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Swarmalators are phase oscillators that cluster in space, like fireflies flashing in a swarm to attract mates.
Interactions between particles, which tend to synchronize their phases and align their motion, decrease with the
distance and phase difference between them, coupling the spatial and phase dynamics. In this work, we explore
the effects of inducing phase frustration on a system of swarmalators that move on a one-dimensional ring. Our
model is inspired by the well-known Kuramoto-Sakaguchi equations. We find, numerically and analytically, the
ordered and disordered states that emerge in the system. The active states, not present in the model without
frustration, resemble states found previously in numerical studies for the two-dimensional swarmalators system.
One of these states, in particular, shows similarities to turbulence generated in a flattened media. We show that
all ordered states can be generated for any values of the coupling constants by tuning the phase frustration
parameters only. Moreover, many of these combinations display multistability.
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I. INTRODUCTION

Synchronization and swarming are emergent phenomena
observed in various living systems. The former refers to the
tendency of individuals’ states to converge towards specific
periodic behaviors and has been widely investigated using the
Kuramoto [1,2] or the Stuart-Landau [3,4] models. The latter
describes systems in which individuals tend to aggregate and
align in space, as often observed in animals such as birds and
fish [5,6]. Although the two behaviors have been spotted inde-
pendently in nature, systems including the Japanese tree frogs
[7] and the Quincke rollers [8], among others [9–11], suggest
that synchronization and swarming also occur together. A
model that couples both behaviors was recently proposed in
[12] and the corresponding particles termed swarmalators.

The swarmalators model [12] describes a system of parti-
cles characterized by internal phases θi and spatial positions
�xi. Phase and position dynamics coupled in such a way
that phases tend to synchronize among nearby particles and
velocities tend to align more easily among particles with syn-
chronized phases. An instance of the model, for N particles
moving in a two-dimensional (2D) space, is described by

�̇xi = 1

N

N∑
j �=i

{ �x j − �xi

|�x j − �xi| [1 + J cos(θ j − θi )] − �x j − �xi

|�x j − �xi|2
}
,

θ̇i = K

N

N∑
j �=i

sin(θ j − θi )

|�x j − �xi| .

(1)

It has been shown that different collective states may emerge
for specific sets of parameters K and J [12]. Previous work
have also explored the system’s behavior under external stim-
ulus [13], variations on the nature of individual interactions
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[14–18], and effects of thermal noise [19]. However, from
an analytical perspective almost no progress has been made.
Under this premise, O’Keeffe et al. [20] proposed a one-
dimensional (1D) analog of the model whose dynamics are
governed by

ẋi = J

N

∑
j

sin(x j − xi ) cos(θ j − θi ),

θ̇i = K

N

∑
j

sin(θ j − θi ) cos(x j − xi ) (2)

and capture several features of Eq. (1). This simpler model
displays the emergence of several static collective states ob-
served in the 2D system and, most importantly, can be treated
analytically. Further work has also considered noisy interac-
tions [19], distributed couplings [21], random pinning [22],
and intrinsic oscillating frequencies [23].

The 1D swarmalators model, however, cannot describe
some of the active states displayed by the full 2D system.
Even if some states of the 2D model are arranged in the
form of an annulus, projecting it onto a 1D ring leaves out
part of the dynamics that could be essential for the formation
of the structure. On the other hand, the similarity of the 1D
model with a pair of coupled Kuramoto equations suggests
that the expertise acquired from studying this famous syn-
chronization model can be leveraged to analyze swarmalators
systems of this type. Here we propose a model of frustrated
1D swarmalators, based on the Sakaguchi-Kuramoto model
[24], as a source of frustration that could compensate for
the loss of freedom of the 1D system and potentially re-
store the active states observed in the 2D model. We call the
corresponding particles Sakaguchi swarmalators. We explore
the effects of additional phase parameters to both the spatial
and phase dynamics in Eqs. (2). This frustration differs from
(and complements) the disorder produced by distributed cou-
plings, studied by several authors for the Kuramoto model [1],
and by O’Keeffe and Hong for the 1D swarmalators model
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FIG. 1. Spatial behavior (top row) and position-phase correlations (bottom row) for the static states of the Sakaguchi swarmalators model.
(K = 1) is set for all the simulations, and (γ +, γ −) are set as [(a), (d)] (0, 0) for the static synchronous, [(b), (e)] (1.67, 0) for the static phase
wave, and [(c), (f)] (1.8, 2) for the static asynchronous states.

[21]. We will show that, indeed, frustration leads to coherent
active states in one dimension, similar to the ones found in
the 2D setup. Additionally, it is worth mentioning that the
new parameters of the Sakaguchi swarmalators model have
similarity with “offset terms” used in a recent numerical study
of a modified 2D swarmalators system [25].

