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Noise cross correlations can induce instabilities in coupled driven models
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We study the effects of noise cross correlations on the steady states of driven, nonequilibrium systems,
which are described by two stochastically driven dynamical variables, in one dimension. We use a well-known
stochastically driven coupled model with two dynamical variables, where one of the variables is autonomous,
being independent of the other, whereas the second one depends explicitly on the former. Introducing cross
correlations of the two noises in the two dynamical equations, we show that depending upon the details of the
nonlinear coupling between the dynamical fields, such cross correlations can induce instabilities in the models
that are otherwise stable in the absence of any cross correlations. We argue that this is reminiscent of the rough-
ening transition found in the Kardar-Parisi-Zhang equation in dimensions greater than two. Phenomenological
implications of our results are discussed.
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I. INTRODUCTION

Time-dependent statistical descriptions of condensed mat-
ter systems are often made in terms of continuum, Langevin
equations of the relevant dynamical variables driven by noises
[1]. The noises represent inherent microscopic stochasticity
of the dynamics. In equilibrium systems, such stochasticity
arises from thermal fluctuations. Conditions of thermal equi-
librium, known as the fluctuation-dissipation theorem (FDT)
[1], ensures that the damping in the system is proportional
to the noise variance, which is assumed to be Gaussian dis-
tributed with a zero mean. The proportionality constant in
fact gives the temperature. In nonequilibrium systems, there
is no FDT, and hence the damping and the noise variance are
independent of each other. As a result, nonequilibrium steady
states (NESS) are far more diverse and complex than their
equilibrium counterparts.

Physical descriptions of many natural driven systems
involve coupled dynamics of several degrees of freedom.
Prominent examples include a driven symmetric mixture of
a miscible binary fluid [2] and magnetohydrodynamics [3].
Stochastically driven binary fluid equations of the velocity
and concentration gradient [4] and magnetohydrodynamics
(MHD) equations of the velocity and magnetic fields [5] have
been used to study turbulence in these systems. In equilibrium
systems, conditions of thermal equilibrium, e.g., in the form
an FDT, ensures that the noise statistics have no role to play
in determining the thermodynamic properties of the system.
For instance, relaxational dynamics, both without and with
a conservation law for the order parameter [6], refer to the
same equal-time, thermal equilibrium properties. In contrast
to equilibrium systems, in the absence of any FDT, varying
the noise statistics can result into distinctly different NESS in
driven systems. For instance, the Kardar-Parisi-Zhang (KPZ)
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equation driven by white noises [7,8] and its conserved coun-
terpart (the CKPZ equation) driven by conserved noises [9]
have very different universal properties.

Introduction of noise cross correlations in a stochastically
driven coupled model necessarily changes the noise distribu-
tion. Whether or not this can lead to a new NESS is a question
of basic importance in nonequilibrium statistical mechanics.
In fact, there are examples where nonzero cross correlations of
the two noises in the two dynamical equations are found to af-
fect the scaling properties of the NESS. The presence of such
noise cross correlations in driven systems cannot be ruled out
on the basis of any symmetry arguments or physical princi-
ples. Simpler reduced models have been proposed and further
studied to explore the role of noise cross correlations. For in-
stance, noise cross correlations in a nonconserved relaxational
model for the complex scalar field turns out to be generally a
relevant perturbation on the equilibrium states of the model
near a critical point [10]. Subsequently, by using a coupled
Burgers model originally proposed in [11], Refs. [11,12] have
shown that noise cross correlations can lead to continuously
varying scaling exponents in the NESS. Effects of noise
cross correlations have been studied in MHD turbulence; see
Refs. [5,13]. These cross correlations have also been con-
sidered in multispecies directed percolation problems [14].
Cross correlations between different dynamical variables can
be potentially important in the scaling properties of com-
plex Ginzburg-Landau equation [15], and even in systems
of noncondensed matter origin, e.g., economic systems [16].
Nonetheless, general understanding of the effects of noise
cross correlations on the NESS of driven models still remains
largely at an early stage.

In this work we revisit the issue of the effects of noise cross
correlations on the NESS of coupled driven models. Since we
are interested in studying a question of principle, it suffices
to work with simple models where explicit calculations can
be performed relatively easily, but still nontrivial results can
be obtained. To that end we use a one-dimensional (1D)
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model [17–19], where one of the fields v(x, t ) is autonomous
and satisfies the well-known 1D Burgers equation [20]. The
second dynamical field b is dynamically influenced by v and
follows an equation similar to the well-known passive scalar
equation with a compressible velocity field. We investigated
the universal spatiotemporal scaling properties. Using a spe-
cific structure of the noise cross correlations, we show that
depending upon the specific model at hand, either it introduces
instabilities to the NESS characterized by well-known scaling
exponents, or is irrelevant (in the renormalization group or
RG sense), leaving the long wavelength scaling properties un-
affected. In the former case, the ultimate steady state that the
instability by the noise cross correlations leads to cannot be
determined from the low-order perturbation theory employed
here. The remainder of this article is organized as follows. In
Sec. II we have introduced the model we have used, along with
the form of the noise cross correlations. In Sec. III we have
discussed the Galilean invariance of the model. Then in Sec.
IV we have discussed the details of the dynamic RG analysis
on the model. In Sec. V we summarize and conclude. Some
of the intermediate technical details, including the one-loop
Feynman diagrams, are given in the Appendixes for interested
readers.

II. MODEL

Noise cross correlations can generically exist in any multi-
variable system described by stochastically driven dynamical
equations for the dynamical variables. Since we are trying to
answer questions of principles, we use a simple, purpose-built
1D model that suffices for our purposes. The model consists
of two dynamical variables v(x, t ) and b(x, t ). Out of these
two, we assume v to be autonomous, i.e., independent of b,
and follows the well-known 1D Burgers equation [20]. This is
given by

∂v

∂t
= ν∂xxv + λ1

2
∂xv

2 + fv. (1)

Here ν > 0 is a diffusivity, and λ1 a nonlinear coupling con-
stant, and can be of any sign. Further, fv is a conserved
noise. Hereafter, we refer to v as the “Burgers velocity field”
[20]. The Burgers equation has the same symmetry (Galilean
invariance, see below) as the Navier-Stokes equation [21]
for viscous fluids and hence serves as a 1D toy model for
“pressureless fluids.” However, physical representations of the
Burgers equation is far wider than that. For instance, it serves
as a model for growing nonequilibrium surfaces without over-
hangs via its mapping to the KPZ equation [7], the phase in
driven phase-ordered systems with XY-like symmetry [22],
the longitudinal fluctuations in a directed line or a drifting
polymer [17], when the transverse fluctuations are suppressed.

