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Emergence of chimeras: An impetus by exceptional points
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A nonconservative system with nonreciprocal interaction has been found to reveal exotic features where
sudden phase transitions can occur. In this paper, the emanation of a chimera in a network of Stuart-Landau
oscillators with nonreciprocal interaction is reported. Note that the spins follow the random discrete distribution.
In other words, we pick a random oscillator to rotate clockwise or anticlockwise. At the transition points, we find
the spectral singularities in the eigenplane, where eigenvalues coalesce, commonly known as exceptional points.
We find that the counterrotational symmetry breaking induced by exceptional points antecedents the occurrence
of the chimera. We numerically attest to the findings for two cases of initial conditions, namely, bipartite and
random. We also extend our study to a two-dimensional array of nonreciprocally interacting, distributed spins.
The findings could have pragmatic implications in the areas of active matter, networks, and photonics.
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I. INTRODUCTION

The collective behavior of agents that alter their state
according to neighbors is of paramount significance [1–5].
Such systems scale from the hydrodynamics of microorgan-
ism swarming [6], flocking of birds [7,8], to human social
interactions [9,10]. The description of the emergence of col-
lective phenomenon roots from statistical physics, though
the local interactions may not resemble the Ising spin. The
correlation between the organisms plays a key role in the
organization of the cluster dynamics. Apart from the clus-
ters that arise in complex networks where diffusion is the
caveat, the nonreciprocal interaction enforces pattern forma-
tion where asymmetric long-range interactions are the key
[11]. For instance, plant-animal mutualistic networks [12,13],
or an epitome of olfactory receptor neurons in Drosophila
[14] manifest interactions that are not symmetric. In the above
biological models, the system converges to a homogeneous
solution, while only nodal interactions are taken into account.
Despite this, heterogeneous solutions spontaneously emerge
in the presence of long-range interactions among the units.
Also, nonreciprocity prevails in active systems that arise in
physics, biology, and the social sciences [15–17]. It can be
realized through synthetic physical interactions [18], leader-
follower relations [19], or programmable robotic interactions
[20,21].

A non-Hermitian (H �= H†) matrix arises in a model where
the units interact with their environment. The existence of
non-Hermitian H in a nonreciprocal interaction has been
reported recently [22–24]. Non-Hermiticity leads to the spon-
taneous breaking of time translational symmetry that enforces
pattern formation in the model. A PT -symmetric Hamilto-
nian undergoes a further phase transition to the steady state
in time (time crystals) as a function of parameter variation
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due to the non-Hermitian nature of the stability matrix.
The stability of the phases is determined by evaluating the
eigenmodes of �J . If the perturbations become undamped
yet the growth rate σi becomes close to zero, this signifies
the phase transition to the chiral phase. At this point, the
spectrum of the eigenvalues coalesce, termed as exceptional
points [25–27]. More generally, exceptional transitions can be
viewed as the dynamical restoration of a spontaneously bro-
ken continuous symmetry: the steady state is actuated by the
parameter variation, and after the transition, the system runs
along the manifold of degenerate ground states. Exceptional
points commonly indicate the transition between traveling
or oscillatory solutions and exponentially decaying dynam-
ics. The nonmutual or nonreciprocal interactions that foster
the splitting and merging of dynamical states often coincide
with the coalescence of Lyapunov covariant vectors, which
marks the generalization of exceptional points in nonlinear
dynamics [28]. Conspicuously, in photonic systems, optical
gain and loss modes manifest the emergence of exceptional
points that dramatically alter the cumulative effect, leading
to a range of exotic functionalities associated with abrupt
phase transitions in the eigenvalue spectrum [29]. Lately, non-
Hermitian degeneracy has also been used for the design of
laser systems, new nonlinear optics phenomena, and scatter-
ing features in open systems. Significantly, a magnetic bilayer
with unidirectional coupling was shown to exhibit electrically
actuated spin-current transmission, and unidirectional spin-
wave packet generation and propagation [30].

Conversely, a well-established notion of collective dynam-
ics in diffusive networks, namely, the chimeras, has been
found in many complex networks [31–35]. Also, in certain
models, a transition to a steady state has been encountered
in the chimeric regime, termed chimera death. Due to the
interplay of nonlocality and the breaking of rotational sym-
metry by the coupling, an abrupt transition from chimeric
oscillations to a steady state has been noticed [36–38]. A
two-level synchronization mechanism has been found to give
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rise to the chimera in a two-frequency model where sequential
alternation of synchronized and asynchronous domains exists.
As the system evolves, the frequency ωi of each oscillator will
poise towards one of the two attracting fixed points depending
on their initial conditions. At the borders of two-frequency
domains, asynchronous oscillations persist [39].