We describe the modifications to the original 1D model in
Sec. II, introducing frustration as in the Kuramoto-Sakaguchi
model. Then, in the same section, we present the different
collective states obtained from numerical computations. In
Sec. III we present the stability analyses of states that show
ordered configurations. The conditions obtained from the an-
alytical computations allow us to picture the stability regions
in the space of frustration parameters (Sec. IV). Finally, in
Sec. V we sum up with some concluding remarks.

II. THE SAKAGUCHI SWARMALATORS MODEL

Our modifications to the 1D swarmalators model bring
back the essential feature of the Kuramoto-Sakaguchi model:
the introduction of frustration on a system intended to exhibit
a coherent behavior [24]. In our model, however, the frustra-
tion affects both the spatial and phase components of each
particle’s dynamics. As described by the expressions

ẋi = J

N

∑
j

sin(x j − xi + α) cos(θ j − θi + β ),

θ̇i = K

N

∑
j

sin(θ j − θi + β ) cos(x j − xi + α) (3)

so that the frustration parameters α and β are incorporated to
the system dynamics. Hence, if the system reaches coherence
in phase (θ j ≈ θi) or space (x j ≈ xi), the effects induced by α

and β would lead to its disruption.

A. Equilibrium states

Numerical computation of Eq. (3) allows us to get insights
on its long-term behavior. Snapshots of the system’s collective
behavior, after 104 time steps, are shown in Figs. 1–3. In all
cases, the number of particles is N = 500 and the parameter J
is set to 1. Thus, the control parameters are K , α, and β. In the
figures we use the auxiliary parameters γ ± = α ± β, instead,
since γ ± will be relevant for the stability analyses in the
next sections. Particles’ positions and phases are initially dis-
tributed uniformly in ranges −π to π . In the spatial pictures,
shown in the top rows of Figs. 1–3, particles are positioned
along the ring and colored according to their phases. The
scatter plots, in the bottom row of Figs. 1–3, correspond to the
spatial picture above and show the position-phase correlation
for each particle. The states presented in Fig. 1 demonstrate
the convergence of particles to fixed values in phase and space.
Once the particles reach these states, after a transient period,
they remain there statically. Despite this feature, however, we
observe clear differences in the position-phase coherence of
each case. The static synchronous state [Figs. 1(a) and 1(d)]
shows the formation of two clusters spaced, in phase and
space, by a factor of π . Particles move to each cluster depend-
ing on their initial condition and synchronize with its cluster
neighbors. In the static phase wave state [Figs. 1(b) and 1(e)],
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FIG. 2. Spatial behavior (top row) and position-phase correlations (bottom row) for the ordered active states of the Sakaguchi swarmalators
model. (K , γ +, γ −) are set as [(a), (d)] (1, 1.3, 1.5) for the active synchronous, [(b), (e)] (1, 2.5, 1.1) for the active phase wave, and [(c), (f)]
(−5, 0.3, −3.1) for the ring states (see movies S1, S2, and S3 in the Supplemental Material [26]). Arrows represent the translation direction of
the particles.
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FIG. 3. Spatial behavior (top row) and position-phase correlations (bottom row) for the disordered active states of the Sakaguchi
swarmalators model. (K , γ +, γ −) are set as [(a), (d)] (−0.2, 1.9, −1.4) for the noisy active phase wave, [(b), (e)] (−1, 1.25, −0.25) for
the active asynchronous, and [(c), (f)] (−0.2, 3, −0.5) for the turbulent states (see movies S4, S5, and S6 in the Supplemental Material [26]).
In all cases particles are in continuous motion.
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particles are uniformly distributed along the ring. Moreover,
each particle’s phase is correlated with its position, imply-
ing that these are also distributed uniformly. The correlation
shown in the figure is positive; however, variations in the
initial conditions can change the behavior of the system so that
the steady behavior leads to a negative correlation. The static
asynchronous state [Figs. 1(c) and 1(d)] shows that particles
are distributed uniformly in phase and space. However, unlike
the static phase wave state, particles’ positions and phases are
uncorrelated.

Active analogs of the static synchronous and static phase
wave states are shown in Fig. 2. In the active synchronous
state [Figs. 2(a) and 2(d)] the two clusters of particles, as
described before for the static synchronous case, are rotating
along the ring. Despite the rotation, the clusters preserve the
spacing of π in position and phase. A similar effect is seen
in the active phase wave state [Figs. 2(b) and 2(e)], where
the uniformly distributed particles rotate while keeping the
position-phase correlation. In Figs. 2(c) and 2(f) we intro-
duce a new state where particles rotate around the ring while
keeping a fixed pattern. In this state, particles cluster on a
position-phase region, in contrast to the active synchronous
state, where particles cluster on two π -distanced points.

