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Optical undular bores in Riemann problem of photon fluid with quintic nonlinearity
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This work develops the Whitham theory to study the Riemann problem of the Gerdjikov-Ivanov equation that
describes the photon fluid with quintic nonlinearity. The one-phase periodic solution of the Gerdjikov-Ivanov
equation and the corresponding Whitham equation are derived by the finite gap integration method. Subse-
quently, the main basic wave structures arising from the discontinuous initial-value conditions are found by
distinguishing the distributions of the Riemann invariants. Some exotic optical undular bores are observed by
classifying the solutions of the Riemann problem of the Gerdjikov-Ivanov equation. It is observed that the
analytical results from Whitham theory are in excellent agreement with the numerical solutions.
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I. INTRODUCTION

Undular bore (UB) describes the atmospheric wave phe-
nomenon that occurs when a stable layer of air is disturbed.
It is also called dispersive shock wave (DSW) in a disper-
sive hydrodynamic medium, which is the formation of fast
oscillating nonlinear wave trains that spontaneously emerge
from points of gradient catastrophe. The UBs or DSWs show
up in certain physical systems such as shallow water wave
motions [1], atmospheric science [2], tsunamis [3], ultracold
atom systems [4], wave motions in magnetics [5], nonlinear
optics [6,7], and plasma physics [8,9]. In particular, Fatome
et al. [10] have observed the wave-breaking phenomenon and
optical UBs in the multiple four-wave mixing of photon-fluid
analogy.

Theoretically, the mathematical description of UB in-
volves a combination of methods from hyperbolic quasilinear
systems, which is represented as nonlinear periodic wave
modulation. The formation and evolution process of UB is
described by the Whitham theory [11,12], which was firstly
proposed by Whitham in 1965 [11]. The derivation of the
Whitham equation is the most important part of the Whitham
theory for nonlinear wave equations, and currently there exist
some effective methods, i.e., the Whitham’s nonlinear aver-
aging principle [13], perturbation expansion method [14,15],
finite gap integration method [16], the averaged Lagrangian
procedure [17], and so on. In the seminal work, Gurevich and
Pitaevskii [13] explored the so-called Riemann problem of
the Korteweg–de Vries equation and opened a way to study
the discontinuous initial value problems of nonlinear wave
equations by the Whitham theory.

The nonlinear Schrödinger (NLS) equation is one of the
common soliton equations describing various physical prob-
lems such as nonlinear optics [18], surface gravity waves
[19], superconductivity [20], and Bose-Einstein condensation
[21]. In the direction of exploring DSW or UB of the NLS
equation, important advances belonged to Gurevich [22–24]
and his co-authors who applied the Whitham theory [11] to
study the evolutions of the defocusing NLS equation under

conditions of initial value discontinuity. In order to investigate
the influence of NLS-type models under higher-order dis-
turbances, researchers have made various modifications and
generalizations to the NLS equation, among which three fa-
mous derivative nonlinear Schrödinger (DNLS) equations are
proposed such as the Kaup-Newell equation [25], Chen-Lee-
Liu equation [26], and Gerjikov-Ivanov equation [27], which
are usually named as DNLS-I equation, DNLS-II equation,
and DNLS-III equation, respectively. They appear in the the-
ory of plasma physics, fluid dynamics, and nonlinear optics,
etc.

In 1984, Kundu proposed [28] a generalized dimensionless
quintic NLS equation

iqt + qxx + iγ (|q|2q)x + i(ε − 2γ )(|q|2)xq + σ |q|4q = 0,

(1)

where q = q(x, t ) is the complex envelope of an optical pulse,
σ = (ε − γ )(ε − 2γ )/4 is the parameter of quintic nonlin-
earity often appeared in highly nonlinear materials such as
organic polymers [29] and chalcogenide glasses [30], γ de-
notes for the pulse self-steepening effect, and ε relates to the
nonlinearity dispersion. In the background of nonlinear optics,
this equation can describe the transmission of ultrashort pulses
in quadratic nonlinear medium considering the group-velocity
mismatch [31]. Under special choice of the coefficients ε

and γ , the generalized quintic NLS equation (1) can reduce
to DNLS equations such as the Kaup-Newell equation for
ε = 2γ , the Chen-Lee-Liu equation for ε = γ , and the fol-
lowing Gerjikov-Ivanov equation for ε = 0, γ = −1:

iqt + qxx + iq2q∗
x + 1

2 |q|4q = 0. (2)

In fact, there exist certain gauge transformations to relate
the three DNLS equations and the solutions of each DNLS
equation can be obtained from another one via the gauge
transformations; however, it is difficult to get the explicit
solution from the gauge transformations because of the in-
definite integration involved in the transformations. Thus, it
is necessary to study the three DNLS equations separately.
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In recent years, various feasible approaches have been de-
veloped to study the Gerjikov-Ivanov equation (2). Fan [32]
reexamined the complete integrability of this equation by
proposing its Lax pair, bi-Hamiltonian structure and finite-
dimensional integrable hierarchy. Biswas et al. [33] derived
the conservation laws of the Gerdjikov-Ivanov equation by
Lie symmetry analysis. Lü et al. [34] found the envelope
bright- and dark-soliton solutions for the Gerdjikov-Ivanov
equation based on the Madelung transformation. Fan [35]
gave its solitonlike solutions by Darboux transformation.
Xu et al. [36] considered the long-time asymptotic behaviors
of the steplike initial-value problem. Moreover, Kudryashov
[37] found some traveling-wave solutions of the Gerdjikov-
Ivanov equation.

Ivanov and Kamchatnov [38] studied the Riemann prob-
lem of the Kaup-Newell equation that they named modified
NLS equation and classified all the possible wave struc-
tures within the discontinuous jump conditions. Subsequently,
Ivanov [39] himself investigated the Riemann problem of
the general Chen-Lee-Liu equation modeling the fiber optical
pulse by Whitham theory. Therefore, this work focuses on
the evolutions of initial discontinuity of the Gerdjikov-Ivanov
equation (2) by investigating the modulated periodic solutions
and the complete classification of all possible solutions of the
steplike initial data.

The structure of this paper is organized as follows: the
one-phase periodic solution and the corresponding Whitham
equation are derived by the finite gap integration method
in Section 2. In Section 3, the elementary wave structures
under the condition of initial discontinuity are found, i.e.,
the rarefaction waves, the cnoidal dispersive shock waves,
the contact dispersive shock waves, and the combined waves.
Section 4 classifies the solutions of the Riemann problem
and compares the numerical solutions with the findings of
the Whitham theory. The conclusions are proposed in the last
section.