Motivated by the above facets, we interrogate whether
chimeras can arise through exceptional points (EPs) in a
network with nonreciprocal interaction. In this study, we
extrapolate the origin of chimera with the impetus of EPs.
Analogous to the non-Hermitian degeneracies, we find a
counterrotational symmetry-breaking mechanism inducing
chimeric patterns in a network with asymmetric interaction.
At that point of symmetry breaking, we detect spectral singu-
larities in the eigenplane. Notably, we find an intriguing state
where the collective state of a network consists of coherent,
incoherent, and damped state, which we coin as demonic
chimera (DC). We chose a network of Stuart-Landau oscil-
lators with clockwise and anticlockwise rotations distributed
in a specific way to affirm the presence of the chimeric pat-
terns. Also, we investigate a two-dimensional (2D) array of
oscillators with nonreciprocal interaction.

The organization of the paper is as follows. Section II
presents the model description along with a stability analysis.
Section III discusses the results of the numerical simulations.
Section IV summarizes the findings with a conclusion.

II. GOVERNING EQUATION

The general form of the network with nonreciprocal inter-
action is written as

Ẋi = F (Xi ) + ε1X j − ε2X j, (1)

where Xi = [x1, x2, x3, . . . , xN ]T ∈ RN is the matrix repre-
senting the individual states of the oscillator. F (.) denotes a
nonlinear function that defines the rule of evolution. Note that
the sign of interaction for either ± rely on the frequency of
the ith oscillator. A pair of oscillators can have a attraction or
level of repulsion based on the angular frequency of the i. We
choose N = 120.

As an high point, we take a network of nonlinear oscillating
equations near the supercritical Hopf bifurcation, namely, the
Stuart-Landau (SL) model. The SL dynamical model is first
introduced to analyze the transition to turbulence in a plane
Poissuille flow [40,41]. The hydrodynamic stability varies
with the magnitude of the disturbance. Precisely, the complex
growth rate σ + iω determines the hydrodynamic stability.

Due to the ubiquity of the equation, it finds potential sig-
nificance in fluid dynamics [42], Belusov-Zabotinsky [43]
reactions, and so on. The ż j = f (z j ) presents the complex
form for the SL equation with the local j = 1, . . . , N deter-
ministic dynamics is given by [44]

f (z j ) = (A + iω − |z j |2)z j, (2)

where z j = xi + iyi = r j eiφ j ∈ C, with xi, yi ∈ R. A single SL
oscillator exhibits self-sustaining oscillations with frequency
ω and radius r j = √

A. A network of SL oscillators with
nonreciprocal interaction in Cartesian form can be laid out as

ẋi = (
A − x2

i − y2
i

)
xi − ωiyi − ε1G(ω)x j + ε2[1 − G(ω)]x j,

ẏi = (
A − x2

i − y2
i

)
yi + ωixi, (3)

where A is the amplitude of the disturbance, ωi is the angular
frequency of the ith oscillator. Note that we fix ωi = ±1
based on a specific distribution. We remark that ω = 1 denotes
the clockwise rotation and ω = −1 is for the anticlockwise
rotation. The attractive or repulsive interaction between the
nearest neighbors has been doomed by ωi. The discrete scaling
function G(ω) is given by

G(ω) =
{

0, ωi = −1,

1, ωi = 1.
(4)

We pick a random discrete distribution of ωi. We numerically
study the two cases of initial conditions and the associated
behavior. In case I, thebivariate initial conditions and in case
II, purely random initial conditions. The stability analyses
for the two coupled oscillators are given below. The singular
exceptional points are given by

x∗
1 = −ω1 − ε1 − ω2

1(A − ω1 − ε1),

y∗
1 = ±√

A − ω1 − ε1,

x∗
2 = −ω2 − ε2 − ω2

2(A − ω2 − ε2),

y∗
2 = ±√

A − ω1 − ε2, (5)

and the parity symmetric exceptional points are

x∗
1 =

√
−2ω1 − ε1,

y∗
1 = ±

√
−A + 2ω1 − ε2 − ω1,

x∗
2 =

√
2ω2 + ε2,

y∗
2 =

√
A + 2ω1 + ε1 + ω2. (6)