The second field b is assumed to be advected by the Burg-
ers velocity v passively, i.e., it has no effect on the dynamics
of v. The dynamics of b follows [19]

∂b

∂t
= μ∂xxb + λ2∂x(vb) + fb. (2)

Here, μ > 0 is a diffusivity and λ2 a nonlinear coupling
constant, and can be of any sign. Further, fb is a conserved
noise. Following the nomenclature of Ref. [11], we call b

the “Burgers magnetic field.” Equations (1) and (2), in fact,
can be obtained from the coupled Burgers equations without
the feedback term in the equation of v; see Refs. [11,23].
These can also be written in terms of nonconserved height or
displacement fields; see, e.g., Refs. [17,24]. The b field being
a conserved density may be interpreted as the density of a
collection of diffusing particles in contact with or being “ad-
vected by” v. This representation of the model equations (1)
and (2) actually brings to the class of problems of passive
sliders on fluctuating surfaces [25], which are modeled by
the KPZ or the linear Edward-Wilkinson (EW) equation for
surfaces [8]. In these models passive sliders move along the
surfaces following particular dynamics rules, often classified
as “advection” and “antiadvection” [25], which in turn should
be equivalent to the two signs of the product λ1λ2.

The noises fv and fb have zero mean and are Gaussian-
distributed. Their joint probability distribution is character-
ized by the three variances (written in the Fourier space and
functions of frequency ω and wave vector k):

〈 fv (k, ω) fv (−k,−ω)〉 = 2Dvk2, (3)

〈 fb(k, ω) fb(−k,−ω)〉 = 2Dbk2, (4)

〈 fv (k, ω) fb(−k,−ω)〉 = 2iD×k|k|, (5)

where Dv, Db > 0 necessarily, but the sign of D× is arbi-
trary. Reality of the noises means the noise variance matrix
constructed from (3)–(5) must have real, non-negative eigen-
values, which in turn implies Dv Db � D2

×. Equation (5) gives
the noise cross correlation here, which is purely imaginary
and odd in k, i.e., D×(k) = −D×(−k). The structure of (5)
is dictated by the symmetry properties of (1) and (2). In line
with [11], we assume v to be a pseudoscalar field and b to
be a scalar field (i.e., a vector and a pseudovector at dimen-
sions d > 1). This means Eqs. (1) and (2) are invariant under
x → −x, v → −v, b → b. These symmetries hold true even
if there is a “mean b,” i.e., 〈b〉 �= 0 [11]. On the other hand, if
〈b〉 = 0, the model has a higher symmetry: Eqs. (1) and (2) are
also invariant under x → −x, v → −v, b → −b. While our
subsequent calculations specialize for 〈b〉 = 0, we continue
to impose invariance under (1) and (2) are invariant under
x → −x, v → −v, b → b only. This symmetry implies the
cross-correlation function 〈v(x, t )b(0, 0)〉 is an odd function
of x. This in turn means, as in Ref. [11], 〈v(k, t )b(−k, 0)〉
is purely imaginary and odd in k. Since 〈v(k, t )b(−k, 0)〉
proportional to the noise cross correlations and the noises in
(1) and (2) must follow the symmetries of the corresponding
dynamical variables, (5) follows directly [26].

III. GALILEAN INVARIANCE

Model equations (1) and (2) are invariant under
a pseudo-Galilean transformation x → x + v0t, v → v +
v0, t → t, ∂

∂t → ∂
∂t + λ1v0∂x, when λ1 = λ2. When λ1 �= λ2,

there is no Galilean invariance. However, as our calculations
below show (see also Refs. [11,12,17,27] for related discus-
sions), even if λ1 �= λ2, i.e., even when they are unequal
microscopically, Galilean invariance is recovered and appears
as an emergent symmetry in the long wavelength limit, i.e.,
λ1 = λ2 in the renormalized theory, so long as λ1λ2 > 0
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holds. In contrast, if λ1λ2 < 0, Galilean invariance is not
restored even in the long wavelength limit. Hence, Galilean
invariance is genuinely broken, even in the renormalized the-
ory in this case. These are the two distinct cases, which we
discuss separately below. We further consider a third case,
in which we set λ1 = 0. Thus in this case v satisfies the
linear 1D diffusion equation. The corresponding equation in
terms of a height field is the well-known Edward-Wilkinson
equation [8], forced by a nonconserved noise.

IV. SCALING

We are interested in calculating the scaling exponents
which characterize the time-dependent correlation functions
of v and b:

Cv (r, t ) ≡ 〈v(r, t )v(0, 0)〉 = |r|2χv fv (|r|zv/t ), (6)

Cb(r, t ) ≡ 〈b(r, t )b(0, 0)〉 = |r|2χb fb(|r|zb/t ), (7)

or their Fourier-transformed versions

Cv (k, ω) ≡ 〈|v(k, ω)|2〉 = k2χ̃v f̃v (kzv/ω), (8)

Cb(k, ω) ≡ 〈|b(k, ω)|2〉 = k2χ̃b f̃b(kzb/ω), (9)

in the long wavelength limit. Here χv and zv are the roughness
and dynamic exponents of v(x, t ); χb and zb are respec-
tively the corresponding roughness and dynamic exponents of
b(x, t ); and χ̃v (χ̃b) can be connected to χv (χ̃b) by Fourier
transform, giving

χ̃v = 1 + χv + zv, χ̃b = 1 + χb + zb. (10)

Further, fv,b(|r|z/t ) and f̃v,b(kz/ω) are dimensionless scaling
functions of their respective arguments. Notice that we have
allowed for two different dynamic exponents. If zv = zb, then
one gets strong dynamic scaling, or if zv �= zb, weak dynamic
scaling ensues [28].

A. Linear theory

The linear limit of the model equations is obtained by
setting all nonlinear terms to zero, i.e., by setting λ1 = 0 = λ2.
In this limit, all the two-point correlations can be calculated
exactly. We have

〈|v(k, ω)|2〉 = 2Dvk2

ω2 + ν2k4
, (11)

〈|b(k, ω)|2〉 = 2Dbk2

ω2 + μ2k4
, (12)

〈v(k, ω)b(−k,−ω)〉 = 2ik|k|D×
(−iω + νk2)(iω + μk2)

. (13)

These give the exact exponent values χv = χb = −1/2, which
may be obtained by inverse Fourier transforming the above
correlators, and zv = zb = 2, corresponding to strong dynamic
scaling in the linear theory. If noise cross correlations vanish,
the linearized equations actually admit an FDT. In fact, if
D× = 0, v and b fully decouple at the linear level, and by us-
ing FDT one can identify two “temperatures,” Tv = Dv/ν and
Tb = Db/μ, in the linear theory, which are in general unequal.
But a nonzero noise cross correlation breaks FDT even at the

linear level, making it impossible to identify any temperature-
like quantity. Lastly, it is straightforward to show by using
Eqs. (11)–(13) that the ratios of the equal-time correlators
〈v(x, 0)v(0, 0)〉, 〈b(x, 0)b(0, 0)〉, and 〈v(x, 0)b(x, 0)〉 are all
just numbers.

