly
presented. The system as a whole clearly demonstrates the
symmetry under space and time reversal referred to as the PT
symmetry. This property allows to generate another symme-
try broken solution P7T -conjugated to its presumably known
symmetry broken counterpart by a simple reversal of spatial
and temporal variables. To realize this recipe one of the sym-
metry broken four-component solutions has been isolated in
the framework of the Darboux-Bicklund dressing technique,
whose rather extended calculation procedure has been omitted
for the sake of brevity. Each of the symmetry broken solutions
has been presented in concise analytical form with several
strictly defined physical parameters. Each solution clearly
demonstrates the pronounced mutual influence between the
constituent subsystems via the essentially nonlinear super-
position of two principally distinct types of traveling waves
characterized by two spatial scales and two velocities of two
distinct physical origins. We have thoroughly analyzed one
of the obtained four-component symmetry broken solutions
and observed the remarkable threshold phenomenon consist-
ing in a crossover between the monopole and dipole regimes
being the most pronounced in the dynamical behavior of the
pseudoexcitonic subsystem. Here, we would like to stress
that the threshold value |v| of the localization parameter |u|
is determined exclusively by the system’s physical param-
eters J and 2 via formula (4.7). The threshold dynamical
regime corresponding to the threshold value of the localiza-
tion parameter is characterized by a partial splitting of the
involved pseudoexcitonic and vibrational subsystems giving
rise to the formation of a chargeless pseudoexcitonic half
mode.

In view of its unusual and somewhat unexpected prop-
erties the suggested semidiscrete nonlinear integrable sys-
tem (2.1)-(2.4) can apparently be applicable for modeling
the nonlinear properties of appropriate P77 -symmetric meta-
materials, demonstrating the strict gain-loss balance in the
temporal evolution of their excited states. As we have al-
ready mentioned, such a gain-loss balance is known to be
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the most remarkable characteristic of already existing P7T -
symmetric metamaterial systems [27,30,39]. Thus, one of the
items of our present research is to encourage the fabrica-
tion of different regular quasi-one-dimensional metamaterial
lattice superstructures distinguished by the P7T symmetry,
gain-loss balance and specific nearest-neighbor interactions of
their effective excitations [see expression (2.8) for the model
Hamiltonian function H].
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