II. ONE-PHASE PERIODIC SOLUTION AND WHITHAM
EQUATIONS

The Gerdjikov-Ivanov equation (2) is the compatibility
condition of the following linear spectral problem [32]:

�x =
(

F G
H −F

)
�, (3)

�t =
(

A B
C −A

)
�, (4)

where � = (ψ1(x, t ), ψ2(x, t ))T , q = q(x, t ), and

F = −ik2 − i

2
|q|2, G = kq, H = kq∗,

A = −2ik4 − ik2|q|2 + i

4
|q|4 − 1

2
qq∗

x + 1

2
q∗qx,

B = 2k3q + ikqx, C = 2k3q∗ − ikq∗
x ,

(5)

with the spectral parameter k ∈ C.
Assume (ψ1(x, t ), ψ2(x, t ))T and (ϕ1(x, t ), ϕ2(x, t ))T are

the two linearly independent basis solutions of the linear prob-
lems (3) and (4), then define the “squared basis functions”

[7,40,41] as

f = − i

2
(ψ1ϕ2 + ψ2ϕ1), g = ψ1ϕ1, h = −ψ2ϕ2. (6)

It is convenient to check that f , g, h satisfy the linear equa-
tions

fx = iGh − iHg,

gx = 2iG f + 2Fg,

hx = −2iH f − 2Fh,

(7)

and

ft = −iCg + iBh,

gt = 2iB f + 2Ag,

ht = −2iC f − 2Ah.

(8)

It is remarked that by using the algebro-geometrical ap-
proach given in the Refs. [41,42] and the book [43], the
N-phase algebro-geometric solutions of the Gerdjikov-Ivanov
equation (2) can be obtained directly. However, to study
the Riemann problem of the Gerdjikov-Ivanov equation (2),
we only need the one-phase periodic solution. Thus follow-
ing the procedure of the finite gap integration method [16],
this section focuses on the one-phase periodic solution and
the corresponding Whitham equations associated with the
Gerdjikov-Ivanov equation (2). To do so, take

f = (
k2 + 1

4 |q|2)2 − f1
(
k2 + 1

4 |q|2) + f2,

g = (k2 − μ)qk,

h = (k2 − μ∗)q∗k,

(9)

where f1, f2, μ(x, t ), and μ∗(x, t ) are functions to be de-
termined below, and the function μ∗(x, t ) is the complex
conjugate of the function μ(x, t ).

Substituting (9) into (7) and comparing the coefficients on
the powers of k yield

f1x = 0, f2x = −1

4

( |q|2
2

+ f1

)
(|q|2)x, (10)

(|q|2)x = 2i|q|2(μ − μ∗), qx = −2iq f1 + 2iqμ,

(μq)x = − i

8
|q|4q + i

2
|q|2q f1 − i|q|2qμ − 2i f2q.

(11)

Similarly, substituting (9) into (8) yields

f1t = 0, f2t = 2 f1 f2x, (|q|2)t = 2 f1|q|2x . (12)

It can be proved that the quantity f 2 − gh = − 1
4 (ψ1ϕ2 −

ψ2ϕ1)2 is independent of x and t and is a polynomial of pa-
rameter k. When considering the one-phase periodic solution,
the f 2 − gh can be expressed by

f 2 − gh = P(k) =
4∏

j=1

(
k2 − k2

j

)
= k8 − s1k6 + s2k4 − s3k2 + s4. (13)
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Comparing the coefficients of the powers in k on both sides of
Eq. (13), one obtains

s1 = 2 f1, (14)

s2 = f 2
1 + 2 f2 + 3

8 |q|4 − 3
2 f1|q|2 + |q|2(μ + μ∗), (15)

s3 = 2 f1 f2 − 1
16 |q|6 + 3

8 |q|4 f1 + |q|2(μμ∗ − f2 − 1
2 f 2

1

)
,

(16)

s4 = [(
1
4 |q|2 − f1

)
1
4 |q|2 + f2

]2
. (17)

On the other side, we have

s1 =
4∑

j=1

k2
j , s2 =

∑
i< j

k2
i k2

j ,

s3 =
∑

i< j<s

k2
i k2

j k
2
s , s4 = k2

1k2
2k2

3k2
4 . (18)

Obviously, Eqs. (14) and (17) imply

f1 = s1

2
, f2 = ±√

s4 − |q|4
16

+ s1

8
|q|2. (19)

Combining Eqs. (16) and (17) and noticing ρ = |q|2, the ex-
pression of the function μ is determined as

μ = 1

8ρ
[2s1ρ − ρ2 + 4s2 − s2

1 ∓ 8
√

s4 − i
√

−R(ρ)], (20)

where

R(ρ) = ρ4 − 4s1ρ
3 − (

8s2 − 6s2
1 ± 48

√
s4

)
ρ2

+ (
16s1s2 − 4s3

1 − 64s3 ± 32
√

s4
)
ρ

+ (
s2

1 − 4s2 ± 8
√

s4
)2

. (21)

The signs “±” associate with sheets of the Riemann surface
R(ρ). In addition, R(ρ) describes an algebraic resolvent of
P(k). According to the fundamental theorem of algebra, R(ρ)
has four complex roots, which can be expressed by roots of
P(k). In this way, the roots related to the lower sign (–) can be
represented as

ρ1 = (k2 − k1 + k3 + k4)2,

ρ2 = (k1 − k2 + k3 + k4)2,

ρ3 = (k1 + k2 − k3 + k4)2,

ρ4 = (k1 + k2 + k3 − k4)2. (22)

In this similar way, the roots related to the upper sign (+)
can be represented as

ρ1 = (k2 − k1 + k3 − k4)2,

ρ2 = (k1 − k2 + k3 − k4)2,

ρ3 = (k1 + k2 − k3 − k4)2,

ρ4 = (k1 + k2 + k3 + k4)2. (23)

The traveling-wave transformation

ξ = x − V t, V = −2 f1 = −s1 = − 1
4
4

j=1ρ j (24)

and f2(x, t ) = f2(ξ ), ρ(x, t ) = ρ(ξ ) indicate that

dρ(ξ )

dξ
= 1

2

√
−R(ρ). (25)

For simplicity, set k1 � k2 � k3 � k4 � 0, which means
that ρ1 � ρ2 � ρ3 � ρ4. It is reasonable to consider the two
intervals

ρ1 � ρ � ρ2, ρ3 � ρ � ρ4, (26)

which may produce two one-phase periodic solutions in terms
of Jacobi elliptic functions for Eq. (25).

Firstly, for ρ1 � ρ � ρ2, the one-phase periodic solution is

ρ = ρ2(ρ4 − ρ1) − ρ4(ρ2 − ρ1)cn2(ω, m)

ρ4 − ρ2 + (ρ2 − ρ1)sn2(ω, m)
, (27)

with the wavelength

L = 8K (m)√
(ρ3 − ρ1)(ρ4 − v2)

= 2K (m)√
(k2

3 − k2
1 )(k2

4 − k2
2 )

, (28)

and the parameters

ω = 1
4

√
(ρ3 − ρ1)(ρ4 − ρ2)ξ, (29)

m = (ρ4 − ρ3)(ρ2 − ρ1)

(ρ4 − ρ2)(ρ3 − ρ1)
=

(
k2

4 − k2
3

)(
k2

2 − k2
1

)
(
k2

4 − k2
2

)(
k2

3 − k2
1

) , (30)

where the functions cn and sn are Jacobi elliptic functions, and
K (m) is the complete elliptic integral of the first kind [44].

