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The phenomenon of synchronization in self-sustained systems has been successfully illuminated in many
fields, ranging from biology to electrical engineering. To date, the majority of theoretical studies on synchroniza-
tion focus on isolated self-sustained systems, leaving the effects of surrounding environments less touched due to
the lack of appropriate descriptions. Here we derive a generalized Langevin equation that governs the dynamics
of open classical Van der Pol (VdP) oscillators immersed in a common thermal bath with arbitrary memory
time and subsumes an existing equation for memoryless bath as a special limit. The so-obtained Langevin
equation reveals that the bath can induce a dissipative coupling between VdP oscillators, besides the usual
damping and thermal noise terms connected by the fluctuation-dissipation theorem. To demonstrate the utility of
the approach, we investigate a model system consisting of two open VdP oscillators coupled to a thermal bath
with an Ohmic or a Lorentzian-shape spectrum. Unlike the isolated setup where the stable synchronization can
be either in-phase or antiphase when varying initial conditions, we find that the bath always favors a single type
of synchronization in the long-time limit regardless of initial conditions and the synchronization type can be
switched by tuning the temperature. Moreover, we show that the bath-induced dissipative coupling can trigger
a synchronization of open VdP oscillators that is otherwise absent between isolated counterparts. Our results
complement and extend previous findings for open VdP oscillators.
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I. INTRODUCTION

The synchronization phenomenon was first observed and
studied by the physicist Huygens in the 17th century on two
pendulum clocks under an identical support beam [1]. Much
progress has been made on this topic in the last 20 years.
Now it has become one of the most compelling topics through
a wide range of physical frontier areas, from nonlinear dy-
namical mechanics [2–5] to modern quantum systems such as
trapped ions [6] and optomechanical nanodevices [7–9]. Syn-
chronization generally occurs in self-sustained systems such
as aforementioned pendulum clocks and metronomes whose
dynamics is essentially nonlinear; among them the Van der Pol
(referred as VdP) oscillator is one of the representative models
[10]. It is generally recognized that synchronization manifests
as an adjustment of rhythms between oscillators. This adjust-
ment can occur when two self-sustained oscillators [11,12]
or a large ensemble of oscillators [13–15] experience weak
interactions between them [2,16,17] or by simply responding
to a periodic external driving force [18]. Synchronization finds
applications in many aspects such as automatic controlling
[19,20], physiology research, or bio-inspired systems [21].

In recent years, researchers have started to investigate
synchronization of open self-sustained oscillators subject to
external noise induced by their surrounding baths. Prototypi-
cal studies have been carried out in excitable systems [22], for

*jj_liu@shu.edu.cn
†cqw@fudan.edu.cn

instance, Van der Pol–Duffing systems [23], bistable Kramers
oscillators [18,24–26], FitzHugh-Nagumo excited systems
stemmed from simple VdP oscillators [27,28], chaotic Rössler
oscillators [29], and an arbitrary dynamical system in a sta-
ble limit cycle [30]. These studies have uncovered multiple
effects of baths on synchronization. For example, once the
fixed elastic beam in the Huygens experiment is perturbed
by external noise, a noise-induced in-phase synchronization
as opposed to the original antiphase one would occur [31].
These findings have played a crucial role in many applications
such as vertical-cavity lasers [32], optical tweezers [33], VdP
circuits [19], or biological systems [34].

Despite the aforementioned progress, synchronization in
open self-sustained oscillator systems still warrants further
investigations, especially noting that there is still no well-
accepted way of incorporating effects of thermal baths into
otherwise self-sustained oscillators. Conventionally, one just
directly modifies the equation of motion (EOM) for self-
sustained oscillators by adding a noise term and a damping
term in a phenomenologically manner. For instance, in
[27,35], the authors proposed the following generalized EOM
for an open VdP oscillator with coordinate x:

ẍ + γ ẋ + ω2x + ax2ẋ = ξ (t ). (1)

Here ẍ (ẋ) marks the second- (first-) order time derivative,
ξ denotes a white noise term with a correlation function
〈ξ (t )ξ (t ′)〉 = 2Dδ(t − t ′), D quantifies the noise intensity,
and ω and a are the oscillator frequency and strength
of nonlinearity, respectively. We remark that the damping
strength γ = γin + γext contains two contributions: intrinsic
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component γin persisting in isolated VdP oscillators and the
external component γext induced by the bath. While it is
straightforward to cast these two contributions into a single
parameter γ in the white noise case, this simplification is
no longer applicable when considering thermal baths that
can generate colored noise as the corresponding damping
strength γext becomes explicitly time-dependent [36,37]; see
also Eq. (6) below. Moreover, Eq. (1) does not impose
the connection between D and γext as guaranteed by the
fluctuation-dissipation theorem.

Here we aim to obtain a generalized EOM for open VdP
oscillators that could enable the inclusion of thermal baths
of arbitrary memory time thereby gaining a deeper under-
standing of synchronization of open VdP oscillators. To this
end, we treat the bath and system-bath coupling in terms
of Hamiltonians in light of the Caldeira-Leggett model [38],
and combine the resulting EOMs from the Hamiltonians for
bath and system coordinates with the inherent one for the
isolated VdP oscillators [10] that cannot be derived from
a Hamiltonian. By doing so, we can obtain a generalized
Langevin-type EOM [cf. Eq. (6)] that is similar to Eq. (1)
but enables the description of colored noise. From the result-
ing EOM, we find that the common bath generally affects
VdP oscillators in two ways: (1) establishing a dissipative
interaction between oscillators [3] and (2) inducing a random
thermal motion by generating a random thermal noise whose
variance is explicitly connected to an external damping via the
fluctuation-dissipation theorem.

To demonstrate the utility of the so-obtained generalized
EOM, we consider two coupled VdP oscillators [10] im-
mersed in a thermal bath whose spectral function is chosen
to be of an Ohmic or a Lorentzian type, thereby generating
a white or colored noise term, respectively. We show that
the bath-induced dissipative coupling can induce synchroniza-
tion of open VdP oscillators [cf. Figs. 6(b) and 9(b)] that
is otherwise absent when considering isolated counterparts.
We also find that the bath favors a single type of synchro-
nization among in-phase and antiphase ones regardless of
initial conditions, in stark contrast to the isolated scenario
in which the synchronization type is sensitive to initial con-
ditions. Particularly, for the EOMs [cf. Eqs. (15) and (16)]
we considered, we show that a relatively low-temperature
bath stabilizes an in-phase synchronization [cf. Figs. 4(c)
and 11(a) for white and colored noise, respectively], while
a relatively high-temperature bath can instead select an an-
tiphase synchronization [cf. Figs. 5(b) and 11(b) for white and
colored noise, respectively]. We attribute this bath-induced
synchronization selection phenomenon to the distinct roles
of bath-induced dissipative coupling and the noise term in
shaping the dynamics. At low temperatures, the bath-induced
dissipative coupling dominates, and it can induce an in-phase
synchronization as noted by Refs. [3,39,40], while in the
high-temperature regime, the noise term plays a major role.
The sign difference between the noise terms that appears in
EOMs [cf. Eqs. (15) and (16)] forces the two oscillators to
synchronize in an antiphase way. We complement this picture
by showing in Appendix A that a high-temperature bath can
stabilize an in-phase synchronization [cf. Fig. 12(c)] when the
signs of the noise terms in EOMs [cf. Eqs. (B3) and (B4)] are
the same.

The paper is organized as follows. In Sec. II we first derive
a generalized EOM for open VdP oscillators, then introduce
a model system consisting of two VdP oscillators coupled
to a bath. In Sec. III we consider a bath with an Ohmic
spectrum and analyze in detail the effects of white noise on
synchronization behavior. In Sec. IV we turn to a bath with a
Lorentzian-shape spectrum and address the effects of colored
noise. We summarize the study in Sec. V.