The stability determining matrix of the two coupled oscillators
can be written as

�J =

⎡
⎢⎢⎢⎣

A − 3x2
1 − y2

1 − ω1 −2y1x1 − λ −ε1 0
−2x1y1 − λ A − 3y2

1 0 0
ε2 0 A − 3x2

2 − y2
2 − ω2 − λ −2x2y2

0 0 −2x2y2 A − x2
2 − 3y2

2 − ω2 − λ

⎤
⎥⎥⎥⎦. (7)

At λ = 0, the critical transition point is derived as

ε1 = A − 3x2
1 − y2

1 − ω1
[
A − 3y2

1

(
A − 3x2

2 − y2
2 − ω2

)(
A − x2

2 − 3y2
2 − ω2

) − (2x2y2)2]
−(2x1y1)2

(
A − 3x2

2 − y2
2 − ω2

)(
A − x2

2 − 3y2
2 − ω2

) − (2x2y2)2
/[

A − 3y2
1

(
Aε2 − x2

2 − 3y2
2 − ω2

)]
. (8)
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FIG. 1. Empirical numerical estimate of the parameter space in
the ε1–ε2 plane. Note that the initial conditions are bipartite. A series
of complex collective phenomena as a function of coupling strengths
are shown. The transition from chimeras to demonic chimeras to 2C-
oscillation death occurs due to the breaking of rotational symmetry.
We see a midregion of space where nodes aligned as a two cluster
antiphase synchronized states. The dotted lines are an approximate
estimation of the boundaries that separates each distinct region.

III. NUMERICAL STUDY

We perform a numerical simulation of Eq. (2) with Runge-
Kutta O(4) with the fixed �t = 0.01. The nonreciprocal
interaction with random spins is found to induce intriguing
chimeras due to the breaking of rotational symmetry at ex-
ceptional points. The role of initial conditions on the resultant
chimeric patterns has been widely investigated.

A. Case I: Bipartite initial conditions

We choose x0, y0 > 0 for N/2, and the next half of
the oscillators in networks start in the negative quadrant
x0, y0 < 0. We compute the empirical parameter space with
an order parameter that averages the amplitude of each node
i, Fig. 1. The order parameter 〈A〉 = 1

N

∑N
i=1{ 1

T

∫ T
0 xi(t ) dt}.

Based on the range of averages, we classify the regions into
different dynamical regimes. Note that the frequencies ωi

follow a discrete random distribution. The parameter space
is computed with 50 different sets of initial conditions, and
the mean of the order parameter is taken into account. In the
ε1 − ε2 parameter plane, we found chimeras (CHM), demonic
chimeras (DC), two-cluster parity-symmetric states (2C-OD),
and two-cluster antiphase synchronized states (2C-AP). The
dotted lines are laid out numerically to have rough boundaries
between dynamic regimes. We see that there is a clear phase
transition from chimera to demonic chimera (DC) to 2C-OD
in 0 < ε1 < 1. We find that this transition occurs through the
breaking of the rotational symmetry of the nearest neighbors.
Initial conditions play a key role in achieving these states.
The inertia of the ith oscillator pulls the i + 1 towards align-
ment due to +εx j . In contrast, the level repulsion induced by
−εx j pushes the adjacent oscillators away from each other.
Hence, spins with closely related phases club together to
form synchronized clusters, while those that start apart di-
verge to produce incoherent regimes. We notice an interesting
state between the chimera and 2C-OD states, where coherent,
incoherent, and nonoscillatory states coexist in space for a

particular value of nonreciprocity. We coin this state as “de-
monic chimera.” At some region of 1 < ε1 < 2, two clusters
of antiphase synchronization persist where the oscillators an-
tialign with each other. Note that we find a multiclustered
antiphase synchronized state. The boundary between distinct
states is marked by exceptional points. These EPs induce the
breaking of rotational symmetry that causes the phase transi-
tion among different states. We observe that these phenomena
are initial phase-dependent states induced by nonreciprocity.
From the perspective of EPs, the coalescence of eigenmodes
induces this sort of transition. The order parameter 〈A〉 falls
into a certain bin for each ordered and disordered phase. The
critical eigenvalue spectrum within the parameter regime is
found to be linearly independent λ1 = λ2 marks the presence
of EPs. The nonreciprocal interaction thus ensures nonorthog-
onality of eigenmodes, i.e., the eigenvalues are parallel at
the transition points. The eigenvalues of linearized �J equals
λ = σ + iω, and involves both the growth rate and frequen-
cies. Also, the real part of the eigenvalue, which dictates the
growth rate of σ , is close to zero in a damped state. In non-
Hermitian quantum mechanics, these transitions are supposed
to be poised towards spontaneous PT symmetry breaking.
The dynamic restoration of the damped state is ensured by
the spontaneous parity symmetry formation with the variation
in parameter.