One should analyze the special cases of the one-phase
periodic solution (27) in different limits. In doing so, the limit
of m → 1 (i.e., ρ3 → ρ2) results in the bright soliton

ρ = ρ1(ρ4 − ρ2) + ρ4(ρ2 − ρ1)tanh2(ω1)

ρ4 − ρ2 + (ρ2 − ρ1)tanh2(ω1)
, (31)

where ω1 = √
(ρ2 − ρ1)(ρ4 − ρ2)ξ/4.

In the limit m → 0, there are two ways to analyze the de-
generation of the one-phase periodic solution (27), which are
ρ2 → ρ1 and ρ4 → ρ3, respectively. For the case ρ2 → ρ1,
the one-phase periodic solution (27) degenerates into a con-
stant solution

ρ = ρ2, (32)

while for the case ρ4 → ρ3, the one-phase periodic solution
(27) degenerates into a trigonometric wave solution

ρ = ρ2(ρ3 − ρ1) − ρ3(ρ2 − ρ1)cos2(ω0)

ρ3 − ρ2 + (ρ2 − ρ1)sin2(ω0)
, (33)

with ω0 = √
(ρ3 − ρ1)(ρ3 − ρ2)ξ/4.

Similarly, for ρ3 � ρ � ρ4, another one-phase periodic so-
lution of (25) is

ρ = ρ3(ρ1 − ρ4) + ρ1(ρ4 − ρ3)cn2(ω, m)

ρ1 − ρ3 + (ρ3 − ρ4)sn2(ω, m)
, (34)

where L, ω, m are given in (28)–(30).
In the soliton limit m → 1 (i.e., ρ2 → ρ3), the one-phase

periodic solution (34) degenerates into the dark-soliton solu-
tion

ρ = ρ3(ρ1 − ρ4) − ρ1(ρ3 − ρ4)sech2(ω)

ρ1 − ρ4 + (ρ4 − ρ3)sech2(ω)
. (35)
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By analogy, the limit m → 0 indicates that ρ2 → ρ1 or
ρ4 → ρ3. In the case of ρ4 → ρ3, the one-phase periodic
solution (34) degenerates into a constant solution

ρ = ρ3, (36)

while for the case ρ2 → ρ1, the one-phase periodic solution
(34) degenerates into a trigonometric wave solution

ρ = ρ3(ρ1 − ρ4) + ρ1(ρ4 − ρ3)cos2(ω)

ρ1 − ρ3 + (ρ3 − ρ4)sin2(ω)
. (37)

Moreover, constraining the limit ρ3 → ρ2 = ρ1 leads to the
algebraic soliton solution of the form

ρ = ρ1 + 16(ρ4 − ρ1)

16 + (ρ4 − ρ1)2ξ 2
. (38)

In what follows, the Whitham theory [7] is adopted to
modulate the one-phase periodic solutions in (27) and (34).
To do so, it is necessary to derive the conservation laws of the
Gerjikov-Ivanov equation (2), normalize the squared eigen-
functions f , g, and h and then average the generating function
of the conservation laws to derive the Whitham equations.
Substituting the equations in (7) and (8) into

(log g)xt = (log g)tx (39)

derives the conservation law(
G

g

)
t

=
(

B

g

)
x

. (40)

The scale transformation

f → f√
P(k)

, g → g√
P(k)

, h → h√
P(k)

(41)

normalizes the condition f 2 − gh = P(k) as

(
f√

P(k)

)2

− g√
P(k)

h√
P(k)

= 1. (42)

The conservation law (40) can be modified as(√
P(k)

G

g

)
t

=
(√

P(k)
B

g

)
x

. (43)

Averaging of Eq. (43) over the wavelength L and noticing the
differential form

dx = dμ

2
√−P(

√
μ)

,

the averaged conservation law [7] is obtained as(√
P(k)

2L

∮
dμ

2(k2 − μ)
√−P(

√
μ)

)
t

(44)

=
[√

P(k)

2L

∮ (
2 + 2 f1

k2 − μ

)
dμ

2
√−P(

√
μ)

]
x

. (45)

Taking the limit k → ki (i = 1, 2, 3, 4) yields∮
dμ

2(k2
i − μ)

√−P(
√

μ)

∂ki

∂t

=
∮ (

2 + 2 f1

k2
i − μ

)
dμ

2
√−P(

√
μ)

∂ki

∂x
,

which results in the Whitham equation for the Riemannn
invariants ki for (i = 1, 2, 3, 4) below:

∂ki

∂t
+ νi

∂ki

∂x
= 0, i = 1, 2, 3, 4, (46)

where the characteristic velocities νi are given by

νi = − I2(ki )

I1(ki )
= V + 1

∂ln(L)
∂k2

i

, i = 1, 2, 3, 4,

I1 =
∮

dμ

2(k2
i − μ)

√−P(
√

μ)
= −2

∂L

∂k2
i

,

I2 =
∮ (

2 + 2 f1

k2
i − μ

)
dμ

2
√−P(

√
μ)

= 2L + s1I1. (47)

After some calculations, the exact representations of the char-
acteristic velocities νi (i = 1, 2, 3, 4) are expressed by

ν1 = −
4∑

i=1

k2
i − 2

(
k2

1 − k2
2

)(
k2

1 − k2
4

)
K (m)(

k2
1 − k2

4

)
K (m) − (

k2
2 − k2

4

)
E (m)

,

ν2 = −
4∑

i=1

k2
i − 2

(
k2

1 − k2
2

)(
k2

2 − k2
3

)
K (m)(

k2
3 − k2

2

)
K (m) + (

k2
1 − k2

3

)
E (m)

,

ν3 = −
4∑

i=1

k2
i + 2

(
k2

3 − k2
4

)(
k2

2 − k2
3

)
K (m)(

k2
3 − k2

2

)
K (m) + (

k2
2 − k2

4

)
E (m)

,

ν4 = −
4∑

i=1

k2
i − 2

(
k2

3 − k2
4

)(
k2

1 − k2
4

)
K (m)(

k2
4 − k2

1

)
K (m) + (

k2
1 − k2

3

)
E (m)

,

(48)

where K (m) and E (m) are the complete elliptic integrals of
the first and second kind, respectively.

Next define the new Riemann invariants of the form

λi = −k2
i . (49)

The inequality k4 � k3 � k2 � k1 � 0 indicates that λ4 �
λ3 � λ2 � λ1 � 0, which shows that the characteristic veloc-
ities νi (i = 1, 2, 3, 4) can be expressed in terms of λi as

v1 = (−
√

−λ1 +
√

−λ2 +
√

−λ3 −
√

−λ4)2,

v2 = (
√

−λ1 −
√

−λ2 +
√

−λ3 −
√

−λ4)2,

v3 = (
√

−λ1 +
√

−λ2 −
√

−λ3 −
√

−λ4)2,

v4 = (
√

−λ1 +
√

−λ2 +
√

−λ3 +
√

−λ4)2 (50)

or

v1 = (
√

−λ1 +
√

−λ2 +
√

−λ3 −
√

−λ4)2,

v2 = (
√

−λ1 +
√

−λ2 −
√

−λ3 +
√

−λ4)2,

v3 = (
√

−λ1 −
√

−λ2 +
√

−λ3 +
√

−λ4)2,

v4 = (−
√

−λ1 +
√

−λ2 +
√

−λ3 +
√

−λ4)2. (51)
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In this case, the velocity V , the wavelength L, and the modulus
m can be rewritten as

