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Motion of a parametrically driven damped coplanar double pendulum
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We present the results of linear stability of a damped coplanar double pendulum and its nonlinear motion,
when the point of suspension is vibrated sinusoidally in the vertical direction with amplitude a and frequency
ω. A double pendulum has two pairs of Floquet multipliers, which have been calculated for various driving
parameters. We have considered the stability of a double pendulum when it is in any of its possible stationary
states: (i) both pendulums are either vertically downward or upward and (ii) one pendulum is downward and
other is upward. The damping is considered to be velocity-dependent, and the driving frequency is taken in
a wide range. A double pendulum excited from its stable state shows both periodic and chaotic motion. The
periodic motion about its pivot may be either oscillatory or rotational. The periodic swings of a driven double
pendulum may be either harmonic or subharmonic for lower values of a. The limit cycles corresponding to the
normal mode oscillations of a double pendulum of two equal masses are squeezed into a line in its configuration
space. For unequal masses, the pendulum shows multi-period swings for smaller values of a and damping,
while chaotic swings or rotational motion at relatively higher values of a. The parametric driving may lead to
stabilization of a partially or fully inverted double pendulum.

DOI: 10.1103/PhysRevE.108.024210

I. INTRODUCTION

Parametric excitation of surface waves in a fluid is known
since the famous experiment by Faraday [1–4]. These stand-
ing waves, also known as Faraday waves [5–15], oscillate with
a frequency equal to half the driving frequency. The surface
waves in a thin layer of viscous liquid can also be synchronous
(harmonic) with the external driving [16,17] at the instabil-
ity onset. Interfacial patterns in a Faraday experiment with
relatively low-viscosity fluids [4–6] are known to differ sig-
nificantly from those observed in moderate or high-viscosity
fluids [7–13]. The phenomenon of parametric resonance has
been attracting attention in diverse areas of research. They
include condensed matter physics [18,19], optics [20–23],
cosmology [24], quantum field theory [25], nonlinear science
[26,27], biophysics [28], modulated fluid flows [29–31], etc.

A parametrically driven planar pendulum [32–42] may os-
cillate either sub-harmonically or harmonically or rotate about
its point of support. However, the critical value of driving
amplitude to excite subharmonic swing in the presence of
damping is always minimum. The motion of a planar pendu-
lum is restrictive due to its single degree of freedom. However,
a double pendulum, with a couple of degrees of freedom, has
enlarged phase space. A parametrically driven double pendu-
lum has the potential to capture several interesting phenomena
observed in fluids and in other coupled systems under para-
metric driving. The double pendulum with two equal masses
in the absence of damping is a well-studied system. It is one
of the classic problems of mechanics that has attracted the
attention of scientists and engineers for more than a century.

*kumar.phy.iitkgp@gmail.com

The swinging motion of a double pendulum [32,34] shows
a rich dynamics [43–49]. As it has two normal modes, it
displays exciting and complex oscillatory as well as rotational
motion. If the point of suspension is vibrated sinusoidally
in the vertical direction, then a damped double pendulum is
expected to display either periodic or aperiodic motion, if the
driving amplitude is raised above a threshold. In addition, the
linearized equations of motion of a double pendulum lead to
a system of coupled Mathieu equations [50], which is used as
a model to study several interesting phenomena [19–25]. The
nonlinear motion is more complex.

In this paper, we study the effects of (1) damping and
(2) unequal masses on the motions of a double pendulum.
It is observed that richer dynamics emerge when one incor-
porates the two above-mentioned features in the system. The
understanding of linear stability and nonlinear motion of a
parametrically driven double pendulum, in the presence of
damping, is useful for the robotics and sports industries. The
linear stability of a damped double pendulum under paramet-
ric driving is not known if the two masses are unequal. We
present here the results of numerical studies on the motion of
a parametrically driven damped coplanar double pendulum.
The Floquet multipliers for the pendulum are also computed in
the absence of damping. The linear stability using the Floquet
method shows a qualitatively new phenomenon, where two
marginal stability curves for unequal masses merge together in
the space of driving parameters to form a double-well-shaped
new instability zone. The nonlinear swings and rotations of
the pendulum are investigated by integrating the equations of
motion numerically. The limit cycles corresponding to normal
mode oscillations are squeezed to a line in the configuration
space. The Lyapunov exponents and the phase portraits are
also computed numerically. The stability of the system with
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FIG. 1. Schematic diagram of a parametrically driven coplanar
double pendulum. The pivot is vibrated sinusoidally in the vertical
direction.

one or both the pendulums inverted is also investigated. The
nonlinear motion of a partially inverted double pendulum is
also studied, which shows interesting features.

II. PHYSICAL SYSTEM AND THE EQUATIONS
OF MOTION

We consider a coplanar damped double pendulum, whose
pivot is vibrated sinusoidally in the vertical direction. A mass
m1 connected to a light rod of length l1 is suspended from a
fixed pivot. Another mass m2 connected to a light rod of length
l2 is attached to the first one, as shown in Fig. 1 schematically.
When at rest, both the masses are below the pivot along a

vertical line passing through the pivot. The upper pendulum
may oscillate or rotate about the pivot, while the lower one
may do the same about its point of suspension. The dissipative
forces Q1 and Q2 acting on the upper and lower pendulums
are considered to be velocity dependent, and derivable from
the Rayleigh dissipation function [51], F = �

2 (v2
1 + v2

2),
where � is the damping coefficient and vi is the instantaneous
velocity of the bob of the ith pendulum. A two-dimensional
coordinate system is chosen with its origin at the mean po-
sition of the vibrating pivot. The x and y axes are along
the horizontal and vertical directions through the origin. The
pendulum of length li and mass mi (i = 1, 2) makes an angle
θi with the vertical direction, as shown in the figure. In terms
of generalized coordinates (θ1 and θ2) and parameters of the
double pendulum, the position vectors of the two masses are

r1(t ) = l1 sin θ1x̂ + (−l1 cos θ1 + a sin ωt )ŷ, (1)

r2(t ) = r1(t ) + l2(sin θ2x̂ − cos θ2ŷ), (2)

where x̂ and ŷ are unit vectors along the positive directions
of the x and y axes, respectively. The Lagrangian function
L(θ1, θ2, θ̇1, θ̇2, t ) of the system reads as [34]

L = 1
2 (m1 + m2)l2

1 θ̇2
1 + 1

2 m2l2
2 θ̇2

2

+ (m1 + m2)gl1 cos θ1 + m2gl2 cos θ2

+ m2l1l2θ̇1θ̇2 cos (θ2 − θ1)

+ (m1 + m2)aωl1θ̇1 sin θ1 cos ωt

+ m2aωl2θ̇2 sin θ2 cos ωt + ḟ1(t ), (3)

where ḟ1 is total time derivative of an irrelevant function
f1(t, a, ω, m1, m2, g) in the Lagrangian. The Rayleigh dissi-
pation function F (θ1, θ2, θ̇1, θ̇2, t ) for parametrically driven
coplanar pendulum may be written as

F = �

2

[
2l2

1 θ̇2
1 + l2

2 θ̇2
2 + 2l1l2θ̇1θ̇2 cos (θ1 − θ2) + 2aω

(
2l1θ̇1 sin θ1 cos ωt + l2θ̇2 sin θ2 cos ωt

)] + f2(t ), (4)

where the function f2(t ) = �a2ω2 cos2 ωt is independent of generalized coordinates and velocities. The dissipative forces Q1

and Q2, in terms of the generalized coordinates and velocities, acting on masses m1 and m2, respectively, are

Q1 = −∂F
∂θ̇1

= −�
[
2l2

1 θ̇1 + l1l2θ̇2 cos (θ1 − θ2) + 2aωl1 sin θ1 cos ωt
]
, (5)

Q2 = −∂F
∂θ̇2

= −�
[
l2
2 θ̇2 + l1l2θ̇1 cos (θ1 − θ2) + aωl2 sin θ2 cos ωt

]
. (6)

The equations of motion for a coplanar double pendulum may be derived using the Euler-Lagrange equations, as follows:

d

dt

(
∂L
∂θ̇i

)
− ∂L

∂θi
= Qi, i = 1, 2. (7)

Inserting the expressions for Lagrangian [Eq. (3)] and dissipative forces [Eqs. (5) and (6)] in Eq. (7), we get the following
coupled equations for the driven double pendulum:

(m1+m2)l2
1 θ̈1+(m1+m2)gl1

(
1−aω2

g
sin ωt

)
sin θ1 + �

[
2l2

1 θ̇1+l1l2θ̇2 cos (θ1−θ2)+2aωl1 sin θ1 cos ωt
]+m2l1l2θ̇

2
2 sin (θ1 − θ2)

= −m2l1l2θ̈2 cos (θ1 − θ2), (8)
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m2l2
2 θ̈2 + m2gl2

(
1 − aω2

g
sin ωt

)
sin θ2 + �

[
l2
2 θ̇2 + l1l2θ̇1 cos (θ1 − θ2) + aωl2 sin θ2 cos ωt

] − m2l1l2θ̇
2
1 sin (θ1 − θ2)

= −m2l1l2θ̈1 cos (θ1 − θ2). (9)

The equation for θ̈1 involves θ̈2 and vice versa. One may rewrite these equations where the equation for θ̈1 (θ̈2) does not involve
directly θ̈2 (θ̈1). We do that after making the equations of motion [Eqs. (8) and (9)] dimensionless. We define dimensionless
time τ = ω0t , where ω0 = √

g/l1. We also introduce the following dimensionless parameters: μ = m2/m1 for the mass ratio,
λ = l1/l2 for the length ratio, 2β = �/(m1ω0) for the damping coefficient. The dimensionless driving amplitude A and the
frequency 	 are defined as A = (aω2)/g and 	 = ω/ω0, respectively. The equations of motion may now be written as

[1 + μ sin2 (θ1 − θ2)]θ̈1 + 2β[1 + sin2 (θ1 − θ2)]θ̇1 + (1 − A sin 	τ )[(1 + μ) sin θ1 − μ cos (θ1 − θ2) sin θ2]

+ μ

λ

[
θ̇2

2 + λθ̇2
1 cos (θ1 − θ2)

]
sin (θ1 − θ2) + 2β

	
A[2 sin θ1 − cos (θ1 − θ2) sin θ2] cos 	τ = 0, (10)

[1 + μ sin2 (θ1 − θ2)]θ̈2 + 2β

μ
[{1 + μ sin2 (θ1 − θ2)}θ̇2 + λ(1 − μ)θ̇1 cos (θ1 − θ2)]

+ λ(1 + μ)(1 − A sin 	τ )[sin θ2 − cos (θ1 − θ2) sin θ1] − [
λ(1 + μ)θ̇2

1 + μθ̇2
2 cos (θ1 − θ2)

]
sin (θ1 − θ2)

+ 2β

	

λ

μ
A[(1 + μ) sin θ2 − 2μ cos (θ1 − θ2) sin θ1] cos 	τ

= 0. (11)

The set of above two second-order differential equations [Eqs. (10) and (11)] describes the dynamics of a parametrically
driven coplanar double pendulum in the presence of velocity-dependent damping. These two equations are invariant under
the transformation θ1 → −θ1 and θ2 → −θ2 (inversion symmetry) simultaneously for all values of λ, μ and β. Notice that the
last terms in both the equations depend on (βA/	) cos 	τ . They arise if the pivot is vibrated in the vertical direction. They affect
both linear and nonlinear motion of the parametrically driven double pendulum. If the two masses of the pendulum are equal
(μ = 1), then Eqs. (10) and (11) get simplified. They can be written as

[1 + sin2 (θ1 − θ2)](θ̈1 + 2βθ̇1) + [1 − R sin (	τ − 
)][2 sin θ1 − cos (θ1 − θ2) sin θ2]

+
[

1

λ
θ̇2

2 + θ̇2
1 cos (θ1 − θ2)

]
sin (θ1 − θ2) = 0, (12)

[1 + sin2 (θ1 − θ2)](θ̈2 + 2βθ̇2) + 2λ[1 − R sin (	τ − 
)][sin θ2 − cos (θ1 − θ2) sin θ1]

− [
2λθ̇2

1 + θ̇2
2 cos (θ1 − θ2)

]
sin (θ1 − θ2) = 0, (13)

where R = A sec 
 = A
√

1 + (2β/	)2 is the redefined
driving amplitude and 
 = tan−1 (2β/	) is a phase
factor.

III. LINEAR STABILITY ANALYSIS

We now perform the Floquet stability analysis of a
parametrically driven damped double pendulum when the
point of support is vibrated vertically. The system has in-
finitely many fixed (equilibrium) points. They are denoted
by (θ∗

1 , θ∗
2 ), where θ∗

1 = 0,±π,±2π,±3π, ... and θ∗
2 =

0,±π,±2π,±3π, .... However, each of these these fixed
points is physically equivalent to one of the following four
stationary states:

(i) Normal double pendulum: Both the pendulums are ver-
tically downward (θ∗

1 = θ∗
2 = 0) initially. This fixed point is

stable if the amplitude of the external driving is below a
threshold.

(ii) Partially inverted double pendulum: One of the two
pendulums is inverted initially and the other is vertically
downward. The fixed point (θ∗

1 = 0, θ∗
2 = π ) corresponds to

a case when the pivoted pendulum is vertically downward and
the other one is inverted. Another fixed point (θ∗

1 = π, θ∗
2 =

0) describes the stationary state when the pivoted pendulum
is inverted and the second one is vertically downward. Both
of these fixed points are unstable in the absence of external
driving.

(iii) Fully inverted double pendulum: The fixed point (θ∗
1 =

π, θ∗
2 = π ) describes a stationary state when both the pendu-

lums are initially inverted. This is also an unstable state in the
absence of driving.

We consider the role of parametric driving on each of
these four fixed points. The linearization of Eqs. (10) and
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TABLE I. Values of h, j, k, and l for four fixed points (θ∗
1 , θ∗

2 )
of the coplanar double pendulum.

Fixed points (θ∗
1 , θ∗

2 ) h j k l

0, 0 1 1 1 1
0, π 1 1 −1 −1
π, 0 1 −1 1 −1
π, π 1 −1 −1 1

(11) around any one of these four fixed points leads to the
following set of equations:

θ̈1 + 2hβθ̇1 + j(1 − A sin 	τ )[(1 + μ)θ1 − μθ2]

+ j
2β

	
A(2θ1 − θ2) cos 	τ = 0, (14)

θ̈2 + 2hβ

μ
θ̇2 + l

2β

μ
λ(1 − μ)θ̇1

+ kλ(1 + μ)(1 − A sin 	τ )(θ2 − θ1)

+ k
2β

	

λ

μ
A[(1 + μ)θ2 − 2μθ1] cos 	τ = 0, (15)

where h = 1. The integers j, k, and l can take values either 1
or −1. The set of values, h, j, k, and l , tabulated in a row of
Table I, corresponds to one of the fixed points of the double
pendulum. The coefficients h, j, k, l form a finite group of
order 4, which is identified as Klein-four (V4). The element
h serves as the identity. In addition, j2 = k2 = l2 = h, jk =
k j = l , kl = lk = j, and l j = jl = k. Each row of Table I
shows an irreducible representation of the Klein-four group
corresponding to a fixed point listed in that row.

The equations of motion for a driven double pendulum get
simplified considerably if μ = λ = 1. For the fixed point (0,
0) [h = j = k = l = 1], the equations of motion [Eqs. (14)
and (15)] take the following form:

θ̈1 + 2βθ̇1 + [1 − R sin (	τ − 
)](2θ1 − θ2) = 0, (16)

θ̈2 + 2βθ̇2 + 2[1 − R sin (	τ − 
)](θ2 − θ1) = 0. (17)

The above equations admit solutions where θ2(τ ) =
∓√

2θ1(τ ), that is the angular displacements of the two pen-
dulums are linearly proportional. Equations (16) and (17) then
become identical and are given as

θ̈1,2 + 2βθ̇1,2 + 	2
0±[1 − R sin (	τ − 
)]θ1,2 = 0, (18)

where 	2
0± = 2 ± √

2. For A = 0, the solutions θ j (τ ) for j =
1, 2 are

θ2(τ ) = ∓
√

2θ1(τ )

= exp(−βτ )
[
θc± cos

√(
	2

0± − β2
)
τ

+ θs± sin
√(

	2
0± − β2

)
τ
]
.