In Fig. 3 we show three additional active states. Despite
not being completely ordered these states still show the emer-
gence of intriguing patterns. In the noisy active phase wave
state [Figs. 3(a) and 3(d)], particles move and initially form a
correlated position-phase pattern. After some time, however,
this coherence is destroyed and a dynamic behavior starts
where distorted correlation appears and disappears continu-
ously. The active asynchronous state [Figs. 3(b) and 3(e)] is
the active analogous to the static asynchronous state, shown
in Figs. 2(c) and 2(e). In this state, however, particles jiggle
and move randomly. The effects of this dynamic behavior, as
better shown in the state’s scatter plot, generate position-phase
correlation in a nonuniformly distributed configuration. The
last disordered state [Figs. 3(c) and 3(f)] is named turbulent
and is unrelated to the previous ones. In this state, the particles
move randomly along the ring without a specific position-
phase coherence. However, as presented on its scatter plot, a
recurrent pattern emerges where the particles’ position-phase
correlations generate vortices that rotate and move around
while exchanging individuals.

The figures described in this section, obtained numerically,
allow us to understand the coherent and incoherent behaviors
of the Sakaguchi swarmalators system. In the next section we
explore the analytical features of the model, describing some
of these states and their stability conditions.

III. STABILITY ANALYSES

Following [20] we define ξi = xi + θi, ηi = xi − θi and
rewrite Eq. (3) as

ξ̇i = J+
N

∑
j

sin(ξ j − ξi + γ +) + J−
N

∑
j

sin(η j − ηi + γ −),

η̇i = J−
N

∑
j

sin(ξ j − ξi + γ +) + J+
N

∑
j

sin(η j − ηi + γ −),

(4)

where J± = (J ± K )/2 and γ ± = α ± β. We also define the
order parameters

S+eiφ+ = 1

N

∑
j

eiξ j ,

S−eiφ− = 1

N

∑
j

eiη j ,

(5)

where the real values S± (ranging from 0 to 1) are coher-
ence metrics associated with positive or negative correlations
between particles’ positions and phases. For instance, the co-
herence of the static phase wave state, shown in Fig. 1(b), is
(S+, S−) ≈ (0, 1) due to the position-phase positive correla-
tion of the particles. For the static asynchronous state, shown
in Fig. 1(c), on the other hand, S± ≈ 0, since there is no
correlation between particles’ positions and phases.

A. Synchronous states

These states involve clustering and synchronization of the
particles, that converge simultaneously to specific values in
phase and space that can be static or dynamic. Setting ξ j =
ξi = ξ and η j = ηi = η in Eq. (4) we obtain the equilibrium
trajectories

ξ = J+ sin(γ +)t + J− sin(γ −)t + ξ0,

η = J− sin(γ +)t + J+ sin(γ −)t + η0.

To analyze the stability of this solution, we add small per-
turbations δξi and δηi to each particle around the equilibrium
trajectory and compute their dynamic behavior. The temporal
evolution of the perturbations is described by

δξ̇i = J+ cos(γ +)
∑

j

(δξ j − δξi )

+ J− cos(γ −)
∑

j

(δη j − δηi ),

δη̇i = J− cos(γ +)
∑

j

(δξ j − δξi )

+ J+ cos(γ −)
∑

j

(δη j − δηi ), (6)

where J± = J±/N . These equations form a 2N × 2N lin-
ear system which is evaluated in detail in Appendix A. The
eigenvalues that determine the stability of the equilibrium
trajectory are

λSS
± = −J+

2
[cos(γ +) + cos(γ −)] ± 1

2
{J+2[cos(γ +)

− cos(γ −)]2 + 4J−2 cos(γ +) cos(γ −)}1/2,

λSS
0 = 0, (7)

where λSS
± have multiplicity (N − 1) each, and λSS

0 has multi-
plicity 2. The superscript SS stands for synchronous states.

For the particular case where J = K , and therefore J− = 0,
the nonzero eigenvalues are

λ
SS(J=K )
+ = −J+ cos(γ −),

λ
SS(J=K )
− = −J+ cos(γ +),

(8)
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and will be negative for J+ > 0 when γ ± ∈ [−π/2, π/2], and
for J+ < 0 when γ ± ∈ [π/2, 3π/2]. The stability regions for
J �= K are more complicated due to the shape of the nonzero
eigenvalues surfaces. We shown the stability regions in this
case in the next section.

Before we close this subsection we note an interesting
symmetry that appears for J = 1. In this specific case, J± =
(K ± 1)/2, and considering K∗ = 1/K , we get J∗

± = ±J±/K .
Then, if we find J∗

±
2 an plug it into Eq. (7), we see that the

nonzero eigenvalues will just be scaled as

λSS
±

∗ = 1

K
λSS

± , (9)

so the stability regions for K and 1/K are exactly the same.