II. OPEN VAN DEL POL OSCILLATORS

A. Generalized equation of motion

We consider N coupled open VdP oscillators with coor-
dinates {x1, x2, . . . , xN } placed in a bath and aim to derive
a generalized EOM governing the dynamics of those coor-
dinates. We model the bath and the system-bath coupling in
terms of the following Hamiltonians [38]:

H = HB + HC =
∑

j

(
p2

j

2mj
+ 1

2
mjν

2
j q2

j

)
+

∑
i, j

Ci jxiq j .

(2)
Here the thermal bath is represented by an ensemble of har-
monic oscillators with masses mj , frequencies ν j , coordinates
q j , and momenta p j , and we have assumed a bilinear system-
bath coupling with coupling coefficients Ci j between the ith
VdP oscillator and the jth harmonic oscillator of the bath.
From Eq. (2), we can obtain an EOM for q j ,

mjq̈ j + mjν
2
j q j +

∑
i

Ci jxi = 0. (3)

As for the EOMs for open VdP oscillators, we note that the
system-bath Hamiltonians in Eq. (2) will add a linear force
−∑

j Ci jq j to the original nonlinear EOM for isolated coun-
terparts, yielding

ẍi + εi
(
x2

i − 1
)
ẋi + ω2

i xi + Fα +
∑

j

Ci jq j = 0. (4)

Here Fα denotes an inherent coupling between isolated VdP
oscillators, εi decides the strength of VdP nonlinearity, and
ωi represents the natural frequency of the self-sustained os-
cillator. We remark that one cannot assign a Hamiltonian
to isolated VdP oscillators as they are inherently dissipative
systems. To eliminate bath coordinates in Eq. (4), we solve
Eq. (3) via the Laplace transformation,

q̃ j (s) = −
∑

i

Ci j

m j

1

s2 + ν2
j

x̃i(s) + I[q j (0), q̇ j (0)], (5)

where the second term I[q j (0), q̇ j (0)] on the right-hand side
reflects initial conditions. We transform the above solution to
the time domain and insert it into Eq. (4), and get a Langevin-
type EOM for coordinate xi of ith VdP oscillator

ẍi + εi
(
x2

i − 1
)
ẋi + ω2

i xi + Fα

+
∑

k=1,2,...,N

∫ t

−∞
dt ′γik (t − t ′)ẋk (t ′) = ξi(t ). (6)

Here ξi(t ) marks a noise term experienced by the ith VdP
oscillator, and γik (t − t ′) denotes a damping kernel whose
explicit time dependence reflects the memory effect of baths.
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They are connected via the following relations:
〈ξi(t )ξk (t ′)〉 = πT γik (t − t ′), (7)

γik (t − t ′) = 2

π

∫
dω

Iik (ω)

ω
cos[ω(t − t ′)] (8)

with bath spectral functions [41,42]

Iik (ω) = π

2

∑
j

Ci jCk j

mjν
2
j

δ(ω − ν j ), (9)

which is a matrix element of an N × N matrix I(ω). Hereafter,
we refer to ξi(t ) as white noise when 〈ξi(t )ξk (t ′)〉 ∝ δ(t − t ′)
(Dirac δ function) and colored otherwise.

In comparison with Eq. (1), Eq. (6) depicts several fea-
tures that are worth mentioning: (1) the manner of getting
Eq. (6) is semiphenomenological in the sense that we in-
corporated effects of baths using their Hamiltonians, (2) the
external damping strength γext in Eq. (1) is replaced by a
time-dependent damping kernel γik (t − t ′), thus enabling the
inclusion of effects of colored noise, (3) the bath establishes
a dissipative coupling between VdP oscillators through a con-
volution term that plays a vital role in shaping synchronization
behaviors of open VdP oscillators as we will show in the
following, and (4) the noise variance is directly related to the
damping kernel, as a manifestation of fluctuation-dissipation
theorem. Equation (1) is recovered when the damping kernel
γik (t − t ′) = γextδikδ(t − t ′)/π and D = T γext.

B. Model description

To demonstrate the capability of the so-obtained general
EOM Eq. (6), we consider a model system consisting of two
coupled VdP oscillators immersed in a common thermal bath.
In this scenario, the bath spectral function Eq. (9) reduces to a
symmetric 2 × 2 matrix:

I(ω) =
(

C2
1 j C1 jC2 j

C1 jC2 j C2
2 j

)
π

2

∑
j

1

mjν
2
j

δ(ω − ν j ). (10)

We assume C1 j = −C2 j such that the above equation reduces
to

I(ω) =
(

1 −1
−1 1

)
I (ω) (11)

with I (ω) = ∑
j πC2

j δ(ω − ν j )/2mjν
2
j a scalar spectral func-

tion. For demonstration purposes, in the present study we
will consider two types of spectral function I (ω), Ohmic and
Lorentzian, with the generated noise being white and colored,
respectively. The damping kernels then become γ11 = γ22 =
γ (t − t ′), γ12 = γ21 = −γ (t − t ′), with

γ (t − t ′) = 2

π

∫
dωI (ω) cos[ω(t − t ′)]/ω. (12)

Denoting F i
γ ≡ ∑

k

∫ t
−∞ dt ′γik (t − t ′)ẋk (t ′), we find

F 1
γ = −F 2

γ ≡ Fγ (ẋ1, ẋ2) (13)

with

Fγ (ẋ1, ẋ2) =
∫ t

−∞
dt ′γ (t − t ′)[ẋ1(t ′) − ẋ2(t ′)]. (14)

We note that the above expression has the desired form of a
dissipative velocity coupling [3] that is shown to play a crucial

role in establishing synchronization [40,43]. We emphasize
that our approach is not limited to the special assumption of
C1 j = −C2 j ; see Appendix A for results with C1 j = C2 j .

Inserting Eq. (14) into Eq. (6), the EOMs for two coupled
VdP oscillators in a bath are

ẍ1 + ε
(
x2

1 − 1
)
ẋ1 + ω2

1x1 + Fα = −Fγ + ξ (t ), (15)

ẍ2 + ε
(
x2

2 − 1
)
ẋ2 + ω2

2x2 − Fα = Fγ − ξ (t ). (16)

Here ω1 and ω2 are natural frequencies of isolated VdP os-
cillators that can be nonequal. The parameter ε controls the
VdP nonlinearity [2,19]. Fα stands for intrinsic direct cou-
pling interaction, taking a usual conservative elastic form
Fα = α(x1 − x2). We have denoted the noise terms ξ1(t ) =
−ξ2(t ) = ξ (t ) in accordance with signs of damping kernels.
The above two coupled EOMs will be solved using second-
order stochastic Runge-Kutta algorithms [44–46].

III. THERMAL BATH WITH OHMIC SPECTRUM

We first consider a bath with an Ohmic spectrum I (ω) =
γextω [see Eq. (11)] that generates a Gaussian white noise,

γ (t − t ′) = 2γextδ(t − t ′), 〈ξ (t )ξ (t ′)〉 = 2T γextδ(t − t ′).
(17)

As a result, Eq. (14) reduces to Fγ = γext (ẋ1 − ẋ2). We note
that in some existing studies [18,24,31] just the value of D
[cf. Eq. (1)] is tuned without considering its fine expression
D = γextT according to the fluctuation-dissipation theorem.
Here we find that varying D only may not be sufficient to
capture the rich dynamical behaviors in open VdP oscillators
induced by the interplay between γext and T ; γext characterizes
the strength of dissipative coupling that facilitates synchro-
nization [40,43] and T determines the randomness of thermal
motion that tends to destroy synchronization.