The initial conditions fix the constants θc± and θs±.

A. Floquet multipliers

We now consider the linearized version of the pendulum
equations in the absence of damping (β = 0), which simplify
(for h = j = k = l = 1) from Eqs. (14) and (15) as

θ̈1 + f (τ )((1 + μ)θ1 − μθ2) = 0, (19)

θ̈2 + λ(1 + μ) f (τ )(θ2 − θ1) = 0. (20)

These coupled Mathieu equations are very general and ap-
pear in a variety of problems. For example, to understand
spatial patterns in a driven Bose-Einstein condensate use a
similar model [18,19]. Optically trapped water droplets may
also be excited parametrically. The measured power spectra
of position fluctuations of a suspended water droplet were
found in excellent agreement with parametrically modulated
Langevin dynamics [20]. An alternate method of lasing called
“quantum amplification by super-radiant emission of radiation
(QASER)” without population inversion could be explained in
terms of coupled oscillators with modulated coupling strength
and parametric resonance [21–23]. The cosmological problem
of reheating after inflation could also be thought of as a para-
metric resonance in the quantum fluctuations of a couple of
scalar fields, one heavy and one light [24].

Equations (19) and (20) could be decoupled in terms of
normal modes, Y±, given by

Ÿ± + 	2
± f (τ )Y± = 0; Y±(τ ) = b±θ1(τ ) − θ2(τ ), (21)

where

b± = (1 − λ)(1 + μ) ±
√

(1 + μ)[(λ − 1)2 + μ(λ + 1)2]

2μ
,

and 	2
± = μb± + λ(1 + μ). In Eqs. (21) and henceforth,

all terms with upper (lower) signs are taken together. As
f (τ + T ) = f (τ ), Eqs. (21) are invariant under the transfor-
mation τ → τ + T . If [Y1+(τ ), Y2+(τ )] and [Y1−(τ ),Y2−(τ )]
are the two sets of independent solutions for the normal modes
Y+(τ ) and Y−(τ ), then so are [Y1+(τ + T ), Y2+(τ + T )] and
[Y1−(τ + T ), Y2−(τ + T )]. Therefore, they must transform
into linear combinations of themselves as τ → τ + T . It is
possible to choose the solutions [34,52] such that

Yp±(τ ) = �
τ/T
p± p±(τ ), p = 1, 2. (22)

In the above, p±(τ + T ) = p±(τ ) and the Floquet multi-
pliers �p± are constants. As a consequence, one has Yp±(τ +
T ) = �p±Yp±(τ ). It could be shown that the Floquet multipli-
ers obey the following relations for real function f (τ ):

�1±�2± = 1 = �∗
1±�∗

2±. (23)

The Floquet multipliers have the following properties:
(i) �1± and �2± are real and �1± = 1/�2±. The solu-

tion corresponding to a Floquet multiplier with a magnitude
greater than unity will be a growing solution, whereas one
with a magnitude smaller than unity will be a decaying so-
lution.

(ii) �1± and �2± are complex, �1± = �∗
2± with |�1±| =

|�2±| = 1. The solution corresponding to a complex Floquet
multiplier will be either a pure oscillatory type or would be
executing under-damped oscillations.
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It is to be noted that the Floquet multipliers �p+ are inde-
pendent of �p−. So it could happen that one pair of Floquet
multipliers is real, and the other is complex.

Setting λ = 1 in Eqs. (19) and (20), we get the following μ

dependent discrete scaling symmetry:

S[θ1(τ )] = μθ2(τ ), and S[θ2(τ )] = (1 + μ)θ1(τ ),
(24)

with S−1 defined as

S−1[θ1(τ )] = 1

1 + μ
θ2(τ ), and S−1[θ2(τ )] = 1

μ
θ1(τ ).

(25)
Equations (19) and (20) remain invariant under the above
scale transformation S. Equation (19) ⇐⇒ Eq. (20) when
the transformation (24) is substituted in Eqs. (19) and (20).
The transformation (25) does the same. This symmetry could
be exploited to generate new solutions from a known solution.

B. Floquet analysis

Floquet analysis is done following the method [10] used in
the context of Faraday instability. The solutions of Eqs. (14)
and (15) may be written, in the Floquet form, as

θ1(τ ) = e(s+iα	)τ�

(
τ, T = 2π

	

)

= e(s+iα	)τ
∞∑

n=−∞
φnein	τ , (26)

θ2(τ ) = e(s+iα	)τ�

(
τ, T = 2π

	

)

= e(s+iα	)τ
∞∑

n=−∞
ψnein	τ . (27)

Here � and � are periodic functions of time with time period
T = 2π/	, and they are expanded in Fourier series. The real
number s is the growth rate and s + iα (0 � α < 1) is the
Floquet exponent. The angular displacements θ1 and θ2 are
real quantities and, therefore, the expansions will be real only
if (i) α = 0 or (ii) α = 1/2. The Fourier modes, which are
complex in general, obey the following reality conditions:

φ∗
−n = φn and ψ∗

−n = ψn, for α = 0,

φ∗
−(n+1) = φn and ψ∗

−(n+1) = ψn, for α = 1/2. (28)

The solutions corresponding to α = 0 are called harmonic
solutions and they are synchronous to the external driv-
ing. Similarly, the solutions corresponding to α = 1/2 are
called subharmonics and they oscillate with half the driving
frequency. Inserting the Floquet expansion of angular dis-
placements [Eqs. (26) and (27)] in the linearized equations of
motion [Eqs. (14) and (15)] and collecting the coefficients
of the nth mode in both the equations, we get the following
recursion relations:

Bnφn − jμψn = A[(cφn−1 + c∗φn+1) + (dψn−1 + d∗ψn+1)], (29)

Cnφn + Dnψn = A[(eφn−1 + e∗φn+1) + ( f ψn−1 + f ∗ψn+1)], (30)
where

Bn(β,μ, s,	, α) = [{s + i(n + α)	}2 + 2hβ{s + i(n + α)	} + j(1 + μ)], (31)

Cn(β,μ, λ, s,	, α) =
[

2lβλ(1 − μ)

μ
{s + i(n + α)	} − kλ(1 + μ)

]
, (32)

Dn(β,μ, λ, s,	, α) =
[
{s + i(n + α)	}2 + 2hβ

μ
{s + i(n + α)	} + kλ(1 + μ)

]
, (33)

c

(
β

	
,μ

)
= − j

[
2β

	
+ i

(
1 + μ

2

)]
, d

(
β

	
,μ

)
= j

(
β

	
+ i

μ

2

)
, e = −k

j
λc, f = −k

j

λ(1 + μ)

μ
d. (34)

The above recursion relations [Eqs. (29) and (30)] may be converted to a generalized eigenvalue equation:

Mχ = ANχ, (35)

where χ = (..., φ−2, ψ−2, φ−1, ψ−1, φ0, ψ0, φ1, ψ1, φ2, ψ2...)† is a column matrix with 2n elements. The square matrices M
and N of size 2n × 2n are given by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
...

...
...

...

. . . B−1 − jμ 0 0 0 0 . . .

. . . C−1 D−1 0 0 0 0 . . .

. . . 0 0 B0 − jμ 0 0 . . .

. . . 0 0 C0 D0 0 0 . . .

. . . 0 0 0 0 B1 − jμ . . .

. . . 0 0 0 0 C1 D1 . . .

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
...

...
...

...

. . . 0 0 c∗ d∗ 0 0 . . .

. . . 0 0 e∗ f ∗ 0 0 . . .

. . . c d 0 0 c∗ d∗ . . .

. . . e f 0 0 e∗ f ∗ . . .

. . . 0 0 c d 0 0 . . .

. . . 0 0 e f 0 0 . . .
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

024210-5



SARKAR, KUMAR, AND KHASTGIR PHYSICAL REVIEW E 108, 024210 (2023)

1 2 3 4 5
0

0.5

1

1.5

1 2 3 4 5
0

0.5

1

1.5
(a) (b)

FIG. 2. Marginal stability curves for a coplanar double pendulum with length and mass ratios equal to unity (λ = μ = 1) in the 	-A plane
for β = 0 and β = 0.1. Blue (black) and red (gray) curves correspond to subharmonic and harmonic motions, respectively.