B. Phase wave states

Here the particles are distributed uniformly in space and
phase, but these variables are correlated. Also, they can
move rigidly, keeping their relative positions and phases con-
stant. These states are represented by xi = 2iπ/N + x0 + vxt
and θi = ±2iπ/N + θ0 + vθ t , where vx and vθ can be de-
termined from Eqs. (4). The ± sign in θi depends on the
type of position-phase correlation. We consider a negative

correlation, so that the equilibrium trajectories must satisfy

ξi = J+ sin(γ +)t + ξ0,

ηi = J− sin(γ +)t + 4π i

N
+ η0.

Substituting in Eqs. (4) we find vx + vθ = J+ sin γ + and
vx − vθ = J− sin γ +. To study the stability of this solution, we
again add perturbations δξi and δηi to the equilibrium and find
their dynamics. We obtain

δξ̇i = J+ cos(γ +)
∑

j

(δξ j − δξi )

+ J− ∑
j

δη j cos

[
4π

N
( j − i) + γ −

]
,

δη̇i = J− cos(γ +)
∑

j

(δξ j − δξi )

+ J+ ∑
j

δη j cos

[
4π

N
( j − i) + γ −

]
. (10)

The dynamics of the perturbations can again be arranged
using a 2N × 2N block matrix, and the stability of the sys-
tem analyzed by its eigenvalues. A detailed derivation of the
eigenvalues is shown in Appendix A. We obtain

λnPW
0 = 0,

λnPW
1 = −J+ cos(γ +),

λnPW
2± = J+

2

[
1

2
e−iγ − − cos(γ +)

]
± 1

2

{
J+2

[
1

2
e−iγ − + cos(γ +)

]2

− 2J−2e−iγ −
cos(γ +)

}1/2

,

λnPW
(N−2)± = J+

2

[
1

2
eiγ − − cos(γ +)

]
± 1

2

{
J+2

[
1

2
eiγ − + cos(γ +)

]2

− 2J−2eiγ −
cos(γ +)

}1/2

,

(11)

where λnPW
0 and λnPW

1 have multiplicities of 2 and (N − 6),
respectively. The superscript PW stands for phase wave. Con-
sidering a positive position-phase correlation leads to slightly
different eigenvalues. These differences, however, generate
just a π/2 rotation of the stability regions (as will be shown in
the next section). In Appendix A we summarize the derivation
of the eigenvalues for the positively correlated phase wave
states.

For J = K the nonzero eigenvalues are

λ
nPW (J=K )
1 = −J+ cos(γ +),

λ
nPW (J=K )
2+ = J+

2
e−iγ −

,

λ
nPW (J=K )
2,(N−2)− = −J+ cos(γ +),

λ
nPW (J=K )
(N−2)+ = J+

2
eiγ −

,

(12)

and the regions where Re{λnPW (J=K )} are negative, for J+ >

0 are γ + ∈ [−π/2, π/2] and γ − ∈ [π/2, 3π/2], and for

J+ < 0 are γ + ∈ [π/2, 3π/2] and γ − ∈ [−π/2, π/2]. The
regions for J �= K and for the positively correlated phase wave
states are shown in the next section. Moreover, the symmetry
1/K → K still applies for J = 1, and so does the scaling in
Eq. (9). The stability regions for K and 1/K are, therefore,
also the same for the phase wave states.

C. Asynchronous states

These states, such as the one shown in Fig. 1(c), are charac-
terized by a uniform and uncorrelated distribution of particles
in position and phase. To study their stability we take the
limit of infinitely many oscillators and assume a continuum
of particles described by the density function ρ(x, θ, t )dxdθ ,
which gives the fraction of particles lying between x + dx and
θ + dθ at time t [27]. The normalization condition for the
density is

∫ 2π

0

∫ 2π

0
ρ(x, θ, t ) dx dθ = 1, (13)
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which allows us to rewrite the order parameters, introduced in
Eq. (5), as

S±eiφ± =
∫ 2π

0

∫ 2π

0
ei (x±θ )ρ(x, θ, t ) dx dθ. (14)

Given that the description of this state is more intuitive in
terms of x and θ , we use Eq. (3) for its analysis. To reduce the
size of the equations, however, we keep using the parameters
ξ and η as defined before. Then the equations of motion give
the velocity vector field governing the behavior of the system:

ẋ = J

2
S+ sin(φ+ − ξ + γ +) + J

2
S− sin(φ− − η + γ −),

θ̇ = K

2
S+ sin(φ+ − ξ + γ +) − K

2
S− sin(φ− − η + γ −).

(15)

The temporal evolution of the density ρ(x, θ, t ) is described
by the continuity equation

∂ρ

∂t
+ �∇(ρ�v) = 0, (16)

where �v = (ẋ, θ̇ ) as in Eq. (15). The uniform density ρ0 =
π−2/4 with S+ = S− = 0 is an equilibrium incoherent state,
and its stability can be studied by perturbing it as ρ = ρ0 + δρ

and analyzing the perturbation dynamics. The perturbation
analysis is detailed in Appendix C, and it leads to the deriva-
tion of the eigenvalues

λoAS
1± = J+

8π2
e±iγ +

,

λoAS
2± = J+

8π2
e±iγ −

.