To illustrate this point, we adopt the Lissajous figure [2]
(see also Ref. [47] for a nice introduction) that can reflect
whether the two VdP oscillators synchronize with respect to
a single effective frequency (which are usually different from
their natural ones) with a fixed phase difference. The Lissajous
figure is a regular and stable closed curve formed by two
oscillation signals, for example, x1 and x2 in our calculation,
in a mutually perpendicular direction on the x-y plane. There
are several characteristics for a Lissajous figure: (1) if the
frequency ratio between two signals is irrational (nonsynchro-
nized), the curve is dense on the plane, (2) if the frequency
ratio is a rational number, the curve is an algebraic curve,
(3) a high-order ratio corresponds to a high-order algebraic
curve (such as 1:n synchronization [2]), and (4) when the
frequencies of two signals are the same (synchronized), the
figure depicts simple curves: ellipse, circle, and even a straight
line with a fixed phase difference 
φ ∈ (0, π

2 ) or ( π
2 , π ),


φ = π/2 and 
φ = 0 or π , respectively. A set of numerical
results showing Lissajous figures with a fixed D = 0.01 but
different γext and T is shown in Fig. 1. From Fig. 1(a) we
clearly visualize an ellipse, indicating that the two VdP oscil-
lators synchronize with respect to a single effective frequency
with a fixed phase difference 
φ ∈ (0, π

2 ) [47]. In contrast,
the Lissajous figure in Fig. 1(b) depicts no sign of synchro-
nization as the pattern reflects that the two VdP oscillators
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FIG. 1. Lissajous figures using an ensemble of 100 long-time
trajectories. (a) γext = 0.05, T = 0.2; (b) γext = 0.01, T = 1. Other
parameters are α = 0, ε = 0.1, ω1 = 1, and ω2 = 1.03.

do not oscillate with respect to a single frequency and the
phase difference is also not fixed. Hence, it is clear that under
the same value of D = 0.01 the system would be in either
a synchronized state or a nonsynchronized one. With this in
mind, in the following we will treat γext and T separately.

A. Limit cycle under white noise

As a hallmark of self-sustainability, a stable limit cycle
would be established in an isolated VdP oscillator described
by Eq. (1) without the noise term ξ and the external damping
γext, as a result of an intriguing balance between intrinsic
energy supply and dissipation through a nonlinear term ax2ẋ
[2]. When coupling a self-sustained oscillator to a thermal
bath, one would naturally expect that such an energy balance
between gain and loss in isolated VdP oscillators is broken
owing to unbalanced (random) energy input and dissipation
from the bath. To proceed with the study on synchronization
of open VdP oscillators, it is thus important to address whether
the limit cycle remains a valid notion in the presence of baths,
thereby providing valuable information regarding whether
synchronization can be established in open VdP oscillators.

To gain some insights into the issue, we consider a single
open VdP oscillator subject to a white noise for an illustration
and numerically obtain its trajectory in the phase space by
solving Eq. (14) with Fα = 0 and Fγ containing only ẋ, which
may read

ẍ + ε(x2 − 1)ẋ + γext ẋ + ω2
0x = ξ (t ). (18)

A typical set of numerical results on trajectories in the phase
space with fixed γext and varying bath temperatures is depicted
in Fig. 2. For comparison, we also present results for the limit
cycle of an isolated VdP oscillator. On the single trajectory
level (left column of Fig. 2), we see that the trajectory of an
open VdP oscillator with a red (light gray) solid line is not
closed even in the long-time limit, in stark contrast to a black
closed one (which is just the limit cycle) for an isolated coun-
terpart. As the temperature increases, the trajectory becomes
more and more ergodic and deviates from the original limit
cycle significantly at a high temperature, rendering the limit
cycle an invalid notion. To average the randomness inherent
to a single trajectory, we further plot histograms of an en-
semble of 100 trajectories in the right column of Fig. 2. A
smooth ring structure around the original limit cycle is clearly
visualized when the temperature is relatively low. Increasing
temperature will broaden the ring and finally degrade it at
high temperature. Hence, we argue that one can still use the

FIG. 2. Trajectory results in the phase space of a single open
VdP oscillator subject to white noise with varying temperatures (a),
(d) T = 0.5, (b), (e) T = 5, and (c), (f) T = 20. Here p ≡ ẋ is the
scaled momentum of the VdP oscillator. Left column: long-time
single trajectory results as red (light gray) solid line. Right column:
histograms of 100 trajectories. Black solid lines in all plots mark
the corresponding limit cycle for an isolated VdP oscillator under
the same oscillator parameter values. Other parameters are ε = 0.1,
γext = 0.01, and ω0 = 1.

notion of limit cycle in scenarios of open VdP oscillators at the
ensemble average level provided that the temperature is not
large compared with the oscillator frequency. In the following,
we will limit our study to moderate temperatures.

To complement numerical results shown in Fig. 2, we
follow Refs. [48,49] and adopt a generalized harmonic func-
tion transformation as x(t ) = A(t ) cos[ω0t + θ (t )] and ẋ(t ) =
−A(t )ω0 sin[ω0t + θ (t )] to perform an analytical treatment.
These two trial solutions satisfy a self-consistent equation:
Ȧ cos[ω0t + θ (t )] = Aθ̇ sin[ω0t + θ (t )]. Inserting the above
trial solutions into Eq. (18) and utilizing the self-consistent
relation, we receive two coupled equations for A(t ) and θ (t ),
respectively,

Ȧ = −εA3 cos2 φ sin2 φ + (ε − γext )A sin2 φ − ξ (t )

ω0
sin φ,

θ̇ = −εA2 cos3 φ sin φ + (ε − γext ) sin φ cos φ − ξ (t )

Aω0
cos φ.

(19)

Here φ(t ) ≡ ω0t + θ (t ).
Generally speaking, A(t ) and θ (t ) are stochastic functions

of time. For a weak nonlinearity ε → 0 and a zero-mean
random force ξ (t ) as considered here, we can employ the
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FIG. 3. (a) Phase space density ρ(x, p) [Eq. (23)] with T = 5;
(b) steady-state solution ρ(A) [Eq. (22)] with varying temperature.
Black solid line in (a) marks the corresponding limit cycle for an
isolated VdP oscillator under the same oscillator parameter values.
Other parameters are ε = 0.1, γext = 0.01. and ω0 = 1.

Stratonovich-Khasminskii limit theorem that states that A(t )
and θ (t ) weakly converge to a two-dimensional Markov pro-
cess [50,51] after a stochastic averaging procedure. Therefore,
we can introduce the following averaged stochastic represen-
tations for A(t ) and θ (t ) in Itō forms:

dA = m1dt + σ1dB(t ),

dθ = m2dt + σ2dB(t ). (20)

Here B(t ) is the standard unit Wiener process. The averaged
drift coefficients m1,2 and diffusion coefficients b1,2 can be de-
termined by taking a stochastic average 〈O〉φ = 1

2π

∫ 2π

0 Odφ

[48,49] over terms in Eq. (19). We relegate detailed expres-
sions of m1,2 and b1,2 to Appendix A 1.

We now consider the probability distribution function of
the amplitude A that is governed by the Fokker-Planck-
Kolmogorov (FPK) equation of the following form [48,49]:

∂ρ(A, t )

∂t
= − ∂

∂A
[m1ρ] + 1

2

∂2

∂A2
[b1ρ]. (21)

Here b1 = (σ1)2. Since we are interested in the long-time limit
cycle behavior, it is enough to consider just the steady-state
solution ρ(A) of Eq. (21) satisfying ∂ρ(A)/∂t = 0. Insert-
ing an ansatz ρ(A) = CA exp[F (A)] with C a normalization
constant into the above equation we find the steady-state prob-
ability distribution function as

ρ(A) = CA exp

[
8(ε − γext )A2 − εA4

η2

]
. (22)

Here η2 = 16D
ω2

0
is proportional to the temperature T .

Hence from the expression of ρ(A) one can infer that
increasing the temperature will broaden ρ(A), in accordance
with the previous numerical finding. To see it clearly, we use
the expression A = (x2 + ẋ2/ω2

0 )1/2 and transform ρ(A) into
a probability distribution function in the phase space

ρ(x, p ≡ ẋ) ≡ ρ(A)

2πω0A

∣∣∣∣
A=(x2+ẋ2/ω2

0 )1/2

. (23)

In Fig. 3(a) we depict ρ(x, p) calculated using Eqs. (22) and
(23) with the same parameters of Fig. 2(e). We remark that
there is good agreement in both the shape and magnitude
between Fig. 3(a) and Fig. 2(e), thereby providing analytical
evidence that the limit cycle is still preserved at a relatively
low temperature. In Fig. 3(b) we further illustrate ρ(A) with

varying temperatures. As expected, ρ(A) flattens when in-
creasing the temperature.