V = 
4
j=1λ j, L = 8K (m)√

(λ3 − λ1)(λ4 − λ2)
, (52)

m = (λ4 − λ3)(λ2 − λ1)

(λ4 − λ2)(λ3 − λ1)
. (53)

In addition, the Whitham equation for the Riemannn invari-
ants λi (i = 1, 2, 3, 4) are expressed by

∂λi

∂t
+ νi

∂λi

∂x
= 0, νi = V − 1

∂ln(L)
∂λi

, i = 1, 2, 3, 4, (54)

with the characteristic velocities

ν1 =
4∑

i=1

λi + 2(λ1 − λ2)(λ1 − r4)K (m)

(λ1 − λ4)K (m) − (λ2 − λ4)E (m)
,

ν2 =
4∑

i=1

λi + 2(λ1 − λ2)(λ2 − λ3)K (m)

(λ3 − λ2)K (m) + (λ1 − λ3)E (m)
,

ν3 =
4∑

i=1

λi − 2(λ3 − λ4)(λ2 − λ3)K (m)

(λ3 − λ2)K (m) + (λ2 − λ4)E (m)
,

ν4 =
4∑

i=1

λi + 2(λ3 − λ4)(λ1 − λ4)K (m)

(λ4 − λ1)K (m) + (λ1 − λ3)E (m)
. (55)

In the similar way as [7], one can also consider the lim-
its of the characteristic velocities νi (i = 1, 2, 3, 4). For the
case m → 1 (i.e., λ3 → λ2), the Whitham velocities νi (i =
1, 2, 3, 4) degenerate into

ν1 = 3λ1 + λ4,

ν2 = ν3 = λ1 + 2λ2 + λ4,

ν4 = λ1 + 3λ4. (56)

In the harmonic front m → 0 (i.e., λ4 → λ3), the Whitham
velocities νi (i = 1, 2, 3, 4) degenerate into

ν1 = 3λ1 + λ2,

ν2 = λ1 + 3λ2,

ν3 = ν4 = 4λ3 + (λ1 − λ2)2

λ1 + λ2 − 2λ3
. (57)

Moreover, in another limit state m → 0 (i.e., λ2 → λ1), the
Whitham velocities νi (i = 1, 2, 3, 4) degenerate into

ν1 = ν2 = 4λ1 + (λ4 − λ3)2

2λ1 − λ3 − λ4
,

ν3 = 3λ3 + λ4,

ν4 = λ3 + 3λ4. (58)

III. KEY ELEMENTS OF SELF-SIMILAR WAVE
STRUCTURES

This work focuses on the Riemann problem of the
Gerdjikov-Ivanov equation (2), which corresponds to the dis-
continuous initial value condition [45,46]

q(x, 0) = √
ρeiφ, φx = w (59)

with ρ = ρ(x, 0) and w = w(x, 0) satisfying

ρ(x, 0) =
{

ρL, x < 0

ρR, x > 0,
w(x, 0) =

{
wL, x < 0

wR, x > 0,
(60)

where ρL, ρR, wL, and wR are real constants. First of all, the
basic wave structures of the Gerdjikov-Ivanov equation under
the initial value condition (59) with (60) should be clarified.

A. The rarefaction waves

Taking the Madelung transformation [38,39]

q = √
ρeiφ, φx = w, (61)

where ρ = ρ(x, t ) and w = w(x, t ) are the fluid density and
fluid velocity, respectively, the hydrodynamic form of the
Gerdjikov-Ivanov equation (2) is

ρt + 2ρxw + 2ρwx + ρρx = 0,

wt + 2wwx − (ρw)x − ρρx = 1√
ρ

(
ρxx

2
√

ρ
− ρ2

x

4ρ
3
2

)
x

. (62)

The traveling-wave solution of the hydrodynamic-type equa-
tion (62) is studied in the Appendix, where the explicit exact
solutions of fluid density ρ and fluid velocity w are proposed.

Dropping the high-order dispersion term in the second
equation of the system (62), the dispersionless equation is
obtained as(

w

ρ

)
t

=
(

ρ − 2w ρ + w

−2ρ −ρ − 2w

)(
w

ρ

)
x

, (63)

whose characteristic equation is

ξ 2 + 4wξ + 4w2 + 2ρw + ρ2 = 0, (64)

where ξ is the eigenvalue. The discriminant of the quadratic
equation (64) is � = −4ρ(2w + ρ). If 2w + ρ < 0, there are
two different real roots, which corresponds to a hyperbolic
system. Since the conservation law for w = φx is trivial, it is
necessary to look for another conserved density without the
derivatives of x. Therefore, replacing ρ with the variable ρ̂ =
−ρ2 − 2ρw [47] such that

ρ = −w ±
√

w2 − ρ̂, (65)

then the dispersionless equation (63) becomes(
ρ̂

w

)
t

=
(−2w −2ρ̂

− 1
2 −2w

)(
ρ̂

w

)
x

, (66)

which can be written as diagonal form

∂r±
∂t

+ υ±
∂r±
∂x

= 0, (67)

where the Riemann invariants r± and the characteristic veloc-
ities v± take the form

r± = w ±
√

ρ̂ = w ±
√

−ρ(ρ + 2w), (68)

υ± = 2w ±
√

ρ̂ = 2w ±
√

−ρ(ρ + 2w). (69)

It is easy to see

υ+ = 3
2 r+ + 1

2 r−, υ− = 1
2 r+ + 3

2 r−, (70)
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FIG. 1. The curves formed by the relationship between ρ and w,
where the gray area corresponds to the modulational instability state
for ρ > −2w and the black dotted line represents ρ = −w.

and the trace formulas for the functions ρ and w are

ρ = − 1
2 (r+ + r−) ± √

r+r−, w = 1
2 (r+ + r−), (71)

where the Riemann invariants r± are nonpositive, i.e., r− �
r+ � 0.

In what follows, the rarefaction wave solutions are inves-
tigated in detail, which means one of the Riemann invariants
is constant, i.e., r+ = const or r− = const. Equation (68) de-
notes that the variable ρ can be expressed as w and r± of the
form

ρ = −w ±
√

r±(2w − r±), (72)

which is displayed in Fig. 1. Along the line ρ = −w, one no-
tices that ∂r+/∂w = 0, ∂r+/∂ρ = 0. And this line separates
two monotonic regions in the plane (w, ρ) (see Fig. 1). In
Fig.1, the red (thick) curve corresponds to the case that r+
is constant, while the blue (thin) curve corresponds to the
case that r− is constant. At the two intersection points of
curves, r± = const, this denotes that ρ and w are constants
by Eq. (72), which corresponds to the trivial plateau solutions
of the Gerdjikov-Ivanov equation (2).