(17)

The static asynchronous state will be stable when the real part
of these eigenvalues are negative, that is, for J+ > 0 when
γ ± ∈ [π/2, 3π/2], and for J+ < 0 when γ ± ∈ [−π/2, π/2].

IV. STABILITY DIAGRAMS

The analytical results obtained in the previous section can
be summarized with graphic representations of the Sakaguchi
swarmalators’ stability regions spanned for γ ± ∈ [−π , π ].
We fix J = 1 in all diagrams, as this specific setup allows us
to observe the stability symmetry expected when using K and
1/K [Figs. 4(b), 4(c), 4(e), and 4(f)].

The simplest case, where J = K , is shown in Fig. 4(a).
As calculated in Eqs. (8), (12), and (17), the regions where
each state emerges are just complementing squares. However,
for K > 0 and different from J [Figs. 4(b) and 4(c)], the
phase wave squared regions deform giving rise to the for-
mation of stability regions that intersect. These are regions
of multistability, where the system converges to either the
synchronous or phase wave states, depending on the initial
conditions. Once K becomes negative, the synchronous square
regions, depicted for J � K , split into four triangles, Figs. 4(e)
and 4(f), that split again for K < −J , Figs. 4(g) and 4(h).
Even more interesting is the behavior of the phase wave
regions, which for K approaching −J from the right form
intersecting π/2-rotated stripes [Fig. 4(e)] that, when K in-
creases towards 0, become fully intersected circles [Fig. 4(f)].

Similarly, the split of the synchronous square and the phase
wave stripes, which become circles, are found when K is
set below −J [Figs. 4(g) and 4(h)]. Despite the similarities,
however, these stability regions are π -translated from the
−J < K < 0 regions described before, in both the γ − and γ +
axes. We note that no such multistable regions exist in the
Kuramoto-Sakaguchi model, suggesting that they depend on
the interplay between the two degrees of freedom θ and x.

A special case takes place when K = −J , which corre-
sponds to J+ = 0, and leads to the vanishing of negative
eigenvalues in all states. Under these circumstances, the sys-
tem exhibits the active asynchronous state, shown in Fig. 3(b).
It is worth noting that, for these parameters, Eq. (2) re-
duce to a Hamiltonian system with H = (J/2N )

∑
i, j sin(x j −

xi ) sin(θ j − θi ). However, for frustration parameters (α, β ) �=
0, the system loses the Hamiltonian structure and, therefore,
a constant of motion. The stability regions when K = 0 are
shown in Fig. 4(d), and, despite these appearing to be well
defined, their nature is very susceptible to small numerical
changes. The noisy phase wave and turbulent states [intro-
duced in Figs. 3(a) and 3(c)] are also found in the stability
diagrams, as pointed by red markers in Figs. 4(e)–(h). These,
given their disordered nature, do not belong to any of the
stable state’s regions but are positioned in the blank spaces.
Finally, the intriguing ring state, introduced in Fig. 2(c), turns
out to be an intermediate state when entering the synchronous
states’ stable regions [as depicted by the blue star in Fig. 4(g)],
which gives meaning to its clustered behavior. This state
allows us to remark that, at the boundaries, linear stability
analysis is not enough to decide the nature of the equilibrium.

In Fig. 5 we show heatmaps that complement the stability
diagrams, presented in Fig. 4, for the case where J = K . Each
diagram is obtained for a system of N = 500 particles at its
state after 104 time steps. Intensities are positioned according
to specific values of γ ± used for the computation. In Figs. 5(a)
and 5(b) these correspond to S+ and S−, respectively, cal-
culated using Eqs. (5). For Fig. 5(c) we use the additional
parameter Sv = 1/N | ∑ j ẋ j |, which is an indicator of the av-
erage velocity in the system.

Two main observations can be made by contrasting
Figs. 4(a) and 5. First, as shown in the respective S± heatmaps,
we can identify regions where the system converges to pos-
itively or negatively correlated states, which may represent
either the synchronous or phase wave states. Second, although
convergence to any stable state can be proven by the eigenval-
ues, the definitions of ξ and η used for the stability analyses do
not guarantee whether the system is static or active, even when
analyzing S±. However, the use of Sv provides additional
information that allows us to overcome these limitations. As
shown in Fig. 5(c), clear partitions consistent with the regions
in Fig. 4(a) are displayed, and intensities reveal the velocity
dependence on γ ±, which is coherent with the equilibrium
trajectories defined in Sec. III for the synchronous and phase
wave states.