B. Zero detuning

We first consider two VdP oscillators with zero detun-
ing, namely, ω1 = ω2 = ω in Eqs. (14) and (17). In this
scenario, one already knows that isolated, yet coupled, VdP
oscillators could reach either an in-phase (
φ = 0) or an
antiphase (
φ = π ) synchronized state, depending on initial
phase conditions [40]. In the presence of a dissipative cou-
pling ∝ (ẋ1 − ẋ2), we note that some studies [3,39,40] have
stated that the antiphase synchronized state would become
unstable and even vanish. Adopting this statement, one would
naturally expect that the present model under investigation
will always approach an in-phase synchronized state, inde-
pendent of initial phase conditions. However, as we will show
later, this expectation is correct only in the low-temperature
regime when further considering bath effects.

A set of numerical results confirming this expectation is
depicted in Fig. 4. We particularly select an initial phase con-
dition that would lead to an antiphase synchronization when
the bath is absent. In Fig. 4(a) we present single-trajectory
results for both VdP oscillators that show a smooth transition
from an antiphase synchronization (emerging when t � 1100)
to an in-phase one (emerging when t � 1155). We confirm
this transition by further calculating the Pearson correlation
function between two trajectories x1({tn}) and x2({tn}) with
{tn} = (t1 = t, t2, . . . , tN = t + 
t ) [21,52,53]:

C(t ) =
∑N

n=1

(
xn

1 − x̄1
)(

xn
2 − x̄2

)
√∑N

n=1

(
xn

1 − x̄1
)2 ∑N

n=1

(
xn

2 − x̄2
)2

. (24)

Here xn
i ≡ xi(tn) and x̄i ≡ ∑

n xn
i /N , we fix 
t = 15 through-

out this study unless otherwise stated, and a time step tn+1 −
tn = 0.001 is chosen. C(t ) = 1 (−1) marks an ideal in-phase
(antiphase) synchronization at time t . As can be seen from
Fig. 4(a), C(t ) (black dashed-dotted line) indeed shows a
transition from ∼ − 0.9 to 1. The line shape of the Lissajous
figure in Fig. 4(b) also confirms an in-phase synchronization
in the long-time limit at the ensemble level, in accordance
with results in Refs. [3,39,40]. Moreover, in Fig. 4(b), we
reveal an interesting phenomenon: the larger the dissipative
coupling strength γext, the shorter the time required to reach
an in-phase synchronization. Here we introduce a synchro-
nization time τ by requiring |C̄|(t � τ ) � 0.99. We consider
an averaged Pearson correlation function C̄(t ) over an en-
semble of trajectories so as to eliminate inherent fluctuations
at the single trajectory level. We note that such a stable
in-phase synchronization results from the form of dissipa-
tive coupling ∝ (ẋ1 − ẋ2). If one instead considers the form
∝ (ẋ1 + ẋ2), a stable antiphase synchronization that is in-
dependent of initial conditions could emerge; see details in
Appendix B. In Fig. 4(c) we further analyze the behaviors
of the synchronization time τ as a function of the tempera-
ture T . Intriguingly, we find the synchronization time τ is a
monotonic increasing function of T in the low-temperature
region, indicating that the in-phase synchronization favors
rather low temperatures. In contrast, we observe an opposite
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FIG. 4. Long-time in-phase synchronization in the presence of
a white noise bath. (a) Time evolution of x1(t ) (blue dashed line),
x2(t ) (red solid line), and their Pearson correlation function C(t )
(black dashed-dotted line) [cf. Eq. (24)] with a fixed γext = 0.04
and T = 0.01. (b) Synchronization time τ obtained by requiring an
averaged |C̄|(t � τ ) � 0.99 as a function of γext with fixed T =
0.01. The inset shows the corresponding Lissajous figure over an
ensemble at γext = 0.04. (c) Synchronization time τ as a function of
temperature T in the low-temperature region with fixed γext = 0.04.
The inset shows the high-temperature scenario. Other parameters
are α = 0.25, ε = 0.1, and ω0 = 1. We selected an initial condition
which would instead lead to an antiphase synchronization without
the bath.

dependence of τ on T in the high-temperature region as can
be seen from the inset of Fig. 4(c).

Complementing the studies [3,39,40], we find that increas-
ing temperature would turn a stable in-phase synchronization
to a stable antiphase one as illustrated in Fig. 5. At an interme-
diate temperature value [Fig. 5(a)], a transition behavior could
be observed from the Lissajous pattern that is depicted as a
mixture of line shapes with slopes 1 and −1, corresponding to
a fixed phase difference 
φ = 0 (in-phase) and π (antiphase),
respectively. We can then infer that as the temperature in-
creases from T = 0.01 (cf. Fig. 4) to T = 1 [cf. Fig. 5(a)]
a noticeable part of the trajectory pairs {x1({tn}), x2({tn})} es-

FIG. 5. (a), (b) Lissajous figure on x1 − x2 using an ensemble of
100 long-time trajectories with varying temperatures (a) T = 1 and
(b) T = 4. (c) Long-time Pearson correlation function C̄ averaged
over an ensemble of 500 trajectories as a function of temperature T .
Other parameters and the initial phase condition are the same as in
Fig. 4.

tablishes an antiphase synchronization in the long-time limit.
When we further increase the temperature to T = 4, we can
see from Fig. 5(b) that only the line shape with slope −1
survives, indicating that the system has entered into a stable
antiphase synchronized state. To visualize such a transition
with increasing temperature, in Fig. 5(c) we show behaviors
of the long-time ensemble-averaged Pearson correlation coef-
ficient C̄ as a function of temperature T . From the curve, it is
clear that for low temperatures (C̄ > 0.9 when T � 0.8) the
majority of trajectories are synchronized in an in-phase man-
ner. As the temperature increases, C̄ drops rapidly, marking
an intermediate regime where in-phase and antiphase syn-
chronized trajectories coexist. When the temperature reaches
the high-temperature regime (C̄ < −0.9 when T � 2.4), the
value of C̄ indicates that most of the trajectories are synchro-
nized in an antiphase manner. Furthermore, from the inset
of Fig. 4(c), we can infer that the antiphase synchronization
favors high temperatures. Noting at high temperatures that the
effect of the noise term dominates, we attribute this transition
to the opposite signs of the noise term ξ (t ) in Eqs. (15)
and (16) that force the two oscillators to synchronize in an
antiphase way. In Appendix B, we show that an in-phase
synchronization indeed emerges at high temperatures [cf.
Fig. 12(c)] when the signs of the noise term are the same [cf.
Eqs. (B3) and (B4)].

C. Nonzero detuning

We then turn to VdP oscillators with unequal natural fre-
quencies ω1 �= ω2 and focus on another typical characteristic
in synchronization, a frequency entrainment, which means
that oscillators with different natural frequencies will tend to
oscillate with the same effective frequency ωeff �= ω1,2 in a
synchronized state. To highlight the effect of the bath, here
we set α = 0 such that the two isolated VdP oscillators cannot
synchronize at all [28].
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FIG. 6. Fourier spectrum 〈x1(ω)〉 (blue dashed line with hatched
region) and 〈x2(ω)〉 (red solid line with shaded region) averaged over
an ensemble of 500 trajectories: (a) γext = 0.01, T = 0.1, (b) γext =
0.05, T = 0.1, (c) γext = 0.05, T = 1.5, and (d) γext = 0.05, T =
10. The insets show the corresponding Lissajous figures. Other pa-
rameters are α = 0, ε = 0.1, and ω1(2) = 1(1.03) (marked as black
dashed-dotted vertical lines in both plots).