Considering the self-similar variable ξ = x/t as in [38,39],
one obtains r± = r±(ξ ) and the Whitham equation (67) is
converted into

(υ+ − ξ )
dr+
dξ

= 0, (υ− − ξ )
dr−
dξ

= 0. (73)

Obviously, the equations in (73) have trivial constant so-
lutions, i.e., r± = const, which corresponds to the plateau
solution discussed above. What is more, two types of rarefac-
tion wave solution are obtained below:

(a) r− = const ≡ r0
−, υ+ = 3

2 r+ + 1
2 r− = ξ,

(b) r+ = const ≡ r0
+, υ− = 1

2 r+ + 3
2 r− = ξ . (74)

FIG. 2. The plots of the variables w, ρ in terms of the self-similar
variable. The signs “±” of (75) indicate the different branches curve
on the (ξ, ρ ) plane.

For case (a), the variables ρ and w can be represented by
r0
− as

w(ξ ) = 1
3 (ξ + r0

−),

ρ(ξ ) = − 1
3 (ξ + r0

−) ±
√

1
3 r0−(2ξ − r0−).

(75)

In order to make sure that the square root makes sense, it

is necessary to set the condition ξ � r0
−
2 . The plots of the

variables w and ρ with respect to the self-similar variable ξ ,
respectively, are shown in Fig. 2.

Similarly, for case (b), the variables ρ and w can be repre-
sented by r0

+ as

w(ξ ) = 1
3 (ξ + r0

+),

ρ(ξ ) = − 1
3 (ξ + r0

+) ±
√

1
3 r0+(2ξ − r0+). (76)

In practice, in order to make sure that the rarefaction wave
solution is monotonic, the Riemann invariants should be sin-
gle valued with respect to ξ . In this case, the rarefaction waves
structure will satisfy the following boundary value conditions:

(a) rL
+ < rR

+, rL
− = rR

−, (b) rL
− < rR

−, rL
+ = rR

+,

(77)

which are displayed in Fig. 3, in which the edge velocities can
be formulated as follows:

(a) s− = 1
2 rL

− + 3
2 rL

+, s+ = 1
2 rR

− + 3
2 rR

+,

(b) s− = 3
2 rL

+ + 1
2 rL

−, s+ = 3
2 rR

+ + 1
2 rR

−. (78)

It is observed from Fig. 3 that the nonconstant Riemann in-
variant increases with the self-similar variable ξ = x/t .

(a) (b)

FIG. 3. The structures of the Riemann invariants r± with respect
to ξ = x/t under the boundary conditions in (77).
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(c) (d)

FIG. 4. The distributions of the Riemann invariants λi (i =
1, 2, 3, 4) for the cnoidal dispersive shock wave.

However, the cases

(c) rL
+ > rR

+, rL
− = rR

−, (d) rL
− > rR

−, rL
+ = rR

+,

(79)

do not correspond to rarefaction waves, but correspond to the
cnoidal dispersive shock waves, which are investigated in the
next section.

B. Cnoidal dispersive shock waves

This section studies the structures of the cnoidal dispersive
shock waves [38,39]-[45,46], where the Riemann invariant is
labeled by λ instead of r. So the two cases in (79) become

(c) λL
+ > λR

+, λL
− = λR

−, (d) λL
− > λR

−, λL
+ = λR

+.

(80)

Note that the Riemann invariants λi (i = 1, 2, 3, 4) sat-
isfy the Whitham equation in (54), which can be used to
describe the evolution of one-phase periodic waves and the
dispersive shock wave. Hence, one can solve nonphysical
multivalued problems, where the two nondispersion Riemann
invariants r± can be replaced by the Riemann invariants
λi (i = 1, 2, 3, 4). When considering the self-similar variable
ξ = x/t , the Whitham equation in (54) can be transformed
into

(νi − ξ )
dλi

dt
= 0, i = 1, 2, 3, 4. (81)

Through the discussion above, it is found that the three
Riemann invariants are constants, and the remaining one (e.g.,
λ j) changes in such a way that ν j = ξ . It is seen that the
limiting form of the Whitham velocities in (56)–(58) is re-
lated closely to the dispersionless Riemann velocities in (70).
Then one can find the relationship between λi and r±, and
the velocities at the edge of cnoidal dispersive shock waves.
Figure 4 demonstrates the structures of the cnoidal dispersive
shock waves. In Fig. 4(c), it is seen that

λ1 = λL
+, λ3 = λR

+, λ4 = λL
− = λR

−, (82)

while λ2 changes according to the implicit equation

ν2(λL
+, λ2, λ

R
+, λL

−) = ξ . (83)

It is obvious that

λL
− = 1

2 r−, λL
+ = 1

2 r+, (84)

at the soliton edge of the cnoidal dispersive shock wave, while

λR
− = 1

2 r−, λR
+ = 1

2 r+, (85)

at the small-amplitude edge of the cnoidal dispersive shock
wave. Moreover, velocities of the edges can be expressed by
the Riemann invariants as follows:

sc
− = λL

+ + 2λR
+ + λL

−,

sc
+ = 4λL

+ + (λR
− − λR

+)2

2λL+ − λR+ − λR−
. (86)

Similarly, in Fig. 4(d), one finds

λ1 = λL
+ = λR

+, λ2 = λL
−, λ4 = λR

−, (87)

while λ3 changes according to the implicit equation

ν3(λR
+, λL

−, λ3, λ
R
−) = ξ . (88)

It is obvious that

λR
− = 1

2 r−, λR
+ = 1

2 r+, (89)

at the soliton edge of the cnoidal dispersive shock wave, while

λL
− = 1

2 r−, λL
+ = 1

2 r+, (90)

at the small-amplitude edge of the cnoidal dispersive shock
wave. In a similar way, the Whitham velocities at the edges
can be expressed by the Riemann invariants

sd
− = 4λR

− + (λR
+ − λL

−)2

λR+ + λL− − 2λR−
,

sd
+ = λR

+ + 2λL
− + λR

−. (91)

Substituting (82) or (87) into (50) and (51), respectively,
it is found that the characteristic velocities vi (i = 1, 2, 3, 4)
are dependent on ξ , which also means there exist two map-
pings from the Riemann invariants to the physical parameters.
Therefore, each diagram of the Riemann invariant λ in Fig. 4
corresponds to two different cnoidal dispersive shock waves.
For instance, for case (c), Fig. 5(a) shows that two parabolas,
λL

− = λR
− = const and λL

+ = const, intersect at the points L1

and L2, which corresponds to the left boundary in Fig. 4(c).
Two parabolas, λL

− = λR
− = const and λR

+ = const, intersect at
the points R1 and R2, which corresponds to the right boundary
in Fig. 4(c). Thus two paths from the left boundary to the right
boundary are obtained, where L1 → R1 and L2 → R2 corre-
spond to the two mappings (51) and (50), respectively. The
analytical approximate solutions for the cnoidal dispersive
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FIG. 5. The curves formed by the relationship between the vari-
ables ρ and w, where there exist two paths from the left boundary to
the right boundary. (a) corresponds to case (c) and (b) corresponds to
case (d).

shock waves are shown in Fig. 6, where Fig. 6(a) demonstrates
the path from L1 to R1 in Fig. 5(a), and Fig. 6(b) demonstrates
the path from L2 to R2 in Fig. 5(a). Similarly, for case (d),
Fig. 5(b) shows that there also exist four intersection points
of curves, which produces two paths, L1 → R1 and L2 → R2,
in Fig. 5(b). The analytical approximate solutions for the
cnoidal dispersive shock waves can also be obtained, which
are displayed in Fig. 7.