B. Nonlinear effects

The presence of the nonlinear terms no longer allows enu-
meration of the exact scaling exponents for (1) and (2), unlike
in the linear theory. Thus perturbative treatments are neces-
sary. Naïve perturbation theory produces diverging correc-
tions to the model parameters. These divergences may be sys-
tematically handled within the framework of dynamic RG [6].

While the dynamic RG procedure is already well
documented in the literature [6], we give below a brief
outline of this method for the convenience of the readers.
It is useful to first cast the model equations (1) and (2) into
a dynamic generating functional by introducing dynamic
conjugate fields ṽ(x, t ) and b̃(x, t ); see Refs. [14,29], see
also Appendixes A and B for some intermediate details.
The dynamic generating functional is then averaged over
the Gaussian distribution of the noises fv and fb with
variances (3), (4), and (5). The momentum shell dynamic RG
procedure consists of integrating over the short-wavelength
Fourier modes of v(x, t ), b(x, t ), ṽ(x, t ), and b̃(x, t ) in the
generating functional. This is then followed by rescaling
of lengths and time. In particular, we follow the standard
approach of initially restricting wave vectors to lie in a
Brillouin zone, |q| < �, where � is an ultraviolet cutoff
of order the inverse of the lattice spacing a, although its
precise value is unimportant so far as the scaling in the long
wavelength limit is considered. The fields v(x, t ), b(x, t )
and their dynamic conjugates ṽ(x, t ), b̃(x, t ) are then split
into two parts, high and low wave vector parts v(x, t ) =
v>(x, t ) + v<(x, t ), b(x, t ) = b>(x, t ) + b<(x, t ) and
ṽ(x, t ) = ṽ>(x, t ) + ṽ<(x, t ), b̃(x, t ) = b̃>(x, t ) + b̃<(x, t ),
where (v, b)>(x, t ) and (ṽ, b̃)>(x, t ) are nonzero in the
high wave vector range �/b < k < �, b > 1, whereas
(v, b)<(x, t ) and (ṽ, b̃)<(x, t ) are nonzero in the low
wave vector range k < �/b. Next, v>(x, t ), b>(x, t ) and
ṽ>(x, t ), b̃>(x, t ) are to be integrated out in the dynamic
generating functional. Of course, this integration cannot be
done exactly but is done perturbatively in the anharmonic
couplings in Appendix A. This perturbation theory is
usually represented by Feynman diagrams, with the order
of perturbation theory given by the number of loops in the
diagrams that we calculate; see Appendix B. Next to this
perturbative step, we rescale length by x = x′ exp(l ) in order
to restore the UV cutoff back to �. We further rescale time
by t = t ′ exp(l z); whether or not z is the actual dynamic
exponent will be found as we go along. This is then followed
by rescaling of v<(x, t ), b<(x, t ) and ṽ<(x, t ), b̃<(x, t ), the
long wavelength parts of v(x, t ), b(x, t ) and ṽ(x, t ), b̃(x, t );
see Appendix B 3. We discuss (i) λ1λ2 > 0 (case I), (ii)
λ1λ2 < 0 (case II), and (iii) λ1 = 0 λ2 > 0 (case III)
separately below. These choices defining the three cases
have definite physical interpretations in terms of the different
classes of dynamics of passive scalars sliding on KPZ or EW
surfaces [25].
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Before we discuss the RG results in detail, we note that
the dynamics of v, independent of b, follow the well-known
1D Burgers equation [20], for the scaling exponents χv and zv

are known exactly, thanks to the Galilean invariance and FDT
[8,20]. This gives χv = −1/2, zv = 3/2, which are exact.
The corresponding scaling exponents of b, however, cannot
be obtained exactly, necessitating perturbative approaches.
The relevant one-loop Feynman diagrams for the model pa-
rameters and the noise strengths are given in Appendix B 1.
Independent of the sign of λ1, λ2, the critical dimension of the
model is 2. Since we are interested in 1D, less than the critical
dimension, we use a fixed-dimension RG scheme, the same
as that used in the RG calculations, on the KPZ equation to
obtain the scaling exponents in 1D [7,8]; see also Ref. [30].

C. Case I: Renormalization group analysis

The one-loop Feynman diagrams upon evaluation pro-
duce the discrete recursion relations. These are given in
Appendix B 2. This procedure is followed by rescaling of
space, time, and fields together with L = edl ≈ 1 + dl for
small dl (here L is a running scale factor, not to be confused
with the system size, which we formally take to be infinity),
which ultimately give the following RG recursion relations:

dν

dl
= ν

[
z − 2 + g

4

]
, (14)

dμ

dl
= μ

[
z − 2 + gψ2

2(1 + P)P
+ g(1 − P)ψ2

(1 + P)2P

]
, (15)

dDv

dl
= Dv

[
z − 2χv − 3 + g

4

]
, (16)

dDb

dl
= Db

[
z − 2χb − 3 + gψ2

P(1 + P)
− 4	αgψ2

(1 + P)3

]
,

(17)

dλ1

dl
= λ1[χv + z − 1], (18)

dλ2

dl
= λ2

[
χv + z − 1− ψ2g

(1 + P)2
+ ψg(3 + P)

2(1 + P)2
− gψ

2(1 + P)

]
,

(19)

dD×
dl

= D×[z − χv − χb − 3]. (20)

Here, g ≡ λ2
1Dv

ν3 is the dimensionless coupling constant, and
P ≡ μ

ν
is the dimensionless magnetic Prandtl number, 	 ≡

D2
×/D2

v, α ≡ Dv/Db. All these are non-negative by construc-
tion. For reasons of notational convenience, we define � ≡
α	. In addition, ψ ≡ λ2/λ1, which in the present case is
positive. Notice that there are no relevant one-loop corrections
to D×. This is because the vertices in Eqs. (1) and (2) are
O(k) and hence cannot generate any relevant corrections to
the noise cross correlation (5), which scales as k|k| [12]. This
reason for the lack of renormalization of D× actually holds to
all orders in the perturbation theory, making D× unrenormal-
ized to any order in the perturbation theory.