The generalized eigenvalue equation [Eq. (35)] may be put in
the form of a standard eigenvalue equation:

(N−1M)χ = Aχ or (M−1N )χ = 1

A
χ. (37)

As n varies from −∞ to +∞, the matrix is of infinite
size. In practice one has to truncate the matrix to a suitable
finite size and find eigenvalues of the matrix. The real and
positive eigenvalues of Eq. (37) give possible values the di-
mensionless amplitude A or its inverse (1/A). By varying the
driving frequency 	 in small steps the eigenvalues A(	) or
1/A(	) can be computed for each value of 	 and fixed values
of parameters β,μ, λ, s, α. The eigenvalues corresponding to
the growth rate s = 0 fall on the neutral (marginal) stability
curves for these values of the parameters. The eigenvalues of
the square matrix N−1M or the matrix M−1N are found to
be either pairs of complex conjugate numbers or real numbers.
As the driving amplitude A is real, only real and positive
eigenvalues are relevant. Their number depends on the size
of square matrix N−1M or M−1N .

IV. RESULTS OF THE FLOQUET ANALYSIS

We take the ratio of two lengths, λ, between 1/2 and 2.
The stability matrix M−1N (or N−1M) is truncated to a
reasonable size so that the first few lower eigenvalues A (real
and positive ones) are determined with preassigned accuracy
for each value of 	. All the results reported here are for
the expansion of θ1 and θ2 up to ten Fourier modes. This
means that a matrix of size 40 × 40 for α = 1/2 and 42 × 42
for α = 0 with a preassigned accuracy of 10−6. The growth
rate s is set equal to zero, and small values the damping
coefficient β are considered. The real positive eigenvalues
are recorded for a given value of the dimensionless driving
frequency 	. The process is repeated by varying 	 in small
steps of 
	 = 0.003. The eigenvalues are plotted for each
value of 	 in the 	-A plane for α = 1/2 and α = 0. These
eigenvalues form tonguelike regions in the parameter space
(the 	-A plane), and separate the regions of stability (s < 0)
from those of instability (s > 0).

A. Stability of a normal double pendulum

We first present the marginal stability curves computed for
a parametrically driven coplanar double pendulum with two
equal masses and equal lengths (μ = λ = 1). Figure 2 shows
the marginal stability curves for (i) β = 0 and (ii) β = 0.1.
The regions inside blue (black) curves are subharmonic insta-
bility zones (α = 1/2), while those inside red (gray) curves
are harmonic instability zones (α = 0). Regions marked by
symbols S(1)

1 and S(2)
1 (H (1)

1 and H (2)
1 ) in the 	-A plane stand

for the first subharmonic (harmonic) instability zones cor-
responding to the normal modes with frequencies 	0+ and
	0−, respectively. The frequencies corresponding to the min-
ima of different instability zones are resonance frequencies.
For β = 0, the largest frequencies at subharmonic (harmonic)
resonances are 2	0+ (	0+) and 2	0− (	0−). In the presence
of damping (β = 0.1), as shown in Fig. 2(b), the marginal
boundaries move away from the frequency axis. The driving
amplitude to excite the double pendulum subharmonically at
the highest resonance frequency is the least. This results in an
out-of-phase motion.

The marginal stability curves computed for the case of
two unequal masses (m1 	= m2) for the fixed point (θ∗

1 , θ∗
2 ) =

(0, 0) are now discussed. The elements of the Klein-four
group for this case are: h = j = k = l = 1. The upper panel
of Fig. 3 shows the marginal stability curves for λ = 2, μ =
0.5 in the absence of damping. The lower panel shows the
Floquet multipliers corresponding to a variety of points num-
bered in the 	-A plane. All the four Floquet multipliers for the
points outside the instability zones (see, points 1, 5, 9, 12, 13)
are complex. They form two sets of complex conjugate pairs.
The magnitude of real parts of these multipliers are less than
unity and they represent decaying periodic solutions. When
the points are chosen on the marginal stability curves, then at
least one pair of the multipliers is real. If the point falls on
the subharmonic (harmonic) marginal curve, then at least a
pair of multipliers will be −1 (+1) as shown for the points
2, 4, 6, 8, 14. If the point is inside only one of the instability
zones, then at least one pair of multipliers will be real. If the
point is inside a subharmonic (harmonic) instability zone, then
the real multipliers will be negative (positive), as shown for
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FIG. 3. Marginal stability curves for λ = 2, μ = 0.5 in the 	-A plane for β = 0. Blue (black) and red (gray) curves correspond to
subharmonic and harmonic motions, respectively.

the point 3. If the point is inside two instability zones, then all
four multipliers are real (see points 7, 10, 16). The point 11
(15) is on the boundary of a harmonic (subharmonic) instabil-
ity zone and just inside a subharmonic (harmonic) zone.

Figure 4 displays marginal stability curves for the stable
fixed point (0, 0) for mass ratio, μ = 0.5 (the left column) and
μ = 0.8 (the right column) for different values of β. The re-
gions inside blue (black) curves are the zones of subharmonic
instability (α = 1/2), while those inside red (gray) curves are
zones of harmonic instability (α = 0). For any point outside
all these instability zones in the 	-A plane, the double pendu-
lum will not have any periodic solutions. The marginal curves
plotted in the top, middle and bottom rows are for β = 0, 0.01,
and 0.1, respectively. The instability zones for α = 1/2 never
cross those for α = 0 for the same normal mode, as they be-
long to two different classes of oscillatory solutions. However,
the marginal stability curves corresponding to two different
normal modes may have a common point. As there are several
instability zones, there are several resonance frequencies. All
the marginal curves touch the frequency axis [Figs. 4(a) and
4(d)] in the absence of damping (β = 0). The double pendu-
lum may be parametrically excited at an infinitesimal driving
amplitude in this case.

The damping induces some novel behavior in the form
of merging of subharmonic tongues for both μ = 0.5 and
μ = 0.8. The marginal curves for β = 0.01 are shown in
Figs. 4(b) and 4(e). When the damping is further increased
(β = 0.1) some drastic reorganization of merged zones are
recorded for μ = 0.5. The stability zones for μ = 0.5 and
μ = 0.8 look visibly different for β = 0.1 in Fig. 4(c) and

4(f). This indicates that the dynamical behavior of a double
pendulum with the same driving frequency and amplitude may
differ significantly for different mass ratios (μ). A relatively
smaller driving amplitude is capable of exciting it with larger
value of μ at the largest subharmonic resonance frequency
for a fixed value of β. In the frequency range (1 < 	 < 1.2)
shown in Fig. 4(c), the reorganization of merged subharmonic
zones introduces gaps in the 	-A plane where no effort can
excite a periodic oscillation about the fixed point (0, 0). For
μ = 0.8 [see Fig. 4(f)], we find no such window devoid of
periodic motion in the 	-A plane. The linear stability analysis
provides the ground for initial guesses about the dynamics of
parametrically driven double pendulum. However, the actual
dynamics is governed by the full set of equations [Eqs. (10)
and (11)]. Therefore, nonlinear analysis of the system is re-
quired for thorough understanding of its dynamics.

We now fix the driving frequency 	 = 0.24 and vary
the one of the pendulum parameters in the absence of
damping (β = 0). This is equivalent to fixing the driving
frequency and choosing different double pendulums, as the
normal mode frequencies depend on λ and μ. It is similar
to the process followed in the model of a QASER [21–23],
where they reported a large frequency response (gain) for a
small forcing frequency. We have used a relation: 1 + μ =
64λ/[15(λ + 1)2] which sets 3	2

+ = 5	2
−. The difference


	 = 	+(λ) − 	−(λ) becomes a function of λ only. Fig-
ure 5(a) shows the instability regimes in the A-λ plane for a
fixed value 	 and β = 0. The onset of subharmonic instabili-
ties (A → 0) are at λ = 0.7775 and 0.7889. The former corre-
sponds to 	 = 2	+(0.7775)/9 and the latter corresponds to
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FIG. 4. Marginal stability curves for the mass ratio μ = 0.5 (left column) and μ = 0.8 (right column), length ratio λ = 1 and for different
values of damping coefficient: β = 0 [(a) and (d)], 0.01 [(b) and (e)], and 0.1 [(c) and (f)]. Blue (black) and red (gray) curves are for the Floquet
exponent α = 0 and 1/2, respectively.