We extracted distinct dynamical regimes from the param-
eter space, Fig. 1 and presented them in Fig. 2. The relevant
spatiotemporal patterns, snapshots, and polar plots of the ith
phase at an instant of time are presented in a row. Figure 2(a)
shows the chimeric patterns that involve the coexistence of
distinct synchronized and incoherent regimes at ε1 = 0.1,
ε2 = 0. Note that the bipartite initial conditions favor the
clustering of counterregimes. Due to the randomness involved
in the distribution of ωi, we see intermittent phase slips in
the synchronized domain. The snapshot and the polar plot
reveal the coexistence of ordered and disordered phases. In
Fig. 2(b), at ε1 = 0.3 and ε2 = 2, a distinguished pattern
of concurrent presence of incoherent, coherent, and strips of
damped regions manifests the DC. We find the prevalence of
this dynamic near the transition to a parity symmetric state.
The dynamic restoration as a function of a parameter near
the edge of transition to a damped state is responsible for the
occurrence of DC. Figure 2(c) shows the emergence of a parity
symmetric damped state at ε1 = 1.5 and ε2 = 2. Also, we
infer that the counterpropagation of phases along the network
causes rotational asymmetry and leads to a damped state.

Next, we compute the autocorrelation index (CI) of the
neighboring nodes Ci j (〈A〉). Explicitly, Ci j (〈A〉) = |〈Ai〉 −
〈Ai+1〉|. The measure reveals the correlation of the amplitudes
that appear in distinct patterns. The identical adjacent points
mark the degree of synchronization between the nodes, Fig. 3.
If i and i + 1 are completely synchronized then Ci j (〈A〉) = 1,
otherwise they are scaled by a fraction. The CI at ε1 = ε2 = 0
shows the characteristics of incoherence by displaying dis-
similar adjacent points (blue line with dots). The region at
which Ci j (〈A〉) = 0 denotes complete incoherence. At ε1 =
0.3 and ε2 = 0.5, we find two-cluster antiphase synchroniza-
tions. The erratic behavior in the CI profile is evident from
Fig. 3(a) (olive green line with dots). The adjacent oscillators

024220-3



M. PAUL ASIR PHYSICAL REVIEW E 108, 024220 (2023)

FIG. 2. Note that the initial conditions are bipartite. A series of complex collective phenomena as a function of coupling strengths are
shown. Rows distinctly decipher the states at a particular parameter through spatiotemporal patterns, snapshots, and Polar plots (from left to
right). (a) Row depicts the chimera state at ε1 = 0.1, ε2 = 0 	→ chimera. (b) ε1 = 0.3, ε2 = 2 	→ demonic chimera. (c) ε1 = 1.5, ε2 = 2 	→
2 cluster damped state.

FIG. 3. (a) Autocorrelation index between adjacent average amplitudes of the oscillators 〈A〉 in a network with N = 120. We choose
initial conditions distributed into two halves of N with opposite signs. The blue and the olive dotted lines represents the Ci j (〈A〉) of the
incoherent (INC) and two-cluster antiphase synchronized states (2C-APS) in a network. The zero auto-correlation index indicates exactly the
complete incoherence. The coupling strengths leads to attraction and level repulsion in the Riemann’s surface of eigenvalue plane are denoted
as ε1 = 0, ε2 = 0 for incoherent domain. The ε1 = 0.3, ε2 = 0.5 two cluster antiphase synchronized states (2C-APS). (b) ε1 = 0.3, ε2 = 2 for
demonic chimera (DC) states (blue lines with dots). ε1 = 0.1, ε2 = 0 for chimera (CHM). (c) The autocorrelation index Ci j (〈A〉N ) for 〈A〉 with
an increase in N . The τ (N ) indicates the interval to obtain correlation in N .
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do not align exactly opposite to each other, but the overall
index averages to Ci j (〈A〉) = 0.5. For i > 80, most of the
oscillators align exactly at opposite phases. The amplitude
correlation of DC at ε1 = 0.3, ε2 = 2 is shown in Fig. 3(b).
Uniform points in the interval of 65 � i � 80 indicate a sta-
ble damped regime. While the initial nodes of the network
displaying lesser CI disseminate incoherence. In the interval
20 < i < 60, Ci j (A) � 0.8 shows the coherent regime. Also,
the CI profile of the chimera is shown at ε1 = 0.1
and ε2 = 0.