C. Contact dispersive shock waves

In what follows, another basic wave structure is considered,
in which the Riemann invariants have the same values at
the boundaries, that is, λL

+ = λR
+ and λL

− = λR
−. Thus the left

and right boundary points (i.e., P1 and P2 in Fig. 8) locate
in different monotonicity regions. Naturally, this produces a
contact dispersive shock wave [38,39].

FIG. 6. The analytical approximation solution of the Gerdjikov-
Ivanov equation (2) for two different boundary conditions cor-
responding to case (c) at t = 2, where the Riemann invariants
are chosen as λL

+ = −0.13, λR
+ = −1.3, λL

− = λR
− = −5.2. (a) rep-

resents the boundary conditions ρL = 6.97, wL = −5.33, ρR =
11.70, wR = −6.50, while (b) represents the boundary conditions
ρL = 3.69, wL = −5.33, ρR = 1.30, wR = −6.50.

Figure 8 shows there are two paths that connect the two
intersections P1 and P2 of the two parabolas. Note that the left
and right boundary points appear on the opposite sides of the
line ρ = −w. The Riemann invariants are displayed in Fig. 9,
where the Riemann invariants λ1 and λ2 are equal, while the
other two Riemann invariants λ3 and λ4 are constants, i.e.,
λ3 = λR

+ = λL
+, λ4 = λR

− = λL
−. To be specific, one has λ1 =

λ2 = λL
+ at the left edge and λ1 = λ2 = 0 at the right edge.

Since λ1 = λ2, the modulus m = 0, so formula (58) indicates
that the Whitham velocities can be expressed by

ν1 = ν2 = 4λ1 − (λL
− − λL

+)2

2λ1 − λL+ − λL−
= ξ . (92)
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FIG. 7. The analytical approximation solution of the Gerdjikov-
Ivanov equation (2) for two different boundary conditions corre-
sponding to case (d) at t = 2, where the Riemann invariants are
chosen as λL

− = −1.4, λR
− = −2.8, λL

+ = λR
+ = −0.53. (a) represents

the boundary conditions ρL = 3.65, wL = −1.93, ρR = 5.77, wR =
−3.33, while (b) represents the the boundary conditions ρL =
0.21, wL = −1.93, ρR = 0.89, wR = −3.33.

Moreover, the velocities of the edges are

sL = ν3(λL
+, λL

+, λL
+, λL

−) = 3λL
+ + λL

−,

sR = ν2(0, 0, λR
+, λR

−) = (λL
− − λL

+)2

λL+ + λL−
. (93)

Following the same procedure for investigating the cnoidal
dispersive shock waves, the different mappings (50) or (51)
are chosen to demonstrate the basic wave structures corre-
sponding to Fig. 9. Figure 10 displays two contact dispersive
shock waves, where the wave structure in Fig. 10(a) is ob-
tained by considering the path from P1 to P2 and the mapping
(50), while Fig. 10(b) is obtained by using the path from P2 to
P1 and the mapping (51).

FIG. 8. The curves formed by the relationship between the vari-
ables ρ and w, in which the Riemann invariants have the same values
at the boundaries. Here the paths P1 → P2 and P2 → P1 correspond
to the two mappings (50) and (51), respectively.

D. Combined undular bores

This section considers the last basic wave structure, in
which one Riemann invariant is constant, i.e., λL

− = λR
−, while

the boundary values of the other Riemann invariants are not
equal as in [38,39]. In this case, the left and right boundary
points locate in different regions of the (w, ρ) plane, which
are displayed in Fig. 11. Obviously, there arise two edge cases
of the form

(a) λL
+ > λR

+, (b) λL
+ < λR

+. (94)

In this case, the transition P1 → P2 in Fig. 8 can be
generalized into two different ways represented in Fig. 11.
Figure 11(a) shows the path L1 → R1 and Fig. 11(b) shows
the path L2 → R2. The distributions of the Riemann invariants
corresponding to the two paths in Fig. 11 are demonstrated
in Fig. 12, which results in novel combined undular bores
in Fig. 13. It is observed from Figs. 12(a) and 13(a) that

FIG. 9. The distribution of the Riemann invariants λi (i =
1, 2, 3, 4) for the contact dispersive shock wave.
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FIG. 10. The analytical approximation solution of the Gerdjikov-
Ivanov equation (2) for two paths, P1 → P2 and P2 → P1, in
Fig. 8 for t = 5, where the boundary condition for (a) is ρL =
10.00, wL = −5.90, ρR = 1.80, wR = −5.90 and the boundary con-
dition for (b) is ρL = 1.80, wL = −5.90, ρR = 5.80, wR = −5.90.
Here the Riemann invariants are chosen as λL

+ = λR
+ = −0.83, λL

− =
λR

− = −5.07.

the combined undular bore consists of a cnoidal dispersive
shock wave and a contact dispersive shock wave. However,
Figs. 12(b) and 13(b) show that the combined undular bore
consists of a rarefaction wave and a contact dispersive shock
wave [38,39].

In the limit m → 1, there occurs a dark soliton at the soliton
front Sa

1 , while in the limit m → 0, a trigonometric wave and a
small-amplitude edge occur at the harmonic fronts Sa

2 and Sa
3 ,

respectively (see Figs. 12 and 13 for details). The Whitham
velocities at the boundaries of Fig. 12(a) can be expressed by

sa
1 = ν2(λL

+, λR
+, λR

+, λL
−) = λL

+ + 2λR
+ + λL

−,

sa
2 = ν2(λL

+, λL
+, λR

+, λR
−) = 4λL

+ + (λR
− − λR

+)2

2λL+ − λR+ − λR−
,

sa
3 = ν1(0, 0, λR

+, λR
−) = − (λR

− − λR
+)2

λR+ + λR−
. (95)

FIG. 11. The curves formed by the relationship between the vari-
ables ρ and w, where there exist two paths from the left boundary to
the right boundary. (a) corresponds to case (a) in (94) and (b) corre-
sponds to case (b) in (94).

(a) (b)

FIG. 12. The distributions of the Riemann invariants λi (i =
1, 2, 3, 4) for the combined undular bores corresponding to the two
paths in Fig. 11.
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FIG. 13. The analytical approximation solution of the Gerdjikov-
Ivanov equation (2) for two paths, L1 → R1 and L2 → R2, in
Fig. 11 for t = 2, where the boundary condition for (a) is ρL =
7.99, wL = −4.75, ρR = 0.20, wR = −6.60 and the Riemann invari-
ants are chosen as λL

+ = −0.64, λR
+ = −2.49, λL

− = λR
− = −4.11.

The boundary condition for (b) is ρL = 13.15, wL = −6.60, ρR =
0.66, wR = −4.95, and the Riemann invariants are chosen as λL

+ =
−2.89, λR

+ = −1.24, λL
− = λR

− = −3.71.