V. CONCLUSIONS

We studied the effects of introducing frustration on a 1D
swarmalators system. Motivated by the work of Sakaguchi
[24], we modified the original system introduced in [20], by
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Asynchronous
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-1   K   0

K   -1

 0   K   1

Neg. Correlated
Phase Wave 

Pos. Correlated
Phase Wave 

FIG. 4. Stability regions computed using the eigenvalues obtained from the perturbation analyses. All figures were obtained for J = 1 and
N = 500. In (b) the diagram shows the regions for both K = 1/5 and K = 5. Similarly, in (c) the diagram corresponds to both K = 1/500 and
K = 500. In (e) and (f) K = −1/5 and K = −1/500, respectively. And in (g) and (h) K = −5 and K = −500, respectively. Red circles, stars,
and squares are positioned in regions where states turbulent, noisy active phase wave, and a combination of these two emerge, respectively.
The blue star in (g) corresponds to one instance of the ring state.

including frustration parameters intended to break the coher-
ence of the system in both position and phase spaces.

The most striking feature of the model is the emergence of
active states for nonzero frustration parameters. These states
remind us of the ones found in the 2D swarmalators model

[12], which still lack a complete analytical explanation. In
our model, however, we were able to find analytical solutions
for the stability regions of each ordered state, independent
of its static or active nature. Additionally, numerical com-
putations allowed us to find regions where disordered active
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0
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FIG. 5. Order parameter heatmaps for J = K = 1 and N = 500, after 104 time steps. Each intensity corresponds to the value of the
respective order parameter for specific (γ +, γ −) values. The diagrams show (a) positive and (b) negative position-phase correlation regions
and (c) the average velocities.

states emerge. In these states, despite the incoherent behavior
exhibited by the particles, clear position-phase patterns can
still be observed, which suggests that their analytical study
could also be performed using different tools.

From the stability analyses we see that, in contrast to the
original 1D swarmalators model, the frustration parameters
provide us flexibility to find ordered states for any fixed
(J, K ) values. That is, for a specific (J, K ) setup, we can find
synchronous, positively or negatively correlated phase wave,
or asynchronous states just by tuning the values of γ ±. The
disordered states, however, have been spotted only for K < 0.
Even more exotic is the emergence of the active asynchronous
case, which shows up only when J = −K .

Although Eq. (3) have been defined in terms of an internal
phase θ and a spatial coordinate x, we can think of the phase
variable as another periodic spatial coordinate y, so that the
scatter plots in Figs. 1–3 could represent particles’ positions
in the periodic Cartesian plane (a torus). The active asyn-
chronous and turbulent states are then similar to the patterns
displayed by chiral rollers in [8] or ram semen in [28]. The
turbulent state, in particular, is of specific interest for future
studies, as it shows the emergence of vortices and eddy-like
structures (see movies S6 and S7 in the Supplemental Material
[26]) even for a finite number of particles. We can point out, in
this state, that the emergence of coherently behaved clusters,
moving on a sea of incoherently behaved particles, portrays
a signature of chimeric behavior. That relates our work with
the emergence of chimeras, depicted in [29], for populations
of self-propelled Kuramoto-like particles, also triggered by
the addition of a phase lag parameter. Moreover, under a
Cartesian setup, our results can also be extended to swarming-
only systems whose position degrees of freedom interact.

An interesting take on the Sakaguchi swarmalators model
would be to consider asymmetrical frustrations (i.e., param-
eters affecting only the sines or cosines), or even consider
distributed couplings and frustrations, as done in [30] for the
Kuramoto model. In general, since the Kuramoto-Sakaguchi
model and the concept of frustration have been widely studied
[31–34], the study of Sakaguchi swarmalators can be ex-
panded following these ideas.
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APPENDIX A: EIGENVALUES FOR COHERENT STATES

The stability calculations, described in Secs. III A and
III B, show that perturbation dynamics can be arranged as

�̇δ∗ = R �δ∗, (A1)

where, for each system’s state, the vector �δ∗ is composed of
the individual perturbations δξi and δηi, and

R =
[

R11 R12
R21 R22

]
is a matrix of circulant blocks. The structure of R allows us
to find its eigenvalues λ for all states, following the general
procedure described below.