	 = 2	−(0.7889)/7. Similarly, harmonic instabilities at the
onset are found at λ = 1.174 and 1.359. They correspond to
	 = 2	+(1.174)/10 and 	 = 2	−(1.359)/8, respectively.
For higher values of A, the marginal curves are titled to-
wards higher values of λ. We observe closely placed narrow
subharmonic instability zones [blue (black) curves] and two
harmonic instability zones [red (gray) curves]. These regimes
become relatively wider at the higher values of A. Inside
this instability zones, the real part of the Floquet exponent
is positive. Figure 5(b) displays 2πs/	 as a function of λ

for A = 0.6. The closely placed blue (black) peaks at lower
λ are for the subharmonic instability zones, while the two red
(gray) peaks at higher λ are for the harmonic instability zones.
The maximum of the largest peak is located at λ = 0.8670,
and the corresponding value of μ = 0.0613. At λ = 0.8670
the 
	 ≈ 	. This has resemblance with the results of the
QASER model [22], although our system is different. Fig-
ure 5(c) shows the time evolution of θ2 after the transients die
out. As the θ2 grows with time, peaks in its power spectrum
density (PSD) will keep growing with time. However, the

positions of the peaks in its PSD [Fig. 5(d)] are located at the
same frequencies. The maximum power of the growing solu-
tion is concentrated at frequency 	s = 0.8401, which is equal
to 7	/2. In this case, the dominating response frequencies are
around four times the driving frequency.

B. Partially or fully inverted double pendulum

We now discuss the results of linear stability of a dou-
ble pendulum, in which at least one of the two pendulums
is inverted. Figure 6 displays the marginal stability curves
obtained using the Floquet method for different equilibrium
points in the 	-A plane for μ = 0.5 and β = 0.1. The blue
(black) and red (gray) curves (s = 0) are for subharmonic
and harmonic instabilities, respectively. The curves shown in
Fig. 6(a) are stability boundaries of a normal double pen-
dulum, which corresponds to the fixed point θ∗

1 = θ∗
2 = 0.

The shaded zone is the region of parameter space for which
the fixed point (0, 0) is stable against periodic perturbations.
It becomes unstable as the driving amplitude and frequency
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FIG. 5. Instability regime (a) and variation of 2πs/	 (b) near higher subharmonics are plotted as a function of λ for a coplanar double
pendulum for a fixed driving frequency 	 = 0.24 and driving amplitude A = 0.6. The solution (c) and its power spectrum density (d) are also
shown at the largest Floquet exponent at λ = 0.8670, μ = 0.0613, β = 0.0.

FIG. 6. Marginal stability curves for fixed points (a) (0, 0), (b) (0, π ), (c) (π , 0), (d) (π , π ) in the 	-A plane for μ = 0.5, λ = 1 and β = 0.1.
The shaded area in a viewgraph is the region of stability for the fixed point mentioned in that viewgraph against periodic perturbations.
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are within any of the instability zones. The shaded regions
in Figs. 6(b) and 6(c) are the zones of stability of fixed
points θ∗

1 = 0, θ∗
2 = π and θ∗

1 = π, θ∗
2 = 0, respectively. The

stability boundaries for fixed points (0, π ) and (π, 0) closely
resemble each other and become identical for a double pen-
dulum of equal masses (μ = 1). In this case the boundary for
the harmonic instability [red (gray) curves] is below those for
subhamonic solutions [blue (black) curves] for 	 greater than
certain value 	∗. The values of 	∗ for the fixed points (0, π )
and (π, 0) are 4.521 and 4.481, respectively. For the fixed
point (0, π ), the lowest curve for the subharmonic instability
[blue (black) curve] terminates at 	 = 47.25 and A = 827.7
for β = 0.1. If β = 0, then this curve does not terminate
(not shown here) and continues. The analogous termination
point for the fixed point (π, 0) is found at 	 = 45.62 and
A = 771.6 for the same β. It is observed that for both the cases
of partially inverted pendulums, A/	2 = a/l1 = 0.3707 at the
termination point. The damping enlarges the region of stabil-
ity of a partially inverted double pendulum in the parameter
space. Figure 6(d) shows the stability boundaries for the fully
inverted double pendulum, which corresponds to the fixed
point θ∗

1 = θ∗
2 = π . In this case, two harmonic instability

boundaries are below that for the subharmonic instability for
	 > 	∗ = 8.231. The shaded region in the parameter space
is the region of stability of a fully inverted double pendulum.
This region is consistent with the pendulum theorem [43],
although the limiting boundaries given in Ref. [43] lie inside

and very close to the upper and the lower boundaries of the
shaded region shown in Fig. 6(d). In addition, the stability
zones at low driving amplitudes for different fixed points over-
lap. This may lead to a possibility of more than one solutions
depending on the initial conditions. At higher frequencies and
lower amplitudes of driving, the double pendulum may be
maintained in an either fully inverted state (π, π ) or in one
of the partially inverted states [(0, π ) and (π, 0)]. At larger
values of A, the actual behavior of the system will be governed
by the full nonlinear equations.

V. NONLINEAR MOTION UNDER PARAMETRIC DRIVING

The phenomenon of parametric resonance occurs in non-
linear optical systems described by a nonlinear Schrödinger
equation [26]. They also occur in an extended system like a
taut string with periodically modulated tension [27]. These
system could be described by modified Mathieu equation with
nonlinearity and damping. The nonlinear motion of a double
pendulum involves coupled Mathieu equations with nonlin-
earilty and damping which are more general in nature. To
investigate the nonlinear dynamics of a parametrically driven
damped coplanar double pendulum, the equations of motion
may be converted to a dynamical system, which may be inte-
grated numerically. For this purpose, we introduce dynamical
variables as X1 = θ1, X2 = θ̇1, X3 = θ2, X4 = θ̇2, and X5 = 	τ

and rewrite the nonlinear equations (10) and (11) as

Ẋ1 = X2, (38)

Ẋ2 = − 1

[1 + μ sin2 (X1 − X3)]

[
(1 − A sin X5){(1 + μ) sin X1 − μ cos (X1 − X3) sin X3}

+ 2β{1 + sin2 (X1 − X3)}X2 + 2β

	
A{2 sin X1 − cos (X1 − X3) sin X3} cos X5

+ μ

λ

{
X 2

4 + λX 2
2 cos (X1 − X3)

}
sin (X1 − X3)

]
, (39)

Ẋ3 = X4, (40)

Ẋ4 = − 1

[1 + μ sin2 (X1 − X3)]

[
{λ(1 + μ)(1 − A sin X5)[sin X3 − cos (X1 − X3) sin X1]}

+ 2β

μ
{(1 + μ sin2 (X1 − X3))X4 + λ(1 − μ)X2 cos (X1 − X3)}

+ 2βλ

	μ
A{(1 + μ) sin X3 − 2μ cos (X1 − X3) sin X1} cos X5

{
λ(1 + μ)X 2

2 + μX 2
4 cos (X1 − X3)

}
sin (X1 − X3)

]
, (41)

Ẋ5 = 	. (42)

The above dynamical system describes the motion of a
coplanar double pendulum whose point of support is vibrated
sinusoidally in the vertical direction. As the equations of mo-
tion are nonautonomous, the phase space is five-dimensional.
However, the variable X5 keeps growing linearly with time

but the term sin X5 remains bounded for all time. Interesting
dynamics is effectively in the four dimensional phase space
of variables X1, X2, X3, and X4. The dynamical system is inte-
grated numerically using a standard fourth-order Runge-Kutta
(RK4) method for given values of all the parameters (A, 	,
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FIG. 7. Phase portraits in the configuration space [the θ1-θ2 (X1-X3) plane] for a coplanar double pendulum (μ = λ = 1, β = 0.1) when the
its point of support is vibrated sinusoidally in the vertical direction. Three different values of dimensionless driving amplitude A are considered
for each of three values of the driving frequency 	 = 3.687 [(a)–(c)], 1.779 [(d)–(f)], and 1.512 [(g)–(i)]. Inset in each plot displays a zoomed
view of a tiny portion of the corresponding limit cycle in the θ1-θ̇1 plane [magenta (gray) curves].