Further, we trace the evolution of the amplitude correla-
tion index as a function of the number of the oscillators in
a network. The ordinate denotes the correlation delay τ (N ),
Fig. 3(c). We find that, with an increase in the τ (N ), the
Ci j (〈A〉N ) averages to half. In an incoherence regime, the
correlation index occupies lower values. However, long-range
correlations are approximately 0.5. The chimeric pattern au-
tocorrelation index Ci j (〈A〉N ) > 0.5 is due to the presence
of coherent regimes. The long-range correlation is almost
similar to the incoherent regimes due to the coexistence of
ordered and disordered states. Analogous to chimeras, the DC
also exhibits a decay of long-range correlation. We explore
the mechanism behind the emergence of chimeras through
exceptional points, Fig. 4. The bifurcation of two coupled
oscillators with opposite spins as a function of ω1 ∈ [−1, 1]
is plotted in Fig. 4(a). We fix ω2 = 1. We wish to excavate
the role of rotational asymmetry coincident with exceptional
points in influencing the transition to chimeras. We fix the
interaction strengths, ε1 = 0.05 and ε2 = 0.0. The forward
and backward continuation bifurcations display discontinuity
due to the singularities present in the eigenplane. We claim
that, at that interval of space, the exceptional point emerges,
which pivots the breaking of counterrotational symmetry that
leads to chimeric patterns. We also calculate the expectation
value of the energy given by

〈E〉 = 1

T

∫ T

0
Xi(ω)Xj (ω)	i j, (9)

where 	i j = 1
t ln | dF

dx |x=x∗ is the covariant Lyapunov eigen-
values. Figure 4(b) shows a codimension of two bifurcations
in the ω1–ω2 plane. The estimated 〈E〉 posses singularity
at the point of transition seen from the white space on the
map shown at the top. We find that the eigenvalues at these
points possess a signature of coalescence, i.e., λ1 = λ2. At the
exceptional point, counterrotational symmetry breaks, which
leads to the dynamical restoration of parity symmetry. Also,
the nonreciprocal interaction ensures the nonorthogonality
of eigenvectors that enables the spontaneous PT -symmetric
breaking. After the exceptional transition, the spins align
together to form coherent and incoherent clusters that give
birth to chimeras. Near the exceptional points, antiphase and
chimeric clusters exhibit finite wavelength instability in the
transverse direction. The eigenvalues in the vicinity of an
exceptional point behave as s = ±i

√
�, where � is a char-

acteristic distance from the exceptional point. Typically, s =
±σ + iω, where at-least one of the σ has a positive real part,
causing instability. The demonic chimeras also arise as a con-
sequence of parity symmetry at the edge of the transition to
damped mode. To trace the evolution of exceptional points, we

FIG. 4. (a) Forward and backward bifurcation plots in the ω1 −
xmax plane. Note that we fix ω2 = 1. The singularities can be found
near ω1 ≈ 0 where the exceptional points lie. (b) Two-parameter
plot depicting the mean energy 〈E〉 fluctuations in the fabric. The
top layer shows the density of 〈E〉. Note that the light spots denote
the exceptional points where eigenvalues coalesce. (c) ω1 versus 〈E〉
with fixed ω2 = 1, ε = 2, ε = 1.5. The points above the blue line
correspond to exceptional points.

calculate the energy as a function of ω1 with a fixed ω2 = 1.
The blue line denotes the 〈E〉 above which exceptional points
arise. We see that with the fixed ω2, most of the EPs lie in the
negative quadrant.