To make the frequency entrainment phenomenon visible,
we analyze behaviors of 〈x1,2(ω)〉 that are Fourier transforms
of averaged time-dependent displacements 〈x1,2(t )〉 of oscil-
lators over an ensemble of trajectories. A typical set of results
for 〈x1,2(ω)〉 with varying damping γext and T is depicted in
Fig. 6. We first fix the temperature T to a relatively small value
and vary γext in Figs. 6(a) and 6(b). We find that increasing
γext, or equivalently, the magnitude of the dissipative coupling
Fγ , would induce an in-phase synchronization as confirmed
by both the frequency entrainment shown in Fig. 6(b) and a
Lissajous figure in its inset. This is quite intriguing since the
two isolated VdP oscillators cannot synchronize with the same
system parameter values.

Next we fix γext and vary the temperature T as shown
in Figs. 6(b), 6(c), and 6(d). From the comparison between
them, it is evident that increasing temperature will broaden
the spectrum and shift the peaks towards opposite direc-
tions. We note that a similar phenomenon was observed in
Kramers oscillators [18]. Interestingly, although the frequency
entrainment is completely suppressed by thermal noise at high
temperatures as can be seen from Fig. 6(d), the corresponding
Lissajous figure shown in the inset of Fig. 6(d) suggests an
antiphase synchronization occurs with just the phase locked,
unlike the in-phase synchronization that emerges at low tem-
peratures [cf. Fig. 6(b)] with both the frequency and phase
locked. To complement results in Fig. 6, we calculate the
Pearson correlation function C(t ) as illustrated in Fig. 7(a).
The results confirm the existence of a nonideal in-phase (an-
tiphase) synchronization with C(t ) ∼ 0.8 (−0.8) at low (high)
temperatures. Hence, similar to the zero-detuning scenario
analyzed before, here increasing the temperature would also
result in a transition from an in-phase synchronization to an
antiphase one. As for the synchronization time τ in scenarios
with nonzero detunings, we have numerically checked that its

FIG. 7. (a) Pearson correlation function C̄(t ) averaged over an
ensemble of 500 trajectories with varying temperature: T = 0.1
(green solid line), T = 1.5 (blue dashed line), and T = 10 (red
dashed-dotted line). (b) The probability distribution function ρ(�)
[Eq. (30)] with A = 2 and varying temperature: T = 0.1 (green solid
line), T = 0.5 (orange dashed-dotted line), and T = 1.5 (blue dashed
line). Other parameters are the same as in Fig. 6.

behavior as a function of temperature is similar to that shown
in Fig. 4(c).

D. Coupled oscillators: An analytical treatment

To gain a better understanding of numerical results for
coupled oscillators, we utilize the stochastic averaging method
[50,51] to solve coupled EOMs (15) and (16). For simplicity,
we assume the absence of an intrinsic coupling, namely, Fα =
0. Similar to the analytical treatment displayed in Sec. III B,
we can introduce trial solutions xi(t ) = Ai(t ) cos φi(t ) and
ẋi(t ) = −Ai(t )ωi sin φi(t ), where φi(t ) = ωit + θi(t ) and i =
1, 2 [54]. Self-consistent relations Ȧi cos φi(t ) = Aiθ̇i sin φi(t )
are imposed. Inserting the trial solutions into Eqs. (15)
and (16), one can derive four equations for Ȧi and θ̇i (see
Appendix A 2), which will weakly converge to a four-
dimensional diffusive Markov process [54,55]. Further taking
into account the fact that coupled oscillators can exhibit in-
ternal resonance when 
 = |ω1 − ω2| → 0, we introduce a
variable � = φ1 − φ2, representing the phase difference be-
tween coupled oscillators. � is slowly varying near resonance
[2] even though φi changes rapidly.

Taking a stochastic averaging with 〈O〉φ1 = 1
2π

∫ 2π

0 Odφ1

[50,51] over the equations for Ȧi and θ̇i, we get three Itō-type
equations [55]:

dA1 = mc
1dt + σ c

1 dB(t ),

dA2 = mc
2dt + σ c

2 dB(t ), (25)

d� = mc
3dt + σ c

3 dB(t ),
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where B(t ) is a standard unit Wiener process by noting that
the two oscillators are immersed in the same thermal bath.
We relegate detailed expressions for drift coefficients mc

1,2,3
and diffusion coefficients σ c

1,2,3 (the superscript “c” reflects
the coupled scenario) to Appendix A 2. Then we can ob-
tain the FPK equation describing the probability distribution
ρ(A1, A2, �, t ):

∂ρ

∂t
=

2∑
i, j=1

(
− ∂

∂Ai

[
mc

i ρ
] + 1

2

∂2

∂Ai∂Aj
[bi jρ] + ∂2

∂Ai∂�
[bi3ρ]

)

− ∂

∂�

[
mc

3ρ
] + 1

2

∂2

∂�2
[b33ρ]. (26)

Here i, j = 1, 2 and bnm ≡ σ c
n σ c

m (n, m = 1, 2, 3). We still
consider the steady-state solution ρ(A1, A2, �) satisfying
∂ρ(A1, A2, �)/∂t = 0. For weakly coupled systems, one can
neglect the dependence of probability distribution on ampli-
tudes A1,2 [2,7]. Under this simplification, one just needs to
consider the probability distribution function ρ(�) that satis-
fies the following simplified FPK equation:

1

2

∂

∂�
[b33(�)ρ(�)] − mc

3(�)ρ(�) = 0. (27)

First, we consider the limit of D = 0 where the system dy-
namics becomes deterministic. In this limit, b33(�) = 0 [see
Eq. (A9)], we have mc

3(�) = 0 from Eq. (27), which yields
the following condition [see Eq. (A6)]:


 − γext

2

(
A2ω2

A1ω1
+ A1ω1

A2ω2

)
sin � ≈ 
 − γext sin � = 0.

(28)
Here we have utilized the phase reduction approximation
A1ω1 ≈ A2ω2 at a small detuning [7]. Interestingly, we find
that Eq. (28) has the form of the Adler equation �̇ = 
 −
γ sin � = 0 in the steady-state limit [2]. Solutions of Eq. (28)
exist only when the dissipative coupling strength γext > 
,
otherwise a steady-state synchronization could never occur.
With this requirement and increasing γext gradually, we eas-
ily deduce from Eq. (28) that the phase difference � =
arcsin(
/γext ) tends to vanish, indicating that the system
favors an in-phase synchronization. In this regard, a special
case is the zero detuning scenario with 
 = 0, which always
leads to � = 0 regardless of the value of γext. Hence the Adler
equation [cf. Eq. (28)] captures the influence of dissipative
coupling strength on synchronization, corroborating the con-
clusions presented in Secs. III B and III C.

Then we move to the low-temperature regime with D �= 0.
Adopting an ansatz ρ(�) = C′ · e[−λ(�)] with C′ a normaliza-
tion constant and inserting it into Eq. (27) we can get the
following equation:

b33(�)
∂λ(�)

∂�
= − 2D sin �

A1A2ω1ω2
− 2mc

3(�), (29)

from which we find the stationary probability distribution
function

ρ(�) = C′ exp

[−2A
(1 + 
) tan(�/2)

γextT

]

×[cos(�/2)]A[A(1+
)2−T ]/T . (30)

In the low-temperature regime, we note that the amplitude of
an isolated deterministic VdP oscillator A → 2 [7].

In Fig. 7(b) we illustrate ρ(�) with varying temperatures.
At low temperatures, ρ(�) depicts a relative shape peak lo-
cated around a nonzero phase difference �0, indicating that
the coupled oscillators will reach a nonideal in-phase syn-
chronization in the long-time limit, which is consistent with
previous numerical findings. The exact value of �0 can be
obtained by solving λ′(�0) = 0 using Eq. (29). In particular,
when 
 = 0, we can immediately get �0 = 0, implying a per-
fect in-phase synchronization. As the temperature increases,
ρ(�) broadens and the phase difference is no longer fixed to
a specific value. This would explain why a decrease in the
long-time ensemble-averaged Pearson correlation coefficient
C̄ is observed in Fig. 7(a); see also Fig. 5(c).