Flow equations (14)–(20) can be used to calculate the flow
equations for g, P, 	, α. We find

dg

dl
= g

[
1 − g

2

]
, (21)

dP

dl
= Pg

[
ψ2

2P(1 + P)
+ ψ2(1 − P)

P(1 + P)2
− 1

4

]
, (22)

dψ

dl
= ψg

[
− ψ2

(1 + P)2
+ ψ

(1 + P)2

]
, (23)

d�

dl
= �g

[
−1

4
− ψ2

1 + P
+ 4�ψ2

(1 + P)3

]
. (24)

At the RG fixed point, dg/dl = 0 = dP/dl = dψ/dl =
d�/dl . This gives g∗ = 2, ψ∗ = 1, and P∗ = 1 as the stable
RG fixed point; here and below a superscript ∗ refers to the
RG fixed point value of any quantity. Notice that ψ∗ = 1
is obtained from (23) for any P. Notice that ψ = 0 = g is
also a fixed point of (21) and (23); it is, however, globally
unstable. Unsurprisingly, g∗ is same as that for the 1D Burgers
equation [8,20], since g depends only on the parameters of
(1), which is autonomous. This in turn gives χv = −1/2, zv =
3/2, which are exact, due to the Galilean invariance and FDT
of the 1D Burgers equation [8,20,31]; see also Ref. [32] for
related technical details. Further, P∗ = 1 means at the RG
fixed point ν∗ = μ∗, i.e., the two renormalized diffusivities
are equal, even if they were unequal microscopically. This
further implies that the fields v and b have the same dynamic
exponent: zv = zb = z. This is an example of strong dynamic
scaling [28]. Furthermore, at the RG fixed point ψ∗ = 1 im-
plies that λ∗

1 = λ∗
2 at the RG fixed point, such that the fixed

point is Galilean invariant, even if it were not so microscopi-
cally (but with λ1λ2 > 0 microscopically). Thus the Galilean
invariance is an emergent symmetry, even though it is absent
microscopically, a statement that holds even in the presence
of noise cross correlations, just as it does in its absence [17].

The RG flow of � requires careful attention. We see that
the fixed point condition d�/dl = 0 produces the following
fixed points, at each of which the spatial scaling of b given by
χb is analyzed:

(i) �∗ = 0, a stable fixed point. At this RG fixed point,
the noise cross correlations effectively vanish, and the long
wavelength scaling properties of the system are identical to
that without it: χb = −1/4.

(ii) There is a second fixed point given by the condition

−1

4
− ψ2

1 + P
+ 4�ψ2

(1 + P)3
= 0, (25)

giving �∗ = 3/2 ≡ �c1 obtained by using ψ∗ = 1 = P∗,
which is linearly unstable. This implies if �(� = 0) < �c1,
the system flows to the fixed point �∗ = 0, meaning a steady
state that is statistically identical to a state having no cross
correlations at the microscopic level in the long wavelength
limit, and hence the scaling exponents have values identical to
their values without cross correlations. At this unstable fixed
point χb = −7/8, different from its value when �∗ = 0, i.e.,
without cross correlations. However, �(� = 0) > �c1, then
the system reaches a steady state not known from perturbation
theories. Thus in this case, noise cross correlations remain
relevant in the RG sense.

024219-4



NOISE CROSS CORRELATIONS CAN INDUCE … PHYSICAL REVIEW E 108, 024219 (2023)

(iii) Given that �∗ = �c1 is a linearly unstable fixed point,
such that if the “initial value” �(l = 0) > �c1, �(l ) flows
away as l grows, there should be another “strong coupling”
fixed point presumably stable but which cannot be accessed in
this one-loop perturbation theory. This indicates an instability
of the zero cross-correlation state, induced by noise cross
correlations. It is instructive to find out how �(l ) diverges for
sufficiently large l . As �(l ) grows, (24) reduces to

d�

dl
≈ 4g�2ψ2

(1 + P)3
= �2. (26)

Solving this, we find

�(l ) = �(� = 0)

��(l = 0) − 1
. (27)

This shows that �(�) diverges as � → lc ≡ 1/�(� = 0) from
below. In other words, φ(�) diverges as the system size
reaches a nonuniversal threshold a0 exp(lc), where a0 is a
small-scale cutoff. This happens so long as the “initial” or
microscopic value �(l = 0) > �c1. What is the nature of the
steady state in this case? We note from (17) that as �(�)
grows, χb decreases continuously. This is, of course, unphys-
ical. We cannot in fact follow the flow of �(�) all the way
to � → lc, as the perturbation theory breaks down long before
that.

Combining the fixed points of ψ and �, we thus find the
following fixed points in the ψ − φ plane for g = 2:

(i) The origin (0,0). This has quite an interesting stability
property—it is marginally unstable along the ψ direction but
stable along the � direction! Naturally, the flow along the �

axis is towards the origin.
(ii) A globally stable fixed point (1,0). At this fixed point

the long wavelength scaling properties are identical to those
with zero noise cross correlations.

(iii) A fixed point (1, 3/2) that is stable along the ψ direc-
tion but unstable along the � direction.

(iv) A putative globally stable “strong coupling” fixed point
which cannot be captured in our perturbation theory.

The presence of the several fixed points suggests the ex-
istence of one or more separatrix, which separates different
regions of the phase space having distinct behaviors. Since
the origin is stable along the � axis but unstable along the ψ

axis, there should be a separatrix originating from the origin
delineating these behaviors. Linearizing (23) and (24) about
(0,0), and defining 	1 = �/ψ as the slope of the separatrix
near the origin, we set d	1/dl = 0 for the separatrix. This
gives 	1 = 0 near the origin, i.e., the ψ axis. In the same way,
we linearize about the unstable fixed point (1, 3/2) and define
	̃1 = δ�/δψ , where δ� and δψ are (small) fluctuations of
� and ψ from their fixed point values. For a separatrix that
passes through (1, 3/2), we set d	̃/dl = 0, giving

δ� = − 3
4δψ, (28)

giving the separatrix near the fixed point (1,3/2). A schematic
RG flow diagram of the model in the ψ − � plane is shown
in Fig. 1.

At this point it is instructive to draw a formal analogy
of this instability with the roughening transition in the KPZ
equation at d > 2, a transition between the smooth phase
and the perturbatively inaccessible rough phase. This can be

o 1
FIG. 1. Schematic RG flow diagram in the ψ − � plane for case

I. Arrows show the RG flow directions. The filled square represents
the unstable fixed point, and the filled circle on the ψ axis is a stable
fixed point. The red broken line is the separatrix (28).

reached, e.g., by increasing the noise strength. Similarly, in the
present problem, by increasing � one can observe a transition
from a perturbatively accessible phase having no effects of
the noise cross correlations to a perturbatively inaccessible
phase, where noise cross correlations should be relevant in the
RG sense, via an unstable fixed point that is reminiscent of
a critical point. Surprisingly, this perturbatively inaccessible
phase is expected to be smoother than the phase without cross
correlations; see later discussions.