B. Case II: Random initial conditions

Next, we move on to investigate the role of pure random
initial conditions on the exceptional points that enforce pat-
tern formation. We find an incoherent state at ε1 = ε2 = 0 as
shown in Fig. 5(a). The corresponding random distribution
of phases in the snapshot and polar plot prove the state.
With a further increase in coupling strength to ε1 = 2 and
ε2 = 2.1, we observe multicluster synchronized regimes lo-
cated among incoherent phases. This shows the existence of
chimeric patterns, Fig. 5(b). Due to the randomness in the
distribution of the initial phases and frequencies, the number
of clusters or the site at which they appear will alter with every
iteration. Also, we evince the existence of demonic chimera
where oscillation states with order and disordered and damped
regimes coexist at ε1 = 2.5 and ε2 = 2. In Fig. 5(c) we trace
the strips of nonoscillatory parity-symmetric states along with

024220-5



M. PAUL ASIR PHYSICAL REVIEW E 108, 024220 (2023)

FIG. 5. Note that the initial conditions are random. A series of complex collective phenomena as a function of coupling strengths are
shown. Columns distinctly decipher the states at a particular parameter through spatiotemporal patterns, snapshots, and Polar plots (from left
to right). (a) Row depicts the incoherence state at ε1 = ε2 = 0. (b) ε1 = 2.0, ε2 = 2.1 	→ chimera. (c) ε1 = 2.5, ε2 = 2 	→ demonic chimera.
(d) ε1 = 2.5, ε2 = 3 	→ 2 cluster OD state.

coherent and incoherent regimes. Upon further increasing the
ε1 = 2.5 and ε2 = 3, we find a completely damped state with
two distinct clusters arising due to the dynamic restoration of
the parity symmetric state, Fig. 5(d).

As in the previous case, we study the amplitude correlation
characteristics of the distinct patterns found in Eq. (3) with
random initial conditions. Figure 6(a) shows the correlation
index of the two cluster antialigned and DC states. The peri-
odic switching of Ci j (〈A〉) between two values indicates the
presence of two distinctly aligned phases. Also, the demonic
chimera states at ε1 = 2.5 and ε2 = 2.0 can be referred to
from the identical Ci j (〈A〉) of adjacent nodes for i > 60. It
shows the presence of coherent oscillatory and damped states.
Note that the ergodic correlation index for i < 60 is due to

randomness in initial phases. At a null value of interaction
strength ε1 = ε2 = 0, the incoherence is identified from the
elevated CI. From Fig. 6(b), randomly aligned incoherent
phases and coherent clusters can be identified from the cor-
responding CI at i < 60 and i > 80. Note that Ci j (〈A〉) shows
an identical correlation index near i � 100.

We study the long-range amplitude correlation index of
distinct dynamical patterns as a function of τ (N ), Fig. 6(c).
With an increase in τ (N ) the Ci j (〈A〉N ) asymptote to a con-
stant value. We find an exponential decay of the correlation
index as the correlation distance increases. Demonic chimeras
shows a similar pattern but with a elevation in the tail. Ob-
viously, for incoherence Ci j (〈A〉N ) > 0.5, yet suffers a mild
decay as τ (N ) grows.
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FIG. 6. (a) Autocorrelation index between adjacent average amplitudes of the oscillators 〈A〉 in a network with N = 120. We choose initial
conditions randomly distributed into two halves of N with opposite signs. The blue and the olive dotted lines represents the Ci j (〈A〉) of the
two-clustered antiphase synchronization (2C-APS) and complete incoherence (INC) in a network. The zero autocorrelation index indicates
exactly the opposite phases of adjacent oscillators. The coupling strengths leads to attraction and level repulsion in the Riemann’s surface of
eigenvalue plane are denoted as ε1 = 0.5, ε2 = 0.35 for 2C-APS. The ε1 = 2.5, ε2 = 2.0 for demonic chimera (DC). (b) ε1 = 0, ε2 = 0 for
incoherent domain (blue lines with dots). ε1 = 2, ε2 = 2.1 for chimera (CHM). (c) The autocorrelation index Ci j (〈A〉N ) for 〈A〉 with an increase
in N . The τ (N ) indicates the interval to obtain correlation in N .