From Eq. (30) we notice that when the temperature exceeds
T > A(1 + 
)2  2(1 + 
2) the exponent of the cosine func-
tion becomes negative. As a result, the function λ′(�) no
longer has any zero points. Then ρ(�) becomes a monotonic
increasing function of � and diverges when � → π , thereby
indicating that the coupled oscillators form an antiphase syn-
chronization. We remark that the critical temperature value
2(1 + 
)2 [simply obtained by just looking at the term on
the second line of Eq. (30)] with 
 = 0.03 provides a good
estimation of the transition temperature shown in Fig. 5(c).

To conclude this subsection, a few remarks regarding the
present analytical treatment are in order.

First, under higher temperatures, the internal resonance
between the two oscillators will be destroyed as can be seen
from Fig. 6(d). In this scenario, we should adopt a stochastic
averaging procedure tailored for systems without an internal
resonance [55]. Since after stochastic averaging the linear
dissipative coupling can be neglected in this case, we need
to consider only the following two Itō-type equations for the
ith oscillator:

dAi = fi(Ai )dt + gidB(t ),

dθi = ωidt + hi(Ai )dB(t ). (31)

Here the drift and diffusion coefficients are fi(Ai ) = (ε −
γext )Ai/2 − εA3

i /8 + D/(2ω2
i A2

i ), g2
i = D/ω2

i and hi(Ai ) =
D/(ω2

i A2
i ). Note that the above equations for the two oscil-

lators are correlated due to the same Wiener process B(t ). As
the signs of noise terms in Eqs. (15) and (16) are opposite,
one can easily find from these equations that A1 ≈ −ω2A2/ω1

and φ1 ≈ φ2. Recalling xi = Ai cos φi, we naturally expect
x1 ≈ −x2 for rather small detuning, a sign of the antiphase
synchronization.

Second, one can generalize the above considerations by
accounting for two independent Wiener processes B1,2(t ) with
the same strength D [54–56]. In this scenario, since the two
oscillators are completely decoupled, their phase difference
can take an arbitrary value in the range [0, 2π ] and the syn-
chronization would be absent. We argue that the correlation
of random forces is an important ingredient for maintaining
synchronization, and the phase relationship between two os-
cillators determines the synchronized phase difference at high
temperatures.
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IV. THERMAL BATH WITH LORENTZIAN SPECTRUM

To go beyond existing studies on open VdP oscillators
which considered memoryless thermal baths, we turn to a bath
with a finite memory time that represents a more realistic envi-
ronment [36,37,57]. For demonstration purposes, we consider
a bath with a Lorentzian spectrum:

I (ω) = γextω

(ω2 − �2)2 + 4�2ω2
. (32)

Here � and � are two parameters controlling the peak position
and broadening of the spectrum, respectively. This spectrum
leads to a colored noise ξ (t ) satisfying the following correla-
tion function:

〈ξ (t )ξ (t ′)〉 = T γ (t − t ′), (33)

with the damping kernel

γ (t − t ′) = γextτ

4�ω′ e
−|t−t ′ |/τ cos(ω′|t − t ′| + θ ). (34)

Here τ = 1/� denotes the memory time, and in the following
we will consider a small � corresponding to a long memory
time, ω′ = √

�2 − �2 is a renormalized frequency, and θ =
arccos(ω′/�). Now the dissipative coupling in Eqs. (15) and
(16) takes the following form:

Fγ (ẋ1, ẋ2) = γextτ

4�ω′

∫ t

−∞
dt ′e−|t−t ′ |/τ

× cos(ω′|t − t ′| + θ )[ẋ1(t ′) − ẋ2(t ′)]. (35)

A. Limit cycle under Lorentzian noise

Similar to the white noise scenario, we would like to first
address the limit cycle behavior when a VdP oscillator is
immersed in a bath with a Lorentzian spectrum. In Fig. 8(a)
we first consider an off-resonant case in which the peak po-
sition � of the Lorentzian spectrum is away from the natural
frequency ω1 of the VdP oscillator such that the influence of
bath is expected to be small. As can be seen from Fig. 8(a), the
open VdP oscillator has almost the same limit cycle with the
isolated counterpart regardless of temperature values. When
the Lorentzian spectrum is in resonance with the open VdP
oscillator, namely, � = ω1, the limit cycle behavior can be
affected by both the broadening of the spectrum and the tem-
perature of the bath. Comparing Fig. 8(b) with 8(a), we see
that moving to the resonant condition will broaden the limit
cycle as well as shift the peak position of the cycle relative
to that of the isolated counterpart marked by a red solid
cycle. Increasing the temperature further can restore the peak
position of cycle but enlarge its broadening as can be inferred
from the comparison between Figs. 8(c) and 8(b). We note that
such a broadening can be suppressed by decreasing the value
of � or equivalently, increasing the memory time. However,
the shape of the limit cycle will be deformed relative to that
of the isolated counterpart as can be found from Fig. 8(d).
Nevertheless, we can conclude that an open VdP oscillator
subject to a colored noise can still permit the existence of a
limit cycle even under a resonant condition.

FIG. 8. Histograms of 100 trajectories in the phase space of a
single open VdP oscillator subject to Lorentz colored noise. Off-
resonant case: (a) � = 2, � = 0.025, and T = 0.5. Resonant cases:
(b) � = 1, � = 0.025, and T = 0.5; (c) � = 1, � = 0.025, and
T = 5; and (d) � = 1, � = 0.005, and T = 5. White dashed circles
in all plots mark the corresponding limit cycle for an isolated VdP os-
cillator under the same oscillator parameter values. Other parameters
are ε = 0.1, γext = 2 × 10−4, and ω1 = 1.

B. Low-temperature bath

First, we focus on a low-temperature regime with T = 0.1
where the bath-induced dissipative coupling plays a major
role. We exemplify the effect of the bath-induced dissipa-
tive coupling in a system with nonzero detuning ω1 �= ω2
by noting that an isolated counterpart cannot establish syn-
chronization. We illustrate a bath-induced synchronization
phenomenon in Fig. 9 by varying the damping strength γext.
At a small γext, there is no synchronization of two open VdP
oscillators as can be inferred from the Lissajous figure shown
in Fig. 9(a) as well as an oscillating Pearson correlation func-
tion C(t ) (blue dashed line) depicted in Fig. 9(c). Increasing
γext by an order of magnitude, we see from Fig. 9(b) that a
nearly in-phase synchronization can be established between
two open VdP oscillators, which is further confirmed by a
Pearson correlation function C(t )  1 (red solid line) in the
long-time limit as illustrated in Fig. 9(c). We note that the ob-
served behavior in the low-temperature regime is quite similar
to that (cf. Fig. 4) in the white noise scenario.

We further look at the effects of the central frequency �

and broadening � of the Lorentzian spectrum on synchroniza-
tion. For simplicity, we focus on behaviors of the averaged
Pearson correlation function C(t ) [cf. Eq. (24)]. In Fig. 10(a)
we fix � and vary �; noting that we have two oscillators with
ω1 �= ω2, an ideal resonant case with � = ω1,2 does not exist.
Nevertheless, when � is close to both ω1,2, we can obtain a
Pearson correlation function C(t ) → 1 in the long-time limit
as can be inferred from the blue dashed line with � = 1.01.
Once � deviates from ω1,2, the long-time value of the Pear-
son correction function C(t ) is reduced (red dotted-dashed
line with � = 1.35) and becomes even an oscillating func-
tion when the deviation |� − ω1,2| is significantly large. In
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FIG. 9. Long-time in-phase synchronization in the presence of
a Lorentz low-temperature bath. Lissajous figure on x1 − x2 in the
long-time limit with different dissipative coupling strength (a) γext =
5 × 10−5 and (b) γext = 5 × 10−4. (c) Pearson correlation function
C(t ) [cf. Eq. (24)] with γext = 5 × 10−5 (blue dashed line) and γext =
5 × 10−4 (red solid line). An ensemble of 500 trajectories is used
for average. Other parameters are T = 0.1, � = 0.025, � = 1.01,
ε = 0.1, and ω1(2) = 1(1.03).