λ, μ, and β). The dimensionless time steps 
τ are chosen
equal to 0.005 for all the phase portraits shown here. Initial
values of the dynamical variables Xi (i = 1, 2, 3, 4) are chosen
randomly in a small neighbourhood of each of the four fixed
points. The initial value of X5 is always set equal to zero. All
the results reported here for oscillatory swings of a double
pendulum are found to be independent of the choice of initial
conditions.

A. Excitation of a normal double pendulum

Figure 7 shows oscillatory motion of a driven double pen-
dulum having equal masses and with β = 0.1. The projection
of corresponding limit cycles on the configuration space [θ1-θ2

(or, X1-X3) plane] is displayed for different values of the driv-
ing frequency 	 and amplitude A. Inset of each plot of Fig. 7
shows a zoomed view of a small part of the projection of the
corresponding limit cycle on the θ1-θ̇1 plane [magenta (gray)
curves] to clearly display the details of orbits in the limit cycle.
The power spectra of the phase variable θ1 for all the plots
[Fig. 7(a)–7(i)] are displayed in Fig. 8(a)–8(i). The upper row
[Fig. 7(a)–7(c)] is for 	 = 3.687, which is very close to the
first resonance frequency 	R,1 for β = 0.1 [see Fig. 2(b)].
Figure 7(a) shows an out-of-phase oscillatory motion for the
driving amplitude A = 0.23, which is just above the onset of
S(1)

1 . The limit cycle is squeezed to almost a straight line in
the configuration as well as in the velocity spaces. This occurs
as θ2 = bθ1 with b ≈ −√

2, as predicted by the linear theory
[Eqs. (16) and (17)]. However, a closer look at the limit cycle
reveals nonlinear effects. There are three closely spaced orbits

in the phase space, as shown in the inset of Fig. 7(a). The
power spectrum of θ1 [Fig. 8(a)] has the largest peak at the
response frequency 	s = 	/2 (= 1.843). The double pendu-
lum swings subharmonically with a period 6T (T = 2π/	).
Apparently the motion is similar for A = 1.79 [Fig. 7(b)] with
increased angular displacements with b ≈ −√

2. However,
the enlarged view of the limit cycle [inset of Fig. 7(b)] and
the power spectrum [Fig. 8(b)] confirm it as a subharmonic
oscillation of period 2T . The angular displacement increases
further for A = 2.24. However, the limit cycle has now two
closely spaced orbits [inset in Fig. 7(c)]. The corresponding
power spectrum [Fig. 8(c)] has now several equispaced peaks
at an interval of 	/4. The largest peak is still at 	/2. This is
due to a period-doubling bifurcation of subharmonic oscilla-
tions. The period of oscillation, in this case, is 4T .

The phase portraits, which are shown in the middle row
[Figs. 7(d)–7(f)], are for 	 = 1.779 (very near 	R,2) and for
different values of A. For A = 0.71, the driving parameters fall
in the instability zone H (1)

1 and just outside S(2)
1 [Fig. 2(b)].

The inset shows three closely placed lines. The power spec-
trum of θ1 [Fig. 8(d)] has several peaks, with one at the lowest
frequency 	/3. The larger peaks are at an integral multi-
ple of 	. Here, two masses show out-of-phase period-three
harmonic motion [Fig. 7(d)]. As A is raised to a value 1.5,
the driving parameters now fall in the overlap region of the
instability zones labeled as H (1)

1 and S(2)
1 [Fig. 2(b)]. The out-

of-phase period-three harmonic oscillations flip to in-phase
subharmonic oscillations. Now, the limit cycles have a finite
area in the θ1-θ2 plane. Further increase in A makes the limit
cycle asymmetric. For A = 1.75 the limit cycle does not have
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FIG. 8. Power spectra of the time signal for the angular displacement θ1(τ ) when the point of support of the double pendulum is vibrated
vertically. All the parameters are as given in Fig. 7. Inset of plot (g) is an enlarged view of the first peak in the power spectrum.

the inversion symmetry. The asymmetry in the limit cycle ap-
pears when the power spectrum shows comparable peaks both
at odd and even multiples of 	/2. The oscillations, however,
remain subharmonic. The limit cycles shown in the lower row
[Figs. 7(g)–7(i)] are for driving frequency 	 = 1.512 (near
	R,3). The driving parameters are inside the instability zone
S(2)

1 and outside H (1)
1 . The oscillations are in-phase for all three

values of A considered here. For A = 0.54, the projection
of the limit cycle in the configuration space is almost like
a curve. The power spectrum of θ1 [Fig. 8(g)] for this case
shows the motion to be a period-four subharmonic oscillation.
As A is increased, the limit cycles enclose finite area in the
configuration space. The pendulum shows period-three and
period-five oscillations for A = 0.76 and 1.04 [Fig. 7(h) and
7(i)], respectively, as evident from the corresponding insets of
these two plots, which is further supported by the correspond-
ing power spectra shown in Fig. 8(h) and 8(i).

Figures 9(a)–9(i) show the phase portraits in the configura-
tion space of a double pendulum with two unequal masses
(μ = 1/2). Limit cycles are shown for different values of
	, A with β = 0.1. The plots in the top, middle and bottom
rows are for 	 = 3.057, 2.013, and 1.533, respectively. These
frequencies are very close to the three extrema of the merged
marginal curve for β = 0.1 [see Fig. 4(c)].

Inset in each plot shows an enlarged view of a small part of
the corresponding limit cycle in the θ1-θ̇1 plane. For all three
values of A (0.34, 0.90, and 1.80) at 	 = 3.057 (the top row),
the pendulum shows out-of-phase oscillations. For A = 0.34,
which is just above the first minimum of the merged subhar-
monic instability zone, the limit cycle apparently looks as an
ordinary subharmonic case. However, a closer look reveals a

period-nine subharmonic oscillations [inset of Fig. 9(a)]. The
period-nine oscillations are confirmed by the power spectrum
of θ1 [Fig. 10(a)], which has interesting features. The first
tiny peak appears at 	̃ = 	/9. Subsequent smaller peaks are
at (2m̃ + 1)	̃/2, where m̃ is a natural number. Larger peaks
appear at (2m + 1)	/2. Inside the primary (dominating)
subharmonic peak at 	/2, there are secondary subharmonic
peaks at (2m̃ + 1)	̃. As A is raised further, the nature of os-
cillations changes. For A = 0.90 (1.80) [Fig. 9(b) (Fig. 9(c))],
the pendulum shows ordinary (period-two) subharmonic os-
cillations. The first two limit cycles, which are plotted in the
middle row [Figs. 9(d) and 9(e)], are for A = 1.55 and 1.58,
which are just above the cusp of the merged marginal curve
[Fig. 4(c)]. The limit cycles are qualitatively different from
those shown in the top row. The limit cycles show period-five
and period-three subharmonic oscillations. The power spectra
(not shown here) confirm these observations. The oscillation
periods are very sensitive to the values of A at this driving fre-
quency. With further increase in A, the driving parameters fall
inside the upper region of the merged subharmonic instability
zone. The pendulum oscillates subharmonically [Fig. 9(f)].
The first limit cycle plotted in the bottom row [Fig. 9(g)] is
for 	 = 1.533 and A = 0.911, which is just above the second
minimum of the merged subharmonic marginal curve. The
pendulum shows in-phase period-five subharmonic oscilla-
tions [inset of Fig. 9(g)], which are confirmed by the power
spectrum of θ1 [Fig. 10(b)]. The first tiny peak appears at 	̃ =
	/5 and the subsequent smaller peaks are at (2m̃ + 1)	̃/2,
as described earlier for Fig. 10(a). Larger peaks appear at
(2m + 1)	/2. The ordinary subharmonic oscillations are re-
stored for slightly higher values of A [Figs. 9(h) and 9(i)].
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FIG. 9. Phase portraits in the configuration space [θ1-θ2 (X1-X3) plane] for a coplanar double pendulum with its pivot vibrated vertically.
Parameters are: μ = 1/2, λ = 1, and β = 0.1. Different values of dimensionless driving amplitude A are considered for 	 = 3.057 [(a)–(c)],
2.013 [(d)–(f)], and 1.533 [(g)–(i)]. Inset of each viewgraph shows a tiny part of the zoomed view of the corresponding limit cycle in the θ1-θ̇1

plane [magenta (gray) curves].