IV. CHIMERAS IN NONRECIPROCAL
NETWORK: 2D ARRAY

Higher-dimensional chimera states are particularly aston-
ishing due to their prevalence in the fields of optics [45], phase
oscillators [46], superconducting quantum interference device
(SQUID) metamaterials [47], and so on. In addition, spiral
wave chimeras have been found in a 2D array of nonlocally

coupled Belusov-Zhabotinsky reactions [48]. These spirals
with an asynchronous center surrounded by synchronous
clusters have been found to occur in SQUID metamaterials
[49], cortical tissues [50], cillia carpets [51], and optome-
chanical microresonators [52]. We study the emergence of
chimera states in a 2D array of Eq. (3) with nonreciprocal
interaction. The equations of motion in a 2D array can be
written as

˙xi, j = (
A − x2

i, j − y2
i, j

)
xi, j − ωiyi, j − ε1G(ω)[xi+1, j + xi−1, j + xi, j+1 + xi, j−1 − 4xi, j]

+ ε2(1 − G(ω))[xi+1, j + xi−1, j + xi, j+1 + xi, j−1 − 4xi, j],

˙yi, j = (
A − x2

i − y2
i

)
yi, j + ωixi, j − ε1G(ω)[yi+1, j + yi−1, j + yi, j+1 + yi, j−1 − 4yi, j]

+ ε2(1 − G(ω))[yi+1, j + yi−1, j + yi, j+1 + yi, j−1 − 4yi, j]. (10)

We follow the random discrete distribution for ωi with op-
posite spins. Based on the value of ωi the interaction between
the nearest neighbors is an attractive or level repulsion in
a cube. We perform numerical simulations of Eq. (10) in a
15 × 15 grid of Stuart-Landau oscillators. The nonreciprocal
interaction induces chimeric patterns in a 2D array, as shown
in Fig. 7(a). At ε1 = ε2 = 0.5, Eq. (10) displays a chimera
state as shown in Fig. 7(a). We see distinct coherent and
incoherent regimes at the surface of the cube. Note that the
initial conditions are bipartite. We see that the amplitude of
the right half of the cube is considerably less than the left. It
is due to the partial distribution in the initial phases, along
with randomized ωi. Also, it leads to suppression of oscil-
lations in the N/2 oscillators with the parameter interplay.

We infer that, unlike in the one-dimensional nonreciprocal
interactions, 2D arrays are highly correlated according to their
initial phases. It causes the definite clustering of oscillators
into two distinct regimes. Note that we have interactions in
both state variables, unlike in the one-dimensional model.
At ε1 = 1.5 and ε = 2, we find the coexistence of traveling
waves, damped, and coherent oscillations displaying a sort
of demonic chimeras, Fig. 7(b). With an increase in coupling
strength, the +ε brings in more harmony and causes traveling
waves, while −ε suppresses the amplitude. The decrement
in amplitude results in damped states and small amplitude
oscillations. The amplitude response of the overall network
is elevated, pivoting an increase in interaction strength due to
the strong coupling.
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FIG. 7. Chimeric patterns in a 2D array of oscillators with nonreciprocal interactions. (a) Chimera state at ε1 = ε2 = 0.5. (b) ε1 = 1.5,
ε2 = 2 : demonic chimera. (c) Density of coherent oscillators in a unit cube (ρ) for three states ε2 = 0.05, incoherence; ε2 = 0.5, chimeras and
ε2 = 0.8, demonic chimera.

We also calculate the density ρ of coherent states based on
the autocorrelation of states in a unit cube with the variation
in ε1. The ρ is calculated using

ρ = 1

N
Ci j (〈A〉), (11)

Ci j (〈A〉) =
{

0, |〈Ai〉 − 〈Aj〉| < δ,

1, |〈Ai〉 − 〈Aj〉| > δ.
(12)

We choose δ = 10−3 to determine the ρ of coherent states.
We fix ε2 = 0.05 and vary ε1 ∈ [0, 2]. We see that the inco-
herent regime follows a low correlation index as ε1 proceeds,
Fig. 7(c). At ε2 = 0.5, we detect chimera states. The ρ follows
an increasing trend with the evolution of ε1. In the case of
demonic chimeras, at ε2 = 0.8, we find shuffling of intensities
with an increase in ε1. It appears due to the presence of
traveling waves in the pattern.