While one-loop perturbative RG cannot predict the nature
of the steady states near the putative strong coupling fixed
point, we note that in the special limit with λ1 = λ2 and ν =
μ “initially” (i.e., microscopically), these conditions remain
satisfied under mode eliminations. It is therefore reasonable
to expect that even at the strong coupling fixed point, these
should hold in the long wavelength limit, at least when these
are satisfied microscopically, i.e., at the small scales, or when
the underlying microscopic dynamics in a discrete version
of the model equations correspond to these conditions. This,
in turn, means zv = zb = 3/2 (strong dynamic scaling) at
the strong coupling fixed point. The roughness exponent χb,
however, cannot be estimated in this way. Nonetheless, given
that χb �= χv at the unstable fixed point �∗ = �c1, we are
tempted to speculate that χb �= χv at the strong coupling fixed
point as well. Furthermore, since � should be nonzero, at this
strong coupling fixed point, we expect at this fixed point χb <

χb(� = 0). In addition, the topology of the RG flow lines
suggest that at the perturbatively inaccessible strong coupling
fixed point �∗ > �c1, the fixed point value of φ at the unstable
fixed point. If this is the case, then we must have the hierarchy
χb(strong coupling) < χb(� = �c1) < χb(� = 0). This runs
in contrast to the KPZ equation at d > 2, where the strong
coupling phase is also the “rough phase,” being rougher than
both the smooth phase and at the roughening transition. The
physical implication of what this means is not immediately
clear to us. Numerical studies of the equations of motion or
mode coupling approaches should help in this regard.
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TABLE I. Fixed points in the ψ − � plane and the associated scaling exponents (with g = 2) in case I (see text).

Case I fixed points and scaling exponents (g = 2)

ψ = 0, � = 0 ψ = 1, � = 0 ψ = 1, � = 3/2 ψ : Not known, � → large
Linearly unstable along
ψ , stable along �

Linearly fully stable Linearly stable along ψ ,
unstable along �

Strong coupling, presumably
fully stable

Linear theory for b,
χb = −1/2

χb = −1/4, zb = 3/2 χb = −1, zb = 3/2 zb = 3/2 if P = 1
microscopically, χb not known

The different scaling exponents obtained in case I are pre-
sented in a tabular form in Table I below.

Although we cannot obviously follow the RG flow of �(l ),
starting from �(l = 0) > �c1, all the way to infinity as �(l )
appears to diverge as l → lc from below, it is possible to
speculate about the nature of the phases in this region of
the parameter space. For this we are guided by the fact that
ψ = 1 and P = 1 are maintained by the perturbation theory
and hence at the strong coupling fixed point also. Given that
the form of the noise cross correlations, as given in (5), does
not break the Galilean invariance by itself, this persuades us to
speculate that ψ∗ = 1 (corresponding to Galilean invariance)
and P∗ = 1 are stable at the strong coupling fixed point. All
that the noise cross correlations can do is to generate a nonzero
fixed point value of �, leading to χb �= χv , a result that
already holds true at the perturbatively accessible, unstable
fixed point, as found in our perturbative RG calculations. This
suggests the existence of another stable fixed point located at
ψ = 1 and � > �c1. This is an Occam’s razor–style argument
which allows us to draw the simplest RG flow lines that are
physically intuitive and also consistent with the perturbatively
obtained flow lines; see Fig. 2.

o 1

FIG. 2. Conjectured global RG flows constructed by using Oc-
cam’s razor–style arguments diagram in the ψ − � plane for case
I. Arrows show the RG flow directions. The filled square represents
the unstable fixed point, and the filled circle is a stable fixed point.
The red square is the speculated, presumably globally stable fixed
point. The red, broken line is the separatrix, drawn schematically as
an extension of (28), and we do not expect to meet any of the axes
at any finite distance from the origin. In particular, it is not expected
meet the � axis, as that necessitate a new fixed point on the � axis
(ruled out in the Occam’s razor principle). We also do not expect
it to connect the origin (0,0), as the linearized flow near the origin
discussed earlier does not suggest that.

D. Case II: Renormalization group analysis

We now consider the case with ψ < 0, or λ1λ2 < 0. As in
case I, there are no relevant corrections to D×. To proceed fur-
ther, we assume λ1 > 0 without any loss of generality. Then
λ1λ2 < 0 implies λ2 < 0. Writing ψ = −|ψ |, flow equa-
tion (23) takes the form

d|ψ |
dl

= |ψ |g
[

− ψ2

(1 + P)2
− |ψ |

(1 + P)2

]
. (29)

Thus, ψ∗ = 0 is the only RG fixed point, which is stable.
Further, g∗ = 2 at the RG fixed point, which is stable as be-
fore. With ψ∗ = 0, Eq. (2) effectively decouples from Eq. (1);
as a result, fluctuation corrections to μ vanish, which means
zb = 2. However, the fluctuation corrections to ν remains un-
affected, giving zv = 3/2 as before. Therefore zv > zb, giving
P∗ → 0 at the RG fixed point. This gives weak dynamic scal-
ing [17–19]. These, in turn, give

d�

dl
= −�

2
< 0, (30)

in the long wavelength limit. This means � flows to zero
rapidly near the RG fixed point in the thermodynamic limit.
Thus the effects of the noise cross corrections are irrelevant in
the RG sense when λ1λ2 < 0: Even if noise cross correlations
are present microscopically, the long wavelength scaling prop-
erties of the steady states are the same as those without them.
A schematically drawn RG flow diagram in the |ψ | − �-plane
is shown in Fig. 3. Unsurprisingly, the origin (0,0) is the only
stable fixed point in the flow diagram. The flows along both
the ψ and � directions are towards the origin.

o
FIG. 3. Schematic RG flow diagram in the ψ − � plane for case

II. Arrows show the RG flow directions. The filled circle represents
the globally stable fixed point. Here, noise cross correlations are
generally irrelevant (see text).
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E. Case III: Renormalization group analysis

We now consider the case with λ1 = 0. Thus not only v is
autonomous, it follows a linear equation, and its scaling expo-
nents are of course exactly known: We have χv = −1/2, zv =
2. In this case the sign of λ2 has no significance. We first define
a new dimensionless coupling constant g̃ = λ2

2Dv/ν
3, which

plays the role of g here. The RG flow equations now read
dν

dl
= [z − 2], (31)

dμ

dl
= μ

[
z − 2 + g̃

2(1 + P)P
+ g̃(1 − P)