FIG. 10. Pearson correlation function C(t ) with (a) � = 0.025
and varying central frequency � = 1.01 (blue dashed line), � =
1.35 (red dashed-dotted line), and � = 1.5 (green solid line).
(b) � = 1.01 and varying � = 0.025 (blue dashed line), � = 0.2 (red
solid line), and � = 0.3 (green dashed-dotted line). An ensemble of
500 trajectories is used for average. Other parameters are T = 0.1,
γext = 5 × 10−3, ε = 0.1, and ω1(2) = 1(1.03).

FIG. 11. Effect of temperature in the long-time limit: Fourier
spectrum 〈x1[ω]〉 (blue dashed line with hatched region) and 〈x2[ω]〉
(red solid line with shaded region) with (a) T = 0.5 and (b) T = 5.
Insets: Lissajous figure on x1 − x2. (c) Pearson correlation function
C(t ) with T = 0.5 (blue dashed line) and T = 5 (red solid line). An
ensemble of 500 trajectories is used for average. Other parameters are
� = 1.01, � = 0.025, γext = 5 × 10−3, ε = 0.1, and ω1(2) = 1(1.03)
[marked by vertical black dashed-dotted lines in (a) and (b)].

Fig. 10(b) we instead fix � and vary �. From the results shown
in Fig. 10(b) it is evident that we should choose a long mem-
ory time (=1/�) in order to have a stable yet large Pearson
correlation function C(t ) in the long-time limit; namely, the
establishment of synchronization prefers long memory time.

C. High-temperature bath

We then turn to a high-temperature regime in which the
effect of random thermal noise becomes dominant. Similar
to the white noise scenario (cf. Fig. 5), here we also find
that increasing the temperature would turn an in-phase syn-
chronization to an antiphase one. In Figs. 11(a) and 11(b)
we show Lissajous figures under an intermediate and a high-
temperature value, respectively. It is evident that the Lissajous
pattern changes from a straight line with slope 1 (marking an
in-phase synchronization) to one with slope −1 (marking an
antiphase synchronization) when increasing the temperature.
We highlight this transition by further showing the averaged
Pearson correlation function C(t ) in Fig. 11(e): Increasing
the temperature, the long-time value of C(t ) changes from
1 to −1.

Although the transition behaviors are quite similar, we
remark that the emergent antiphase synchronization in the
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colored noise scenario is distinct from that in the white noise
counterpart in the sense of a strong frequency renormalization
as revealed by the Fourier spectra 〈x1,2(ω)〉 [recall that they
are Fourier transforms of 〈x1,2(t )〉]. As can be seen from
Fig. 11(d), the two spectra 〈x1,2(ω)〉 overlap around two new
peaks with frequencies ω̃1,2 �= ω1,2. We attribute the appear-
ance of these two new peaks to the interaction between VdP
oscillators and the bath with a finite memory time. Noting
ω1,2 ≈ � ≈ 1, from the EOMs one can find that the renor-
malized frequencies should be ω̃2

1,2 ≈ 1 + 2λ2 ∓ 2
√

λ2 + λ4,
where we have defined a constant as λ2 = γext/4�2� (see
details in Appendix B). Using the parameters in Fig. 11,
we get ω̃1 ≈ 0.814 and ω̃2 ≈ 1.258, which agree well with
the two peak positions shown in Fig. 11(d). As for the low-
temperature regime, one still observes a perfect frequency
entrainment in Fig. 11(c), similar to the white noise scenario
[cf. Fig. 6(b)].

V. SUMMARY

In this work we studied synchronization of open VdP os-
cillators in a common thermal bath. To enable descriptions
for baths with an arbitrary memory time, we proposed a
general Langevin equation obtained from the combination of
an intrinsic nonlinear EOM for VdP oscillators and a Hamil-
tonian description for bath and oscillator-bath coupling. The
obtained Langevin equation revealed that the bath can induce
a dissipative coupling between VdP oscillators, besides the
usual noise and damping terms connected by the fluctuation-
dissipation theorem.

To demonstrate the utility of the general Langevin equa-
tion as well as uncover the effects of a common thermal bath
on synchronization behavior, we consider a setup consisting
of two VdP oscillators coupled to a bath with either an Ohmic
or a Lorentzian spectrum, corresponding to a white or colored
noise scenario, respectively. Though the memory time of bath
varies, we identify several common features regarding the
synchronization behavior in open VdP oscillators: First, we
revealed that the limit cycle which represents a long-time peri-
odic motion for isolated VdP oscillators remains a valid notion
at the ensemble-average level for open VdP counterparts pro-
vided that the bath temperature is moderate. Second, we found
that a thermal bath is able to fix the long-time synchronization
type to be either in-phase or antiphase, a phenomenon that
occurs regardless of initial conditions and is sensitive only
to bath temperatures. Third, we showed that a thermal bath
can induce synchronization of open VdP oscillators whose
isolated counterparts cannot be synchronized, owing to the
presence of a bath-induced dissipative coupling. We expect
that the so-obtained general Langevin equation and the way
to derive it can be easily extended to other self-sustained sys-
tems, thereby promoting the studies of environmental effects
on synchronization behaviors.
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APPENDIX A: AVERAGED DRIFT
AND DIFFUSION COEFFICIENTS

1. A single oscillator

The averaged drift and diffusion coefficients involved in
Eq. (20) could be obtained directly from Eqs. (19):

m1 = 1

2π

∫ 2π

0
[−εA3 cos2 φ sin2 φ + (ε − γext )A sin2 φ]dφ

+ 1

2π

∫ 2π

0

D

Aω2
0

cos2 φdφ

= −1

8
εA3 + 1

2
(ε − γext )A + D

2Aω2
0

, (A1)

b1 = (σ1)2 = 1

2π

∫ 2π

0

2D

ω2
0

sin2 φdφ = D

ω2
0

. (A2)

We remark that the term on the right-hand-side of the second
line of Eq. (A1) corresponds to the Wong-Zakai correction
term [50], which can be understood as the expectation value
of a white noise. Similarly, we could get m2 = 0 and b2 =
(σ2)2 = D/A2ω2

0.

2. Coupled oscillators

The averaged drift and diffusion coefficients involved in
Eqs. (25) and (26) can be obtained by first writing four first-
order differential equations for Ai and θi:

Ȧ1 = −εA3
1 cos2 φ1 sin2 φ1 + (ε − γext )A1 sin2 φ1

+ γextA2
ω2

ω1
sin φ1 sin φ2 − ξ (t )

ω1
sin φ1,

Ȧ2 = −εA3
2 cos2 φ2 sin2 φ2 + (ε − γext )A2 sin2 φ2

+ γextA1
ω1

ω2
sin φ1 sin φ2 + ξ (t )

ω2
sin φ2,

θ̇1 = −εA2
1 cos3 φ1 sin φ1 + (ε − γext ) sin φ1 cos φ1

+ γext
A2ω2

A1ω1
sin φ2 cos φ1 − ξ (t )

A1ω1
cos φ1,

θ̇2 = −εA2
2 cos3 φ2 sin φ2 + (ε − γext ) sin φ2 cos φ2

+ γext
A1ω1

A2ω2
sin φ1 cos φ2 + ξ (t )

A2ω2
cos φ2. (A3)

Next, we determine the drift and diffusion coefficients by
performing a stochastic average over equations in Eq. (A3).
The detailed expressions for the drift coefficients mc

1,2,3 are

mc
1 = 1

2π

∫ 2π

0

[
−εA3

1 cos2 φ1 sin2 φ1 + (ε − γext )A1 sin2 φ1

+ D

A1ω
2
1

cos2 φ1 + γext
A2ω2

ω1
sin φ1 sin(φ1 − �)

]
dφ1

= −1

8
εA3

1 + 1

2
(ε − γext )A1 + γext

A2ω2

2ω1
cos � + D

2A1ω
2
1

,

(A4)
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mc
2 = 1

2π

∫ 2π

0

[
− εA3

2 cos2(φ1 − �) sin2(φ1 − �)

+ (ε − γext )A2 sin2(φ1 − �) + D

A2ω
2
2

cos2(φ1 − �)