In a similar way, the Whitham velocities at the boundaries
of Fig. 12(b) can be expressed by

sb
1 = 3λL

+ + λL
−,

sb
2 = 3λR

+ + λR
−,

sb
3 = ν2(0, 0, λR

+, λR
−) = − (λR

− − λR
+)2

λR+ + λR−
. (96)

Up to now, four basic wave structures of the Gerdjikov-
Ivanov equation (2) with the discontinuous initial value
condition (59)-(60) are discussed in detail. In what follows,
the complete classification of the optical undular bores in this
problem are proposed.

FIG. 14. Six regions in the (w, ρ ) plane corresponding to differ-
ent structures of optical undular bores, where the intersection of the
parabolas ρ = −w ± √

rL+(2w − rL+) and ρ = −w ± √
rL−(2w − rL−)

corresponds to the left boundary.

IV. CLASSIFICATION OF THE OPTICAL UNDULAR
BORES

In order to give the complete classification of the optical
undular bores in the Riemann problem of the Gerdjikov-
Ivanov equation (2), the relationship between the variables
w and ρ in (72) are used to partition the (w, ρ) plane (see
Fig. 14), where the line ρ = −w divides the (w, ρ) plane into
two monotonicity regions. It is seen that there are six regions
in the (w, ρ) plane, which are marked as A, B, . . . , F and
satisfy the following order relations [38,39]:

A : λL
− < λL

+ < λR
− < λR

+; B : λL
− < λR

− < λL
+ < λR

+;

C : λR
− < λL

− < λL
+ < λR

+; D : λL
− < λR

− < λR
+ < λL

+;

E : λR
− < λL

− < λR
+ < λL

+; F : λR
− < λR

+ < λL
− < λL

+.

Case A. The order relation λL
− < λL

+ < λR
− < λR

+.

In such case, no dispersive shock wave appears. Figure 15
shows that there exist five regions, in which the left and right
platforms (regions I and V) are connected by two rarefaction
waves (regions II and IV), and the middle region (region III)
is a vacuum region. Figure 15(a) displays the the Riemann
invariants and Figs. 15(b) and 15(c) show the the wave pat-
terns of the fluid density ρ and fluid velocity w, respectively.
Notice that the relationship between ρ and w is given in
the Appendix. The Whitham velocities of the edges for each
region are listed below:

SA = v−(λL
+, λL

−) = λL
+ + 3λL

−,

SB = v+(λL
+, λL

+) = 4λL
+,

SC = v−(λR
−, λR

−) = 4λR
−,

SD = v+(λR
+, λR

−) = 3λR
+ + λR

−. (97)
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FIG. 15. The structures of the Riemann invariants and solution of
the Gerdjikov-Ivanov equation (2) in case A at t = 1. (a) represents
the evolution of the Riemann invariants in terms of the variable ξ , and
(b) and (c) display the wave patterns of the density function ρ and
velocity function w from Whitham theory (thick red) and numerical
calculations (thin blue), respectively. Here, the parameters are λL

+ =
−2, λL

− = −3.09, λR
+ = −0.54, λR

− = −1.11.

Case B. The order relation λL
− < λR

− < λL
+ < λR

+. As in
case A, no dispersive shock wave appears in this case. In addi-
tion, different from case A, no vacuum region exists in case B.
It is observed from Fig. 16 that there are also five regions,
which are platform, rarefaction wave, platform, rarefaction
wave, and platform from left to right. The boundary velocities
in each region are expressed by

SA = v−(λL
+, λL

−) = λL
+ + 3λL

−,

SB = v−(λL
+, λR

−) = λL
+ + 3λR

−,

SC = v+(λL
+, λR

−) = 3λL
+ + λR

−,

SD = v+(λR
+, λR

−) = 3λR
+ + λR

−. (98)

Case C. The order relation λR
− < λL

− < λL
+ < λR

+.

In this case, there appears a dispersive shock wave with
four Riemann invariants. It is seen from Fig. 17 that five
regions emerge, which are platform, dispersive shock wave,
platform, rarefaction wave, and platform from left to right.
The boundary velocities in each region are given by

SA = v3(λL
+, λL

−, λR
−, λR

−) = 4λR
− + (λL

+ − λL
−)2

λL+ + λL− − 2λR−
,

SB = v3(λL
+, λL

−, λL
−, λR

−) = λL
+ + 2λL

− + λR
−,

SC = v+(λL
+, λR

−) = 3λL
+ + λR

−,

SD = v+(λR
+, λR

−) = 3λR
+ + λR

−. (99)

Case D. The order relation λL
− < λR

− < λR
+ < λL

+.

The case D in Fig. 18 is similar to Case C. However, the
locations of the regions are opposite to case C, which from left
to right are platform, rarefaction wave, platform, dispersive
shock wave, and platform, respectively. The Riemannian in-
variants of the rarefaction wave correspond to the distribution
in Fig. 3(b), while the Riemannian invariants of the dispersive
shock wave correspond to the distribution in Fig. 4(c). The
boundary velocities in each region are given by

SA = v−(λL
+, λL

−) = 3λL
− + λL

+,

SB = v−(λL
+, λR

−) = 3λR
− + λL

+,

SC = v2(λL
+, λR

+, λR
+, λR

−) = λL
+ + 2λR

+ + λR
−,

SD = v2(λL
+, λL

+, λR
+, λR

−) = 4λL
+ + (λR

− − λR
+)2

2λL+ − λR+ − λR−
. (100)

Case E. The order relation λR
− < λL

− < λR
+ < λL

+.

This is a case in which two dispersive shock waves are
connected by a middle platform (see Fig. 19). No rarefaction
wave exists in this case. The regions from left to right are
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FIG. 16. The structures of the Riemann invariants and solution of
the Gerdjikov-Ivanov equation (2) in case B at t = 1. (a) represents
the evolution of the Riemann invariants in terms of the variable ξ , and
(b) and (c) display the wave patterns of the density function ρ and
velocity function w from Whitham theory (thick red) and numerical
calculations (thin blue), respectively. Here, the parameters are λL

+ =
−1.40, λL

− = −5.20, λR
+ = −0.43, λR

− = −3.07.

FIG. 17. The structures of the Riemann invariants and solution of
the Gerdjikov-Ivanov equation (2) in case C at t = 1. (a) represents
the evolution of the Riemann invariants in terms of the variable ξ , and
(b) and (c) display the wave patterns of the density function ρ and
velocity function w from Whitham theory (thick red) and numerical
calculations (thin blue), respectively. Here, the parameters are λL

+ =
−0.83, λL

− = −2.87, λR
+ = −0.21, λR

− = −5.14.
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FIG. 18. The structures of the Riemann invariants and solution of
the Gerdjikov-Ivanov equation (2) in case D at t = 3. (a) represents
the evolution of the Riemann invariants in terms of the variable ξ , and
(b) and (c) display the wave patterns of the density function ρ and
velocity function w from Whitham theory (thick red) and numerical
calculations (thin blue), respectively. Here, the parameters are λL

+ =
−0.72, λL

− = −3.78, λR
+ = −1.68, λR

− = −3.12.