Figure 11 displays the large amplitude oscillatory and rota-
tional motion of a coplanar double pendulum. Limit cycles are
shown in the velocity space [θ̇1-θ̇2 (X2-X4) plane] at different
driving frequencies for two different values of driving ampli-
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FIG. 10. Power spectra of the time signal for the angular dis-
placement θ1(τ ). The upper (lower) plot corresponds to the limit
cycles shown in Fig. 9(a) [9(g)] when the point of support is vibrated
vertically.

tude. The top row shows the limit cycles for A = 2.20 and at
four different values of 	. Power spectra of the angular veloc-
ity θ̇1 for four different frequencies are shown in the second
row. For 	 = 3.057, the limit cycle [Fig. 11(a)] is a multiple
orbit closed curve. The power spectrum of the angular ve-
locity θ̇1 for the limit cycle shown in Fig. 11(a) is given in
Fig. 11(e). The peaks in the power spectrum occur at the inte-
gral multiples of 	/12 with the largest one at the frequency of
	/2 = 1.528. The oscillations are subharmonic of period-six.
For 	 = 2.413, the limit cycle [Fig. 11(b)] is quite different.
The corresponding power spectrum P[θ̇1] [see, Fig. 11(f)]
confirms a subharmonic response. At 	 = 2.013, the pendu-
lum motion is rotational for neither θ̇1 nor θ̇2 changes sign.
It is a case of harmonic (synchronous) rotation. For 	 = 1.6,
the pendulum shows period-two harmonic rotational motion.
The corresponding power spectrum P[θ̇1] [Fig. 11(h)] shows
larger peaks located at the integral multiple of 	, while the
smaller ones are found at odd multiples of 	/2. The third row
shows the limit cycles for the pendulum motion in the velocity
space at different values of 	 for A = 1.60. For 	 = 3.057,
2.413 and 2.013 [Figs. 11(i), 11(j), and 11(k)] the pendulum
oscillates subharmonically with respect to the driving. For
	 = 1.6, the pendulum rotates chaotically. The corresponding
phase portraits in the velocity space and the power spectra are
shown in Figs. 11(l) and 11(p), respectively.

Further increase in driving amplitude leads to chaotic mo-
tion. The Lyapunov exponent, ζ , is a measure of separation
between two neighboring trajectories that evolve in the phase
space. As our dynamical system [Eqs. (38)–(42)] in the au-
tonomous form is five-dimensional, there are five Lyapunov
exponents (ζi for i = 1, 2, ..., 5) for a parametrically excited

024210-13



SARKAR, KUMAR, AND KHASTGIR PHYSICAL REVIEW E 108, 024210 (2023)

FIG. 11. Large amplitude oscillations and rotational motion of a coplanar double pendulum with its pivot vibrated vertically. Phase portraits
in the plane of generalized velocities [θ̇1-θ̇2 (X2-X4) plane] and power spectra for the corresponding angular velocity θ̇1 for different values of
	 for a fixed value of A. Parameters are: μ = 1/2, λ = 1, and β = 0.1.

double pendulum. Due to periodic driving, one of the five
exponents is always zero. We have numerically computed
the other four Lyapunov exponents as a function of driving
amplitude A for fixed values of other parameters, following
the method by Wolf et al. [53]. When the largest Lyapunov ex-
ponent becomes definitely positive, the trajectories of a double
pendulum move chaotically in its phase space. Figure 12
displays the variations of other four Lyapunov exponents (ζi,
i = 1, 2, 3, 4) as a function of A for fixed values of 	 and
β. The dimensionless driving amplitude A is raised in small
steps of 0.005 up to a maximum value of 3.0 (5.0) for β = 0.1
(0.2). Plots in the upper (lower) row are for β = 0.1 (0.2). The
variations of the Lyapunov exponents with A at the largest
resonance frequency for subharmonic (harmonic) excitation
are shown in the left (right) column. The largest Lyapunov ex-
ponent ζ1 becomes positive at A = 2.290 (2.415) for β = 0.1
(0.2) and 	 = 	R,1 = 3.687 (3.663), as shown in Fig. 12(a)
[Fig. 12(c)]. The pendulum shows chaotic rotations about the
point of support. The second largest Lyapunov exponent ζ2

also becomes positive for A = 2.435 (4.05) for β = 0.1 (0.2)
and the rotational motion of the pendulum becomes hyper-
chaotic [54]. Figure 12(b) [Fig. 12(d)] displays the variations
of the exponents with A for β = 0.1 (0.2) and 	 = 	R,2 =
1.779 (1.710). The chaotic rotations begin at A = 2.905 for
β = 0.1. For the case of β = 0.2, the chaotic rotations are
observed in a small window of A (2.25 < A < 2.33). The
sum of all the Lyapunov exponents [55] is −4β for μ = 1,
as shown by the black straight line in all the viewgraphs of
Fig. 12.

B. Motions of partially or fully inverted double

Stabilization of an inverted single pendulum was first stud-
ied by Kapitza [33]. Interesting experiments on the stability
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FIG. 12. The variation of the four Lyapunov exponents [shown
with coloured (gray) lines] as a function of driving amplitude A for
different values of the driving frequency 	 and damping coefficient
β: (a) 	 = 3.687, β = 0.1; (b) 	 = 1.779, β = 0.1; (c) 	 = 3.663,
β = 0.2; (d) 	 = 1.710, β = 0.2. Other parameters are μ = 1 and
λ = 1. The black colored straight line in each view graph is the sum
of all the Lyapunov exponents.
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FIG. 13. Stabilization of a partially inverted driven coplanar dou-
ble pendulum for μ = 0.5, λ = 1, β = 0.1, and 	 = 8.845. Phase
portraits in the θ1-θ2 plane (left column) and power spectra of θ̇1

(right column) are plotted for different values of A.

of an inverted double pendulum were performed by Acheson
and Mullin [44,49]. We now discuss the effects of parametric
driving on unstable states corresponding to a partially or fully
inverted double pendulum with μ = 0.5 and β = 0.1. Driving
the pendulum at a frequency much larger than the largest
resonance frequency 	R,1 has interesting results. Figure 13
shows the stabilization of a partially inverted pendulum with
driving frequency 	 = 8.845 and for different values of A.
The phase portraits in the θ1-θ2 plane are displayed in the left
column, while the corresponding power spectra of the phase
variable θ̇1 are shown in the right. The top row shows the
results for A = 25.81, for which the parameter values (	, A)
are outside the subharmonic instability zone but inside that for
the harmonic instability [Fig. 6(b)]. Figure 13(a) shows that
the parametric driving stabilizes the fixed point (0, π ). The
corresponding power spectrum [Fig. 13(b)] shows insignifi-
cant noise and confirms the same. As A is raised slightly above
to a value 28.16, the double pendulum shows small amplitude
oscillations about the fixed point (0, π ). The corresponding
limit cycle is displayed in Fig. 13(c). The power spectrum
[Fig. 13(d)] shows that the oscillatory motion of this partially
inverted system is subharmonic. For A = 25.81, the fixed
point (π, 0) may also be stabilized, as shown in [Figs. 13(e)
and 13(f)]. As the driving amplitude is varied from 25.81 to
28.94, the fixed point (π, 0) bifurcated to a limit cycle, as
displayed in Fig. 13(g). The power spectrum of θ̇1 shows again
subharmonic oscillations about (π, 0).

Figure 14 shows the results for a fully inverted double
pendulum under parametric driving. The double pendulum
may be stabilized in fully inverted state for 	 = 10.64 and
A = 19.25 [see Fig. 14(a)], which is confirmed by its power

3.141585 3.141605

3.14157

3.14162

0 25 50
10-15

10-7

100

3 3.1 3.2 3.3
3

3.1

3.2

3.3

0 25 50
10-10

100

1010

(a)

(c) (d)

(b)

FIG. 14. Stabilization of a fully inverted driven coplanar double
pendulum for μ = 0.5, λ = 1, β = 0.1, and 	 = 10.64. Phase por-
traits in the θ1-θ2 plane and the corresponding power spectra of the
phase variable θ̇1 for A = 19.25 are given the top row, while those
for A = 23.77 are in the bottom row.

spectrum [Fig. 14(b)]. Increasing A to a value 23.77, it shows
stable small amplitude oscillations about the inverted position.
The limit cycle corresponding to the small oscillations about
the fixed point (π, π ) is shown in Fig. 14(c). The correspond-
ing power spectrum, Fig. 14(d), confirms that the oscillatory
motion is subharmonic. It is observed that a double pendulum
may be maintained in a steady state corresponding to a par-
tially or a fully inverted position, if the driving frequency is
considerably larger than 	R,1.