+ γext
A1ω1

ω2
sin φ1 sin(φ1 − �)

]
dφ1

= −1

8
εA3

2 + 1

2
(ε − γext )A2 + γext

A1ω1

2ω2
cos � + D

2A2ω
2
2

,

(A5)

mc
3 = 
 + γext

2π

∫ 2π

0

[
A2ω2

A1ω1
sin(φ1 − �) cos φ1

− A1ω1

A2ω2
sin φ1 cos(φ1 − �)

]
dφ1

= 
 − γext

2

(
A2ω2

A1ω1
+ A1ω1

A2ω2

)
sin �. (A6)

The detailed expressions for the diffusion coefficients σ c
1,2,3

are

b11 = (
σ c

1

)2 = 1

2π

∫ 2π

0

2D

ω2
1

sin2 φ1dφ1 = D

ω2
1

, (A7)

b22 = (
σ c

2

)2 = 1

2π

∫ 2π

0

2D

ω2
2

sin2(φ1 − �)dφ1 = D

ω2
2

, (A8)

b33 = (
σ c

3

)2 = 2D

2π

∫ 2π

0

[
cos φ1

A1ω1
+ cos(φ1 − �)

A2ω2

]2

dφ1

= D

A2
1ω

2
1

+ D

A2
2ω

2
2

+ 2D cos �

A1A2ω1ω2
, (A9)

b12 = σ c
1 σ c

2 = 2D

2π

1

ω1ω2

∫ 2π

0
sin φ1 sin(φ1 − �)dφ1

= − D

ω1ω2
cos � = b21, (A10)

b13 = σ c
1 σ c

3 = 2D

2π

1

A2ω1ω2

∫ 2π

0
sin φ1 cos(φ1 − �)dφ1

= D

A2ω1ω2
sin � = b31, (A11)

b23 = σ c
2 σ c

3 = 2D

2π

1

A1ω1ω2

∫ 2π

0
sin(φ1 − �) cos φ1dφ1

= D

A1ω1ω2
sin � = b32. (A12)

Using Eqs. (A4)–(A12), the FPK equation (26) is thus com-
pletely determined.

FIG. 12. Synchronization behaviors obtained from Eqs. (B3) and
(B4). (a) Single-trajectory results of x1(t ) (blue dashed line), x2(t )
(red solid line), and their Pearson correlation function C(t ) (black
dashed-dotted line) [cf. Eq. (24)] with a fixed γext = 0.04 and tem-
perature T = 0.01. (b, c) Lissajous figure on x1-x2 averaged over
an ensemble of 300 trajectories in the long-time limit with fixed
γext = 0.04 and varying temperature (b) T = 0.01, (c) T = 4. Other
parameters are T = 0.01, α = 0.25, ε = 0.1, and ω1,2 = 1. We se-
lected an initial condition that would instead lead to an in-phase
synchronization without the bath.

APPENDIX B: SYNCHRONIZATION FROM
A DIFFERENT COUPLING FORM

In the main text, we consider a coupling form with cou-
pling coefficients satisfying C1 j = −C2 j [cf. Eq. (10)]. In this
Appendix we instead consider a scenario with C1 j = C2 j so
as to emphasize that our general EOM (6) holds regardless
of specific relations between coupling coefficients. For sim-
plicity, we focus on a bath with an Ohmic spectrum. Now the
function I(ω) in Eq. (11) is replaced by

I(ω) =
(

1 1
1 1

)
I (ω), (B1)

leading to new forms of dissipative couplings F 1
γ = F 2

γ ≡
Fγ (ẋ1, ẋ2) with

Fγ (ẋ1, ẋ2) =
∫ t

−∞
dt ′γ (t − t ′)[ẋ1(t ′) + ẋ2(t ′)] (B2)

as well as new EOMs governing the dynamics of x1,2(t ):

ẍ1 + ε
(
x2

1 − 1
)
ẋ1 + ω2

1x1 + Fα = Fγ + ξ (t ), (B3)

ẍ2 + ε
(
x2

2 − 1
)
ẋ2 + ω2

2x2 − Fα = Fγ + ξ (t ). (B4)

For a zero-detuning setup at a low temperature, both the
Pearson correlation function C(t ) → −1 shown in Fig. 12(a)
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FIG. 13. Lissajous figure on x1-x2 averaged over an ensemble
of 300 trajectories in the long-time limit from Eqs. (B3) and (B4):
(a) γext = 0.01, T = 0.1, (b) γext = 0.05, T = 0.1, (c) γext = 0.05,
T = 1.5, and (d) γext = 0.05, T = 10. Other parameters are α = 0,
ε = 0.1, and ω1(2) = 1(1.03).

and a line shape Lissajous pattern with slope −1 depicted
in Fig. 12(b) indicate that the system is stabilized to an an-
tiphase synchronization by the bath. Comparing with results
in Figs. 4(a) and 4(c), we know that the sign reversal in the
relation between C1 j and C2 j would change the fixed syn-
chronous phase difference from 0 (in-phase synchronization)
to π (antiphase synchronization). Increasing the temperature
induces a transition from an antiphase synchronization to an
in-phase one as can be seen from Fig. 12(c).

For a setup with a nonzero detuning, we contrast Lissajous
figures in Fig. 13 with those in Fig. 6. From Fig. 13(a) and
13(b), we see that increasing damping strength would result
in an antiphase synchronization at a low temperature. In-
creasing temperature, the Lissajous figure gradually changes
from an antiphase synchronization to finally an in-phase one
[Fig. 13(d)], similar to the zero-detuning scenario.

APPENDIX C: FREQUENCY RENORMALIZATION
DUE TO COLORED NOISE AT HIGH TEMPERATURE

In this Appendix we show how to obtain renormalized
frequencies observed in the colored noise scenario at high
temperature [cf. Fig. 11(d)] from the general EOMs [cf.
Eqs. (15) and (16)]. Noting that we set the intrinsic direct
coupling to be zero and the nonlinear term proportional to ε

can be neglected in the high-temperature regime, we have the
following simplified EOMs from Eqs. (15) and (16):

ẍ1 + ω2
1x1 + Fγ (ẋ1, ẋ2) = ξ (t ), (C1)

ẍ2 + ω2
2x2 − Fγ (ẋ1, ẋ2) = ξ (t ). (C2)

Here Fγ (ẋ1, ẋ2) = ∫ t
−∞ dt ′γ (t − t ′)[ẋ1(t ′) − ẋ2(t ′)] which, in

the case of a colored noise, can be rewritten as

Fγ (ẋ1, ẋ2) =
∫ t

−∞
dt ′γ̇ (t − t ′)[x1(t ′) − x2(t ′)]. (C3)

As will be seen later, it is this term that induces frequency
renormalizations. Combining Eqs. (C1), (C2), and (C3), we
are now left with linear EOMs which, in the Laplace domain,
are(

s2 + ω2
1 + Z −Z

−Z s2 + ω2
2 + Z

)(
x̃1(s)

x̃2(s)

)
=

(
ξ̃ (s)

ξ̃ (s)

)
. (C4)

In arriving at the above equation, we have utilized Eq. (34).
We also defined Z ≡ 2λ2 s2+2�s

s2+2�s+�2 with λ2 = γext

4�2�
. In the

absence of thermal baths, we have Z = 0 such that the poles
of the solutions for x̃1,2(s) mark the frequencies (noting the
relations between Laplace and Fourier transformations). In-
spired by this observation, we first make the approximations
ω1,2 ≈ � ≈ 1 and Z ≈ 2λ2 s2

s2+1 by noting the parameter val-
ues used in obtaining Fig. 11, then diagonalize the matrix in
the left-hand-side of Eq. (C4) and let the eigenvalues be zero
so as to get the poles. The resulting nontrivial poles satisfy

s2 + 1 + 4λ2 s2

s2 + 1
= 0, (C5)

yielding renormalized frequencies ω̃2
1,2 = −s2 = 1 + 2λ2 ∓

2
√

λ2 + λ4, which are just the expressions shown in the main
text.
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