FIG. 19. The structures of the Riemann invariants and solution of
the Gerdjikov-Ivanov equation (2) in case E at t = 2. (a) represents
the evolution of the Riemann invariants in terms of the variable ξ , and
(b) and (c) display the wave patterns of the density function ρ and
velocity function w from Whitham theory (thick red) and numerical
calculations (thin blue), respectively. Here, the parameters are λL

+ =
−0.73, λL

− = −2.87, λR
+ = −1.13, λR

− = −4.27.
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platform, dispersive shock wave, platform, dispersive shock
wave, and platform, respectively. The boundary velocities in
each region are given by

SA = v3(λL
+, λL

−, λR
−, λR

−) = 4λR
− + (λL

+ − λL
−)2

λL+ + λL− − 2λR−
,

SB = v3(λL
+, λL

−, λL
−, λR

−) = λL
+ + 2λL

− + λR
−,

SC = v2(λL
+, λR

+, λR
+, λR

−) = λL
+ + 2λR

+ + λR
−,

SD = v2(λL
+, λL

+, λR
+, λR

−) = 4λL
+ + (λR

− − λR
+)2

2λL+ − λR+ − λR−
. (101)

Case F. The order relation λR
− < λR

+ < λL
− < λL

+.

This is a case containing three dispersive shock waves, in
which one dispersive shock wave is a nonmodulated cnoidal
dispersive shock wave. The five regions are represented in
Fig. 20, which from left to right are platform, dispersive shock
wave, nonmodulated dispersive shock wave, dispersive shock
wave, and platform, respectively. It is seen from Fig. 20(a) that
the four Riemann invariants for the nonmodulated dispersive
shock wave (region III) are constants, which are called hard
edges. This is the unique property of the defocusing system
such as the defocusing NLS equation. The boundary velocities
in each region are given by

SA = v3(λL
+, λL

−, λR
−, λR

−) = 4λR
− + (λL

+ − λL
−)2

λL+ + λL− − 2λR−
,

SB = v3(λL
+, λL

−, λR
+, λR

−),

SC = v2(λL
+, λL

−, λR
+, λR

−),

SD = v2(λL
+, λL

+, λR
+, λR

−) = 4λL
+ + (λR

− − λR
+)2

2λL+ − λR+ − λR−
. (102)

Finally, it is remarked that when the boundary points lie in
the monotone region with ρ > −w in Fig. 14, similar to the
previous analysis, one can also get six regions with the same
order of Riemann invariants. Based on the location of the right
boundary points in a certain region, the corresponding wave
structures can also be proposed, which coincide with those
for the previous case.

V. CONCLUSIONS

In conclusion, the Riemann problem of the Gerdjikov-
Ivanov equation governing the photon fluid with quintic
nonlinearity has been studied by means of the Whitham
theory. The algebro-geometric solution and the Whitham
equations corresponding to the one-phase periodic solution
are formulated. Then the main basic wave structures of the
Riemann problem are found such as the rarefaction waves, the
cnoidal dispersive shock waves, the contact dispersive shock
waves, and the combined undular bores. Finally, the solution
classification of the Riemann problem of the Gerdjikov-
Ivanov equation is discussed and many exotic optical undular
bores are found. It is worthwhile noting that all the results
from Whitham theory are verified by full numerical simula-
tions.

FIG. 20. The structures of the Riemann invariants and solution of
the Gerdjikov-Ivanov equation (2) in case F at t = 1. (a) represents
the evolution of the Riemann invariants in terms of the variable ξ ,
and (b) and (c) display the wave patterns of the density function ρ

and velocity function w from Whitham theory (thick red) and numer-
ical calculations (thin blue), respectively. Here, the parameters are
λL

+ = −1.01, λL
− = −1.63, λR

+ = −3.02, λR
− = −3.54.
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APPENDIX

This Appendix considers the traveling-wave solution of
the hydrodynamic system (62) by taking the traveling-wave
transformation

ρ(x, t ) = ρ(ξ ), w(x, t ) = w(ξ ), ξ = x − V t .

In this case, the following ordinary differential equa-
tions are derived:

−V ρξ + 2ρξw + 2ρwξ + ρρξ = 0, (A1)

−V wξ + 2wwξ − (ρw)ξ − ρρξ

= 1√
ρ

(
ρξξ

2
√

ρ
− ρ2

ξ

4ρ
3
2

)
ξ

. (A2)

Integrating Eq. (A1) once, yields

w = 1

2
V − 1

4
ρ + C

2ρ
, (A3)

where C is an integral constant. Substituting (A3) into (A2)
gives

−3

8
ρρξ − c2ρξ

2ρ3
− 1

2
V ρξ =

(
ρξξ

2ρ
− ρ2

ξ

4ρ2

)
ξ

. (A4)

Then integrating Eq. (A4), one has

− 3

16
ρ2 + c2

4ρ2
− 1

2
V ρ =

(
ρξξ

2ρ
− ρ2

ξ

4ρ2

)
ξ

+ B, (A5)

where B is an integral constant. Multiplying the above equa-
tion by ρξ , integrating it and introducing the integral constant
A, we have

ρ2
ξ = − 1

4ρ4 − V ρ3 − 4Bρ2 − 4Aρ − C2 (A6)

= − 1
4 (ρ − ρ1)(ρ − ρ2)(ρ − ρ3)(ρ − ρ4), (A7)

where ρ1, ρ2, ρ3, ρ4 are real roots of the algebraic equation
1
4ρ4 + V ρ3 + 4Bρ2 + 4Aρ − C2 = 0 satisfying ρ1 � ρ2 �

ρ3 � ρ4. In this case, Eq. (A6) coincides with the previous
equation (25). Thus the four constants A, B, C, and U can be
expressed by ρi (i = 1, 2, 3, 4) as

A = − 1

16

∑
i< j<s

ρiρ jρs, B = 1

16

∑
i< j

ρiρ j, (A8)

C = ±1

2
√

ρ1ρ2ρ3ρ4, V = −1

4

4∑
i=1

ρi. (A9)

It is obvious that

ρ1 � ρ � ρ2, ρ3 � ρ � ρ4, (A10)

which permits one to get the real solutions for Eq. (A6). To
be specific, for ρ1 � ρ � ρ2, the traveling-wave solution is
obtained as

ρ(ξ ) = ρ2(ρ4 − ρ1) − ρ4(ρ2 − ρ1)cn2(ω, m)

ρ4 − ρ2 + (ρ2 − ρ1)sn2(ω, m)
, (A11)

w(ξ ) = 1

2
V − 1

4
ρ + C

2ρ
, (A12)

where ω = √
(ρ3 − ρ1)(ρ4 − ρ2)ξ/4 and

m = (ρ4 − ρ3)(ρ2 − ρ1)

(ρ4 − ρ2)(ρ3 − ρ1)
. (A13)

When ρ3 � ρ � ρ4, another traveling-wave solution is ob-
tained as

ρ = ρ3(ρ1 − ρ4) + ρ1(ρ4 − ρ3)cn2(ω, m)

ρ1 − ρ3 + (ρ3 − ρ4)sn2(ω, m)
, (A14)

w = 1

2
V − 1

4
ρ + C

2ρ
, (A15)

where ω = √
(ρ3 − ρ1)(ρ4 − ρ2)ξ/4 and

m = (ρ4 − ρ3)(ρ2 − ρ1)

(ρ4 − ρ2)(ρ3 − ρ1)
. (A16)
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