The eigenvalues are solutions of the equation

det(R − λI2N) = 0,

where I2N is the identity matrix of dimension 2N . How-
ever, since [R11, R21] = 0 holds for both the synchronous
and phase wave cases, we rewrite the equation for the
determinant as

det(R − λI2N) = det(M),

where M = (R11 − λIN)(R22 − λIN) − R21R12 is also circu-
lant. Then the determinant of M can be computed using the
general solution for circulant matrices

det(M) =
N−1∏
k=0

(
M11 + M12ζ

k + · · · + M1Nζ (N−1)k
)
, (A2)

where ζ is a primitive N th root of unity, and the eigenvalues
λ are found by equating the resulting equations inside the
parentheses to zero.
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In the next subsections, we describe the solution to the
eigenvalue problems for the synchronous and phase wave
states using the procedure described above. In each of these
states, the blocks composing R have different structures that,
however, can be considered special instances of circulant ma-
trices. To differentiate between synchronous and phase wave
states, we use, respectively, the superscripts SS and PW on ma-
trices and their elements. Since the phase wave state has two
instances, we add the letters n and p in front of the superscripts
to differentiate according to the negative or positive nature of
the position-phase correlation. Additionally, to reduce the size
of some expressions, we use s∗ and c∗ to represent sin(∗) and
cos(∗) functions, respectively.

1. Synchronous states

Arranging Eq. (6) as Eq. (A1) leads to a matrix RSS com-
posed by blocks

RSS
11 = J+ cos(γ +)R†,

RSS
12 = J− cos(γ −)R†,

RSS
21 = J− cos(γ +)R†,

RSS
22 = J+ cos(γ −)R†,

where

R† =

⎛
⎜⎜⎝

1 − N 1 · · · 1
1 1 − N · · · 1
...

...
. . .

...

1 1 · · · 1 − N

⎞
⎟⎟⎠.

The composition of the block matrix RSS allows us to infer
that the off-diagonal terms of MSS will all be the same. Thus,

the only relevant elements to calculate det(M) are

MSS
11 = λ2 − λJ+(1 − N )(cγ − + cγ + )

+ N (1 − N )cγ +cγ − (J−2 − J+2),

MSS
12 = −λJ+(cγ − + cγ+) + Ncγ +cγ − (J−2 − J+2),

and Eq. (A2) can be rewritten as

det(MSS ) =
N−1∏
k=0

(
MSS

11 + MSS
12

N−1∑
r=1

ζ rk

)
, (A3)

where
N−1∑
r=1

ζ rk = −1

for k �= 0.
Solving Eq. (A3) leads to the product of N quadratic equa-

tions, where N − 1 of them are replicas. Equating this product
to zero allows us to get the eigenvalue expressions shown in
Eq. (7).

2. Negatively correlated phase wave states

For these states, obtain the blocks

RnPW
11 = J+ cos(γ +)R†,

RnPW
12 = J−R−

∗ ,

RnPW
21 = J− cos(γ +)R†,

RnPW
22 = J+R−

∗ ,

where

R±
∗ =

⎛
⎜⎜⎜⎜⎝

cos(γ ±) cos
(
4π 1

N + γ ±) · · · cos
(
4π N−1

N + γ ±)
cos

(
4π N−1

N + γ ±)
cos(γ ±) · · · cos

(
4π N−2

N + γ ±)
...

...
. . .

...

cos
(
4π 1

N + γ ±)
cos

(
4π 2

N + γ ±) · · · cos(γ ±)

⎞
⎟⎟⎟⎟⎠.

Although we use only R+
∗ to describe the RnPW blocks, the matrix R−

∗ will be used in the next subsection when describing the
RpPW blocks corresponding to the positive correlated phase wave states.

The blocks in RnPW have different off-diagonal elements, which make the structure of MnPW less intuitive. In this case the
elements needed to compute the determinant are

MnPW
11 = λ2 − λJ+[cγ − + (1 − N )cγ + ] + N (J−2 − J+2)cγ +cγ − ,

MnPW
1(r+1) = −λJ+

[
cos

(
4π

N
r + γ −

)
+ cγ +

]
+ N (J−2 − J+2)cγ + cos

(
4π

N
r + γ −

)
,

and Eq. (A2) can be rewritten as

det(MnPW S ) =
N−1∏
k=0

(
MnPW

11 +
N−1∑
r=1

MnPW
1(r+1)ζ

rk

)
. (A4)

Setting Eq. (A4) to zero should return the eigenvalues shown
in Eqs.(11). However, since elements MnPW

1(r+1) are all different,
this solution is a bit more intricate. In Appendix B we show

the simplification of Eq. (A4) that allows us to get analytical
solutions for the eigenvalues.

3. Positively correlated phase wave states

We start by summarizing the perturbation analysis since
this was removed from the main text for the sake of clarity.
For the phase wave states that exhibit a positive position-phase
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correlation, the equilibrium trajectories are

ξi = J− sin(γ −)t + 4π i

N
+ ξ0,

ηi = J+ sin(γ −)t + η0.

Adding perturbations to the equilibrium solutions we obtain

δξ̇i = J−cγ −
∑

j

(δη j − δηi ) + J+ ∑
j

δξ jCi j+,

δη̇i = J+cγ −
∑

j

(δη j − δηi ) + J− ∑
j

δξ jCi j+,

where Ci j+ = cos( 4π
N ( j − i) + γ +). This can be arranged in

blocks

RpPW
11 = J+R+

∗ ,

RpPW
12 = J− cos(γ −)R†,

RpPW
21 = J−R+

∗ ,

RpPW
22 = J+ cos(γ −)R†.