(1 + P)2P

]
, (32)

dDv

dl
= Du[z − 2χv − 3], (33)

dDb

dl
= Db

[
z − 2χb − 3 + g̃

P(1 + P)
− 4�g̃

(1 + P)3

]
,

(34)

dλ2

dl
= λ2

[
χv + z − 1 − g̃

(1 + P)2

]
. (35)

Since λ1 = 0, there are no diagrammatic corrections to D×.
Hence the flow of D× follows the same equation (20). We
have noted above that zv = 2 gives the dynamic exponent of
v. Does zb = 2 for b as well? If it is so, then P∗ must be finite
at the RG fixed point. The flow of P can be calculated by using
(31) and (32) as given above. We find

dP

dl
= Pg̃

[
1

2P(1 + P)
+ 1 − P

P(1 + P)2

]
. (36)

This has a stable fixed point at P∗ = 3, meaning μ∗ = 3ν∗.
This further means that like v, even b has a dynamic exponent
zb = 2. Furthermore, the flow equation for g̃ reads

dg̃

dl
= g̃

[
1 − 2g̃

(1 + P)2

]
. (37)

Therefore, at the RG fixed point g̃∗ = 8, using P∗ = 3. Then
proceeding as for case I, we find

d�

dl
= �g̃

[
− 1

P(1 + P)
+ 4�

(1 + P)3

]
. (38)

Flow equation (38) gives the following fixed points, which
interestingly are qualitatively similar to case I:

(i) We have �∗ = 0, a stable fixed point. At this RG fixed
point, noise cross correlations are irrelevant in the RG sense,
and the long wavelength scaling properties of the model are
statistically identical to its zero noise cross-correlation version
[17–19]. In particular, χb = −1/6 and zb = 2.

(ii) Then there is a linearly unstable fixed point �∗ =
4/3 ≡ �c2. Thus, if the initial value �(l = 0) < 4/3 ≡ �c2,
�(l ) flows to zero, rendering noise cross correlations irrele-
vant in the RG sense. At this unstable fixed point, χb(�c2) =
−1/2 < χb(� = 0). On the other hand, if �(l = 0) > �c2,
�(l ) grows indefinitely as l grows. Again as in case I, this
indicates an instability induced by noise cross correlations. In
fact, proceeding as in case I, we can show that �(l ) diverges
as l → l̃c ≡ 2/�(l = 0), a nonuniversal value.

Similar to case I, a separatrix can be obtained that passes
through (8, 4/3) in the g̃ − ψ plane. Following the procedure

TABLE II. Fixed points and the associated scaling exponents
(with g̃ = 8) in case III (see text).

Case III fixed points and scaling exponents (g̃ = 8)

�∗ = 0 �∗ = 4/3 � → ∞
Linearly stable Linearly unstable Strong coupling
χb = −1/6, zb = 3/2 χb = −1/2, zb = 3/2 zb = 3/2 if P = 3

microscopically, χb

not known

outlined in case I, we find

δ�

δg̃
= 0 (39)

as the equation for separatrix near the fixed point (8, 4/3),
where δg̃ and δψ are small deviations of g̃ and ψ from their
fixed point values.

(iii) Again as in case I, given that if �(l = 0) > �c2,
�(l ) grows, another (presumably stable) fixed point �∗ >

4/3 should exist, whose actual value cannot be obtained in the
present one-loop perturbation theory. Based on our one-loop
theory, no inference can be drawn about the scaling properties
of this “strong coupling” state. However, given that if one
has P = 3 microscopically, it remains so under mode elimina-
tions, we still expect zv = zb = 2. By using arguments similar
to case I, we expect χb < χb(� = 0) at this fixed point.
By using arguments similar to case I above, we again ex-
pect an analogous hierarchy χb(� > �c2) < χb(� = �c2) <

χb(� = 0). Numerical approaches should provide qualitative
results and additional physical insight about the strong cou-
pling phase.

The different scaling exponents obtained in Case III are
presented in a tabular form in Table II below.

A schematically drawn RG flow diagram in the g̃ − �-
plane is shown in Fig. 4. There is a stable fixed point at
g̃ = 8, � = 0 and an unstable fixed point at g̃ = 8, � = 4.
Further, it is clear from (38) that the � axis (i.e., g̃ = 0) is a

o
=8

FIG. 4. Schematic RG flow diagram in the g̃ − � plane for case
I. Arrows show the RG flow directions. The filled square represents
the unstable fixed point, and the filled circle represents a stable fixed
point. The red broken line is the separatrix (39).
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marginal direction. Naturally, the origin, another fixed point,
is unstable along the g̃ direction but marginal along the �

direction.
Notice that in case III, similar to case I, the divergence of

�(l ) for a sufficiently large initial value �(l = 0) is reminis-
cent of the divergence of the dimensionless coupling constant
in the higher dimensional (d > 2) KPZ equation in the long
wavelength limit, resulting into a perturbatively inaccessible
strong coupling rough phase. In an analogy to the rough
phase in the d > 2 KPZ equation, we are tempted to speculate
the perturbatively inaccessible steady states with a large but
presumably finite � as a type of strong coupling phase.

Similar to case I, one may use Occam’s razor–type argu-
ments draw the global RG flow lines, which match with the
flow diagram in (4). Due to the obvious qualitative similarity
between cases I and III, such a global RG flow diagram in the
g̃ − � plane in case III should have the same topology as the
corresponding diagram for case I in its ψ − � plane, as shown
in Fig. 2.

V. SUMMARY AND OUTLOOK

In this work we have studied the effects of noise cross
correlations on the steady states of a 1D coupled driven model.
Specifically, one of the dynamical variables v follows the
well-known Burgers equation and evolves autonomously, be-
ing independent of the second dynamical field b. The second
dynamical field b is passively advected by the “Burgers ve-
locity” v and follows an equation that closely resembles the
well-known passive scalar model [33]. We have analyzed the
long wavelength properties of this model in the presence of
finite noise cross correlations, whose effects depend upon the
precise nature of the model. We consider three different cases,
delineated by the nonlinear coupling constants. For instance,
in case I with Galilean invariance appearing as an emergent
symmetry, where the advective coupling constant λ2 in the b
equation has the same sign as the advective nonlinearity λ1 in
the Burgers equation for v, a sufficiently strong noise cross-
correlation amplitude above a finite threshold can destabilize
the system, whereas its microscopic values weaker than the
threshold render noise cross correlations irrelevant in the RG
sense. In the latter case, the model is identical to the one
without noise cross correlations in the long wavelength limit.
In contrast, in case II, where λ2 and λ1 have opposite signs,
noise cross correlations are generically irrelevant in the RG
sense. We have also considered yet another case denoted case
III here, where λ1 = 0, making v follow the linear diffusion
equation. In this case, similar to case I, noise cross correlations
with amplitudes greater than a threshold lead to instabilities,
whereas when below the threshold it is irrelevant in the RG
sense. In the unstable cases, the eventual steady states cannot
be obtained from our calculations. Numerical simulations of
equivalent lattice models, or direct numerical solutions of
the model equations, can verify our perturbative results and
also shed light on the instabilities and the resulting unknown
steady states. The existence of unstable fixed points in cases
I and III, and the associated perturbatively inaccessible pu-
tative strong coupling phases, have strong resemblance with
the well-known roughening transition in the KPZ equation at
d > 2. Quite interestingly, the scaling exponents of b at the