V. CONCLUSION

We study the emergence of chimera states in a network
of oscillators with opposite spins. Note that the interaction
among the units is nonreciprocal. The interaction switches
according to the spin of an oscillator, i.e., clockwise or anti-
clockwise. It was found that, due to the spontaneous symmetry
breaking of counterrotational symmetry, drifting in spins oc-
cur, which causes chimeric patterns. We found that, at the
point of transition, exceptional points arise due to the coa-
lescence of eigenvalues. The spectrum of singularities in the
parameter space has been estimated numerically. Also, the dy-
namical restoration of the damped state was preserved because
of parity symmetry. Note that the distribution of frequencies
is discrete and random. We investigated two cases of initial
phases, viz., bipartite and random. In both cases, we found

the appearance of chimeric patterns. Specifically, we noticed
an intriguing additional state at the edge of the transition to a
damped state, namely, the dDemonic chimera. It is called so
because of the coexistence of regular, disordered, and damped
regimes. The correlation indices between adjacent nodes are
imparted to conceive the dynamical patterns. Moreover, the
influence of nonreciprocal interactions is shown in a 2D array
of randomly distributed spins. We confirm the appearance of
chimera and demonic chimera as in the previous case. This
theory will find fruitful application in the fields of metama-
terials and optomechanical arrays. Specifically, due to the
presence of exceptional points, sensors can be made in the
field of photonics.
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APPENDIX: STUART-LANDAU OSCILLATOR

A pioneer in the school of autonomous oscillators is the
Landau-Stuart oscillator that represents an Andronov-Hopf
(AH) bifurcation. The AH bifurcation demonstrates the evo-
lution of the limit cycle out of a stable equilibrium. With a
change in parameter, a stable origin gets destabilized and gives
birth to a stable limit cycle. The LS equation represents the
Andronov-Hopf bifurcation and can be written as

ż = −ω|z|2z + μz, (A1)

where z ∈ CN and μ, ω ∈ C. The μ = Re(μ) + iμ and
ω = Re(ω) + iω are the parameters determining the distance
from the Andronov-Hopf bifurcation and the frequency of
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oscillations. The particular case of interest is the Re(ω) >

0 or Re(ω) < 0. We know that positive ω leads to clock-
wise rotation of the oscillation and negative ω causes
anticlockwise oscillation. Also, it is significant to note that
at ω = 0, the Benjamin-Feir instability causes dispersion of
waves. Precisely, the waves of equal and opposite magni-
tude destabilize each other. It is the significant cause in
this study for the manifestation of exceptional points in the
eigenplane.

At another perception, the mathematical insight of oscil-
lations is a recurrence of trajectories in the phase space in a
small neighborhood of δ with an advancement in time. The
function f (x) := C 	→ C is recurrent in the space δ > 0, there
exists Tδ > 0 such that for any t � 0 there exists T (t, δ) ∈
(0, Tδ ) such that

|x(t + T (t, δ)) − x(t ))| < δ. (A2)

In other words, a recurrent trajectory keeps on passing ar-
bitrarily close to any point and the time intervals between
passages through a point and its δ vicinity are not necessarily
equal but their length cannot grow indefinitely.

The behavior of the system is more clearly demonstrated in
polar coordinates. That is, let z = Reiφ , then the equations for
the radial amplitude r and the angular variable φ can be
decoupled into

ṙ = μr − ωr3,

φ̇ = iμ − iωr2, (A3)

when μ < 0, the origin is stable at r = 0. However, μ > 0,
the stable fixed point r∗ =

√
μ

ν
, when r = 0, the fixed point

becomes unstable. In this case, the initial conditions starting
whether from inside or outside converge to a limit cycle of am-
plitude r. The z(t ) represents the phase at instant of time in the
complex plane and it forms a limit-cycle attractor of amplitude√

μ

ν
. The bifurcation of the limit cycle from the origin that

appears at the value μ = 0 is known as the Andronov-Hopf
bifurcation; the curve defines the limit cycle of the system is
given by


α =
√

μ

ν
cos(t ) +

√
μ

ν
sin(t ). (A4)

The manifold of Eq. (A3) can be written as

W =
{

z ∈ C : |z| =
√

μ

ν

}⋃
{z = 0}, (A5)

where W remains invariant for the trajectories of Eq. (A3).
The following theorem generalizes the statement, concerning
the case of ω and ω1.

Theorem. For the unforced Stuart-Landau oscillator, de-
fined by Eq. (A3), the following statements hold true.

(i) If μ � 0, the z ≡ 0 is globally exponentially stable.
(ii) If μ > 0, then the limit cycle W = {z ∈ C : |z| =√

μ

ν
} is almost globally asymptotically stable and the origin

z = 0 is antistable. Moreover, in this case the oscillation fre-
quency ω is defined by ω = i ω – iν

ν
μ.
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