For sufficiently large driving amplitude A and frequency
	, the instability zones for different fixed points overlap, and
the resultant stable and steady motion of the double pendu-
lum is sensitive to the initial conditions. Figure 15 displays
different possibilities for μ = 0.5, β = 0.1, 	 = 10.64, and
A = 24.90 depending upon the initial conditions. The driving
parameters (	, A) in this case are simultaneously inside the
subhmarmonic instability zones for the normal state (0, 0) and
fully inverted state (π , π ) [see Figs. 6(a) and 6(d)]. However,
they are inside the harmonic instability zones for partially
inverted states [(0, π ) and (π , 0)] as shown in Figs. 6(b) and
6(c). The results shown in the four rows (top to bottom) are
for four different initial conditions (θ1, θ̇1, θ2, θ̇2 at τ = 0).
The projections of the phase portraits in the θ1-θ̇1 and in the
θ2-θ̇2 planes are plotted for different initial conditions in the
first and second columns, respectively. The power spectrum
of θ̇1 for the corresponding case is plotted in the third column.
The results obtained with the initial conditions (0.0175, 0.0,
0.0175, 0.0) are shown in the top row [Figs. 15(a)–15(c)].
Similar results are obtained [Figs. 15(d)–15(f)] with initial
conditions (0.0175, −0.1, 3.130, 0.1). They correspond to the
stabilization of the fixed point (0, π ). Using the initial con-
ditions (3.130, 0.1, 0.0175, −0.1) leads to the stabilization of
the other partially inverted state (π , 0) [Figs. 15(g) and 15(h)].
The corresponding power spectrum [Fig. 15(i)] shows the first
peak near response frequency 	/6, although the heights of
the peaks are insignificant. For the same parameter values
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FIG. 15. Phase portraits and power spectra for μ = 0.5, β = 0.1, A = 24.90, and 	 = 10.64. Phase portraits in the θ1-θ̇1 plane (column
1), the θ2-θ̇2 plane (column 2), and the corresponding power spectra for phase variable θ̇1 (column 3) are shown for different sets of initial
conditions.

but a different set of initial conditions (3.150, −0.1, 3.131,
0.1) leads to a limit cycle about the fully inverted state (π ,
π ), as shown in Figs. 15(j) and 15(k). The power spectrum
for this case [Fig. 15(l)] shows the limit cycle corresponds
subharmonic motion of the double pendulum.

We now consider two cases: (1) μ = 0.1(� 1), 	 = 7,
A = 22.54, and (2) μ = 2.0, 	 = 30, A = 81.00. The dimen-
sionless damping coefficient β = 0.1 is the same for two
cases. Figure 16(a) shows the phase portrait of a double
pendulum in the θ̇1-θ̇2 plane for the first case. The limit
cycle corresponds to a rotational motion of the pendulum.
The angular velocities vary periodically although the angu-
lar displacements keep increasing. The corresponding phase
portraits in the θ1-θ2 plane are not shown here. The power
spectrum has several peaks [Fig. 16(b)]. The first peak is
located at the dimensionless 	s = 7, while the largest peak
is located at response frequency twice of that. The limit cycle
corresponding to this harmonic rotational motion consists of
two loops in the θ̇1-θ̇2 plane. Effectively, the limit cycle is
synchronous with the driving (period T ). Now we consider
a case for which μ > 1. Figure 16(c) displays the phase por-
trait for μ = 2, β = 0.1, 	 = 30, and A = 81.00 in the θ1-θ2

plane. The motion is periodic motion about the fully inverted
state (π , π ). The corresponding limit cycle is squeezed to a
straight line in the θ1-θ2 plane. This can happen when θ2 is
proportional to θ1. A closer look suggests the limit cycle cor-
responds to subharmonic oscillations of period-3. A zoomed
view of a portion of the limit cycle has three lines [see the
inset, Fig. 16(c)]. The power spectrum of the phase variable
θ̇1 shows the largest peak at response frequency equal to 	/2.
The first peak, which is very small, is located at 	/6. We also

note that a fully inverted double pendulum may be maintained
in a steady state under parametric periodic driving at larger
values of the driving frequency.

FIG. 16. Rotational and oscillatory motion of a driven coplanar
double pendulum for β = 0.1. The phase portrait in θ̇1-θ̇2 plane
(a) and the power spectrum for the phase variable θ̇1 (b) are for a
rotational motion with μ = 0.1, 	 = 7, A = 22.54. Similarly, the
phase portrait in the θ1-θ2 plane (c) and the power spectrum for
the variable θ̇1 (d) are for an oscillatory motion for μ = 2, 	 = 30,
A = 81.00. Inset in (c) shows a zoomed view of a tiny portion of of
limit cycle in the θ1-θ2 plane.
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VI. CONCLUSIONS

We have investigated the motion of a damped coplanar
double pendulum when the pivot oscillates sinusoidally with
dimensionless amplitude A and frequency 	. This problem
is of general interest and applicable to a variety of physical
systems in diverse areas of science and engineering. The linear
stability analysis shows the 	-A plane is divided into several
tongue-shaped subharmonic and harmonic instability zones
for each normal mode of the pendulum. The marginal stability
curves corresponding to any one of the normal modes, never
intersect. However, the zones belonging to two different nor-
mal modes may overlap. Depending on the values 	 and A, a
double pendulum may be excited to oscillate or rotate either
subharmonically or harmonically. If the driving parameters
are chosen from an overlapping zone of subharmonic and
harmonic instabilities with random initial conditions, then the
pendulum oscillates or rotates with the twice of the driving
period. A double pendulum has two pairs of Floquet multi-
pliers. The Floquet multipliers intuitively help to understand
the variety of motions executed by a double pendulum. A new
phenomenon is observed if the two masses of a double pen-
dulum are unequal in the presence of moderate damping. Two
zones for subharmonic instability belonging to two different
normal modes merge together and form a new double-well-
shaped instability zone with a barrier in between. This feature
is unusual for a double pendulum and is observed for the
first time to the best of our knowledge. The curvatures at the
extrema of the new marginal curve are modified due to the
merger. The linear stability analysis also predicts the possibil-
ity of stability of situations when only one of the pendulums is
inverted. The Floquet analysis helps to unfold the mysteries of
possible periodic solutions of a parametrically driven double
pendulum.

The nonlinear motion is investigated by constructing a
dynamical system for the double pendulum. The limit cycles

for a double pendulum with two equal masses correspond-
ing to in-phase and out-of-phase oscillations are squeezed
to a line in the configuration and velocity spaces. Such so-
lutions, as predicted by the linearized equations of motion,
continue in the nonlinear regime. A double pendulum may
show multi-period oscillations near the instability onset. The
power spectra of a phase variable reveal interesting features
in these cases. For driving parameters in the pure harmonic
(subharmonic) zones, the power spectra of a phase variable
have larger peaks at frequencies equal to even (odd) multiples
of 	/2. In the case of pure harmonic oscillations or rotations,
smaller peaks are absent at frequencies which are less than 	.
For period-ν (ν = 2, 3, 4, · · · ) harmonic oscillations, smaller
peaks are found at equal intervals of 	̃ = 	/ν with the largest
peak at 	. For the power spectra of period-ν subharmonic
oscillations or rotations, smaller peaks are found at either odd
or even multiples of 	̃/2. The corresponding largest peaks for
both these period-ν solutions are found at 	/2. The periodic
rotations of a double pendulum show rich dynamics, including
period-doubling bifurcation and chaotic motion. The rotations
become hyperchaotic for higher values of driving amplitude
when the two largest Lyapunov exponents become positive.
It is shown that by driving with relatively large amplitude
and frequency for appropriately chosen initial conditions, the
system could be made stable in partially or fully inverted
states. The double pendulum may also oscillate in a par-
tially or fully inverted state. This analysis will be useful for
several problems where governing equations are primarily
coupled-Mathieu equations with or without nonlinearity and
damping.
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