unstable fixed point in both cases I and III are less than their
values at zero-noise cross correlations. This suggests that the
field b actually fluctuates less at the unstable critical point.
The RG analysis fails to capture the strong coupling phases
in cases I and III. Mode coupling methods may be useful
in extracting the scaling exponents in these strong coupling
phases [19]. It may, however, be noted that in case III there
are no parameter regimes where mode coupling theories may
be straightforwardly applied to the strong coupling regime.
This is because in case III vertex corrections play a signif-
icant role for any nonzero λ2. This is in contrast to case
I, where if the model is Galilean invariant (i.e., λ1 = λ2)
microscopically, there are no relevant vertex corrections. On
the whole, we thus see that the precise effects of the noise
cross correlations depend quite sensitively on the details of the
models under consideration. Considering the specific case of
passive particles sliding on fluctuating surfaces, we note that
different degrees of clustering were found for the advection
and antiadvection cases when the surface is a KPZ surface,
and also when the surface is an EW surface [25]. How noise
cross correlations can be included in these studies and what
new effects they may bring in are important questions to study.
We hope our work will provide new impetus to further studies
along this direction.

In this work we have confined ourselves to studying only
conserved noises. Similar calculations as here can be per-
formed with noise variances that scale differently with k, e.g.,
long-range noises. If all the noise correlations defined in (3)–
(5) become singular for small k (instead of being conserved
noises), there will be no renormalization of the noise vari-
ances, giving us exact exponent identities [34]. However, the
amplitude Db can still be affected (in particular get reduced)
by D× (see, e.g., Ref. [5] for similar effects). A semblance of
an instability may be created if the effective Db can be turned
negative this way. We look forward to further investigations in
this direction.

We note that the physical effects discussed in the present
manuscript will not arise in an analogous coupled non-
conserved model, as the fluctuations of any nonconserved
variables (away from any critical points) are short-lived and
hence are nonhydrodynamic variables, rendering them irrele-
vant (in the RG sense). In this case, the linear theory scaling
holds. Nonetheless, if there are critical points in the noncon-
served models, the critical point fluctuations are long-lived
and can alter the linear theory scaling behavior. Whether or
not the eventual scaling behavior will be similar to those in
the present studies will depend upon the specific nature of
the model system. In this regard it will be useful to construct
appropriate coupled models and study them systematically.

It will be interesting to consider possible d-dimensional
generalizations of the results presented here. There are,
however, some intrinsic difficulties involved stemming
from the lack of analytical knowledge on the rough phase
of the Burgers equation at d � 2 [8]. At 2D, the Burgers
equation only has a rough phase not accessible to perturbative
RG. As a result, how the noise cross correlations can affect
the dynamics of b is no longer perturbatively calculable due
to the coupling of b with v. At dimensions d > 2, the Burgers
equation undergoes a nonequilibrium roughening transition
between a smooth phase that is statistically identical with
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the Edward-Wilkinson (EW) model and a perturbatively
inaccessible rough phase. No conclusion on the effects of the
noise cross correlations on the b field by means of perturbative
RG can be drawn when the Burgers equation is in its rough
phase. Instead, mode coupling approaches should be helpful
[19]. However, when the Burgers equation is in its smooth
phase, the problem essentially reduces to a d-dimensional
version of case III (coupling with the EW model), in which
case perturbative RG may be used. These will be studied
separately in the future.

We have assumed the noise cross correlations to be imagi-
nary and odd in Fourier wave vector k. What would happen if
we chose a different structure for the noise cross correlations,
e.g., real and even in k? Straightforward perturbation theory
generates a term of the form ∂xxv in the fluctuation-corrected
(2). This is not surprising, since a real and even noise cross
correlation implies that v and b have the same properties under
parity inversions; see, e.g., discussions in Ref. [11]. This,
then, no longer rules out a diffusive v term in (2) [11]. Given
that v is autonomous, such a term in (2) effectively acts like
another additive noise for b, whose statistics is given by the
statistics of v. It would be interesting to study how noise cross
correlations in that case affect the known scaling and stability
of the NESS without it.

We have used a simple, purpose-built, minimal coupled 1D
model to study the role of noise cross correlations. However,
the question of the effects of noise cross correlations should

be important in hosts of natural systems, going much beyond
such simple driven 1D models. RG studies, for instance, on
active XY models [35,36], passive scalar models [37], can
give interesting insights on the precise role of noise cross
correlations on the NESS of more complex models. We hope
our work here will provide impetus on further studies on this
topic. However, the question of cross correlations can arise
in many systems of different physical origins. A particularly
interesting problem could be where the stochasticity in the
dynamics would be cross correlated with the background
quenched disorder. This may arise, e.g., in quenched disor-
dered driven models; see, e.g., Ref. [38].
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APPENDIX A: ACTION FUNCTIONAL

We give the actine functional S corresponding to Eqs. (1)
and (2). It is defined via the generating functional Z given by

Z =
∫

DvDbDṽDb̃ exp(−S ), (A1)

where S is given by

S = −
∫

dk

2π

dω

2π
[Dvk2|ṽ(k, ω)|2 + Dbk2|b̃(k, ω)|2 + iD×k|k|ṽ(k, ω)b̃(−k,−ω)]

−
∫

dxdt

[
ṽ

(
∂tv − λ1

2
∂xv

2 − ν∂xxv

)
+ b̃(∂t b − λ2∂x(vb) − μ∂xxb)

]
. (A2)

APPENDIX B: DETAILS OF THE RG ANALYSIS

In this section we discuss some details of the momentum
shell RG procedure applied on our model.

1. Feynman diagrams

In this section we give the one-loop Feynman diagrams for
the model parameters in (2). The corresponding one-loop dia-
grams are standard; see, e.g., Ref. [8]. We show the one-loop
diagrams in Figs. 5, 6 and 7.

2. Discrete recursion relations

D<
v = Dv + λ2

1D2
v

4ν3

δl

�π
, (B1)

FIG. 5. One-loop Feynman diagram that corrects μ.