Despite the differences between RnPW and RpPW , elements of
MnPW and MpPW differ only by a swap of γ + and γ −. Thus,
we find

M pPW
11 = λ2 − λJ+[(1 − N )cγ − + cγ + ] + N (J−2 − J+2)cγ +cγ − ,

M pPW
1(r+1) = −λJ+

[
cγ − + cos

(
4π

N
r + γ +

)]
+ N (J−2 − J+2) cos

(
4π

N
r + γ +

)
cγ − .

Then det(MpPW ) has the same form of Eq. (A4), and it can be solved using the simplification shown in Appendix B. The solution
leads to the eigenvalues

λ
pPW
0 = 0,

λ
pPW
1 = −J+ cos(γ −),

λ
pPW
2± = J+

2

[
1

2
e−iγ + − cos(γ −)

]
± 1

2

{
J+2

[
1

2
e−iγ + + cos(γ −)

]2

− 2J−2e−iγ +
cos(γ −)

}1/2

,

λ
pPW
(N−2)± = J+

2

[
1

2
eiγ + − cos(γ −)

]
± 1

2

{
J+2

[
1

2
eiγ + + cos(γ −)

]2

− 2J−2eiγ +
cos(γ −)

}1/2

. (A5)

APPENDIX B: SIMPLIFICATION

We are interested in finding the solutions of a quadratic equation of the form

λ2 + λφ + ω = 0,

where, from Eq. (A4),

φ = −J+
[

cγ − + cγ +

(
1 − N +

N−1∑
r=1

ζ rk

)
+

N−1∑
r=1

ζ rk cos

(
4π

N
r + γ −

)]
,

ω = N (J−2 − J+2)cγ +

[
cγ − +

N−1∑
r=1

ζ rk cos

(
4π

N
r + γ −

)]
.

We expand the sum in the right-hand side of these equations as

N−1∑
r=1

ζ rk cos

(
4π

N
r + γ −

)

= 1

2
eiγ −

N−1∑
r=1

eir(4π+2πk)/N + 1

2
e−iγ −

N−1∑
r=1

e−ir(4π−2πk)/N .

Then, for k �= 2,

φ =
{

0, if k = 0
J+cγ + , otherwise ,

ω = 0,

which lead to pairs of eigenvalues where one of them is real
and the other one is zero, or both are zero (k = 0). For k = 2,

φ = −J+

(
1

2
e−iγ − − cγ +

)
,

ω = 1

2
e−iγ −

(J−2 − J+2)cγ + ,

and k = (N − 2),

φ = −J+

(
1

2
eiγ − − cγ +

)
,

ω = 1

2
eiγ −

(J−2 − J+2)cγ + ,

which lead to pairs of complex conjugate eigenvalues.
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APPENDIX C: PERTURBATION ANALYSIS FOR
INCOHERENT STATES

Incoherent states are characterized by S± = 0 and, there-
fore, �v = (ẋ, θ̇ ) = �0. Thus, the homogeneous density ρ0 =
π−2/4 is a static solution of the continuity equation (14).

Adding a small perturbation to the equilibrium state, ρ =
ρ0 + δρ, and using Eq. (16), we find that the temporal evolu-
tion of the perturbed state is governed by

∂

∂t
δρ = −�∇(δρ)�v, (C1)

where, from Eq. (13)

∫ 2π

0

∫ 2π

0
δρ(x, θ, t ) dx dθ = 0. (C2)

To first order in δρ(x, θ, t ), we find that

S1
±eiφ± =

∫ 2π

0

∫ 2π

0
ei (x±θ )δρ(x, θ, t ) dx dθ, (C3)

which leads to
∂

∂t
δρ = J+

4π2
[S1

+ cos(φ+ − ξ + γ +)

+ S1
− cos(φ− − η + γ −)]. (C4)

Expanding δρ in Fourier series

δρ =
∑
m,n

fm,n(t )ei (mx+nθ ), (C5)

and comparing with Eq. (C4) we see that the only relevant
terms are f±1,±1. We obtain

ḟ1,1(t ) = J+
8π2

e−iγ −
f1,1(t ),

ḟ−1,1(t ) = J+
8π2

eiγ −
f−1,1(t ),

ḟ1,−1(t ) = J+
8π2

e−iγ +
f1,−1(t ),

ḟ−1,−1(t ) = J+
8π2

eiγ +
f−1,−1(t ).

(C6)

Finally, writing f (t ) = f̄ etλ, we can solve Eqs. (C6) to get the
eigenvalues shown in Eq. (17).
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