D<
b = Db +

[
λ2

2DvDb

νμ(ν + μ)
− 4λ2

2D2
×

(ν + μ)3

]
δl

�π
, (B2)

D<
× = D×, (B3)

ν< = ν + λ2
1Dv

4ν2

δl

�π
, (B4)

FIG. 6. One-loop Feynman diagrams that correct Db. The bottom
diagram carries the contribution from the noise cross correlations
(see text).
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FIG. 7. One-loop Feynman diagrams which correct λ2.

μ< = μ +
[

λ2
2Dv

2ν(ν + μ)
+ λ2

2Dv (ν − μ)

ν(ν + μ)2

]
δl

�π
, (B5)

λ<
1 = λ1, (B6)

λ<
2 =λ2−

[
λ3

2Dv

ν(ν + μ)2
−λ2

2λ1(3ν + μ)Dv

2ν2(ν + μ)2
+ λ2

2λ1Dv

2ν2(ν + μ)

]
δl

�π
.

(B7)

3. Rescaling of space, time, and fields

We perform the following rescaling of space, time, and the
fields:

x → exp(l ) x, t → exp(l z)t, v → exp(lχv )v,

b → exp(lχb)b. (B8)

Under these rescalings, the different model parameters
scale as follows: (ν, μ) → exp[(z − 2)l](ν, μ), Dv →
exp[(z − 2χv − 3)l]Dv, Db → exp[(z−2χb−3)l]Db, D× →
exp[(z − χv − χb − 3)l]D×, (λ1, λ2) → exp[(z + χv − 1)l]
(λ1, λ2).

FIG. 8. One-loop diagrams apparently generating a mean-
magnetic-field–like term in the b equation (see text).

4. Additional technical remarks

We close with a few technical points. Throughout this
work we have assumed 〈b〉 = 0. This condition must then
be ensured in the successive steps of RG. Since b follows a
conservation law, 〈b(x, t )〉, which is nothing but 〈b(k = 0, t )〉,
is a constant of motion. However, it turns out that if D× �= 0,
a nonzero 〈b〉 is actually generated under RG in Eq. (2). This
is represented by the Feynman diagrams in Fig. 8. Evaluating
this, we get

[
ikD×λ2

2

ν(ν + μ)
− ikD×λ1λ2

μ(ν + μ)

]
δl

π�
, (B9)

which is in general nonzero and contributes to an apparent
“mean magnetic field” in Eq. (2). Including a counterterm
to cancel the spurious 〈b〉 automatically ensures the absence
of such a term in the theory. For case I this contribution
vanishes at the RG fixed point; for cases II and III, they do not.
Nonetheless, inclusion of an appropriate counterterm ensures
that the physical 〈b〉 remains zero order-by-order [11].

We have also assumed in the course of our calculations
that 〈v〉 = 0, i.e., there is no “mean Burgers velocity flow.”
A nonzero mean flow would generate linear propagating
modes in (1) and (2). This is a redundant point in case I,
where at the Galilean invariant fixed point, such mean flow-
induced propagating modes can be absorbed by going to
a comoving frame. In cases II and III, there is no single
comoving frame where both these propagating modes can
be absorbed. However, individual propagating modes can be
separately absorbed by going to the corresponding comoving
frames. Focusing on the comoving frame of b, straightfor-
ward power counting reveals that the remaining propagating
mode in (1) reduces the infrared divergences of the one-
loop diagrams for the parameters in (2), which necessarily
involves both v and b lines; see, e.g., Ref. [28] for related
discussions in a coupled driven model. This in turns ren-
ders λ2 irrelevant in the RG sense, making b autonomous
in the long wavelength limit. Naturally, noise cross corre-
lations have no visible effects on the steady states of b in
this case.

024219-10



NOISE CROSS CORRELATIONS CAN INDUCE … PHYSICAL REVIEW E 108, 024219 (2023)

[1] P. M. Chaikin and T. C. Lubensky, Principles of Condensed
Matter Physics (Cambridge University Press, Cambridge,
2000).

[2] R. Ruiz and D. R. Nelson, Turbulence in binary fluid mixtures,
Phys. Rev. A 23, 3224 (1981); Anomalous mixing times in
turbulent binary mixtures at high Prandtl number, 24, 2727
(1981).

[3] J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley
Eastern, New Delhi, 1975); D. Biskamp, Nonlinear Magne-
tohydrodynamics, edited by W. Grossman, D. Papadopoulos,
R. Sagdeev, and K. Schindler (Cambridge University Press,
Cambridge, England, 1993).

[4] A. Basu, Symmetries and novel universal properties of turbulent
hydrodynamics in a symmetric binary fluid mixture, J. Stat.
Mech. (2005) L09001.

[5] A. Basu, Statistical properties of driven magnetohydrodynamic
turbulence in three dimensions: Novel universality, Europhys.
Lett. 65, 505 (2004).

[6] P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical
phenomena, Rev. Mod. Phys. 49, 435 (1977).

[7] M. Kardar, G. Parisi, and Y.-C. Zhang, Dynamic Scaling of
Growing Interfaces, Phys. Rev. Lett. 56, 889 (1986).

[8] A. Barabasi and H. E. Stanley, Fractal Concepts in Surface
Growth (Cambridge University Press, Cambridge, England,
1995).

[9] T. Sun, H. Guo, and M. Grant, Dynamics of driven interfaces
with a conservation law, Phys. Rev. A 40, 6763 (1989).

[10] N. Sarkar and A. Basu, Continuous universality in nonequilib-
rium relaxational dynamics of O(2) symmetric systems, Phys.
Rev. E 85, 021113 (2012).

[11] A. Basu, J. K. Bhattacharjee, and S. Ramaswamy, Eur. Phys. J.
B 9, 725 (1999).

[12] A. Basu and E. Frey, Novel universality classes of cou-
pled driven diffusive systems, Phys. Rev. E 69, 015101(R)
(2004).

[13] L. Ts. Adzhemyan, A. N. Vasil’ev, and M. Gnatich, Quantum-
field renormalization group in the theory of turbulence:
Magnetohydrodynamics, Theor. Math. Phys. 64, 777 (1985).

[14] U. Täuber, Critical Dynamics (Cambridge University Press,
Cambridge, England, 2014).

[15] W. Liu and U. C. Täuber, Critical initial-slip scaling for the
noisy complex Ginzburg–Landau equation, J. Phys. A: Math.
Theor. 49, 434001 (2016).

[16] R. N. Mantegna and H. E. Stanley, An Introduction to Econo-
physics: Correlations and Complexity in Finance (Cambridge
University Press, Cambridge, England, 2000).
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