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Diversity-enhanced stability
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We give compelling evidence that diversity, represented by a quenched disorder, can produce a resonant
collective transition between two unsteady states in a network of coupled oscillators. The stability of a metastable
state is optimized and the mean first-passage time maximized at an intermediate value of diversity. This finding
shows that a system can benefit from inherent heterogeneity by allowing it to maximize the transition time from
one state to another at the appropriate degree of heterogeneity.
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I. INTRODUCTION

Many fields, from physics and chemistry to engineering
and biology, are interested in first-passage phenomena [1].
Following Kramers’ fundamental publication on kinetic reac-
tions [2], much effort has been given to evaluate first-passage
processes, or the related narrow-escape problems [3] in a
variety of scenarios, utilizing both theoretical modeling and
numerical analysis [4]. The primary question is to determine
the mean first-passage time (MFPT), which is the time re-
quired for a particle (atom, molecule, cell, animal, or signal)
to reach a certain state for the first time [1–4].

The MFPT is an essential metric for characterizing the
escape process, which has been extensively investigated the-
oretically and quantitatively over the last few decades [5–9].
The average escape duration from metastable states in fluctu-
ating potentials exhibits nonmonotonic behavior as a function
of the noise intensity, with the existence of a clear-cut
maximum. This is the noise-enhanced stability (NES) phe-
nomenon: the stability of metastable states can be improved,
and the metastable state’s average life span rises nonmono-
tonically with noise strength. The NES has been evidenced
in financial markets [10], ecological systems [11], magnetic
systems [12], electrical circuits [13], chemical systems [14],
and Josephson junctions [15]. Fiasconaro et al. [16–18] in-
vestigated the MFPT of a Brownian particle from an initial
unsteady state in a metastable underdamped system and dis-
covered the usual NES effect via MFPT with an evident hump
(or resonantlike) structure or divergent behavior. In contrast
to Fiasconaro et al. [16–18], the present research aims to
study the enhancement of stability in the absence of dynamical
noise in a network of coupled deterministic but heterogeneous
oscillators.

In the absence of dynamical noise, intrinsic demographic
noise in chemical and population models [19,20] as well as
parameter diversity (or heterogeneity) [21,22] are sufficient
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to induce the resonant amplification of system response. In
a biological network, diversity can induce an optimal oscil-
latory performance [23] or, can provoke the emergence of
global oscillations from individually quiescent elements [24].
In electrochemical-oscillator experiments performed on a
multielectrode array network [25], the dynamical stabil-
ity optimally increases for intermediate levels of parameter
heterogeneity (quenched disorder) even in the absence of dy-
namical noise. Motivated by the rather intriguing beneficial
effect of heterogeneity [19–25], the present study investigates
whether diversity (or quenched disorder) can induce a phe-
nomenon qualitatively similar to NES in a noiseless system
of coupled oscillators.

This paper demonstrates that network diversity (in the ab-
sence of dynamical noise) unexpectedly induces an increase
of MFPT at intermediate disorder level in a system of coupled
oscillators, similar to the NES shown in single isolated oscilla-
tors with external Brownian’s noise [16–18]. In particular, we
find a nonmonotonic behavior of the MFPT with a clear-cut
maximum at a finite and optimal level of diversity. This might
help an extended system increase the lifetime of a metastable
state.

II. MODEL DESCRIPTION

The model is a network of N globally coupled units sub-
mitted to a cubic metastable potential energy [26,27]

ẋi = x2
i − α2

i + C

N

N∑
j=1

(x j − xi ), (1)

where xi(t ), i = 1 · · · N , is the position of the ith unit at time
t , and C is the coupling strength. The location and relative
stability of the fixed points of the dynamics of an isolated
unit i are modified by the parameter αi. We assume that
αi takes fixed and independent values distributed according
to αi = μ + σUi, μ is a constant, and Ui is randomly and
uniformly sampled in the interval [−ε,+ε] for the ith unit.
The parameter σ will be referred to as the diversity level.
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FIG. 1. Comparison of different shapes of the potential energy of
uncoupled oscillators for α+ = μ + σε, α− = μ − σε, and α0 = μ

(a). In (b) the initial (x0) and the final state (xF ) are represented in
comparison to the position of the equilibria ±α. The parameters used
are σ = 0.5, μ = 2, and ε = 1.

The metastable potential V (xi ) = −x3
i /3 + α2

i xi in Eq. (1) was
used in Refs. [16–18,26,27] to study the escape time from
the potential. The cubic potential with a metastable state has
been employed as an archetypal model in the study of the
escape dynamics of particles from a metastable state, since a
metastable state with a smooth potential, in the neighborhood
of a critical point, can be characterized by a cubic potential
in most circumstances [16–18,26,27]. This cubic potential
is shown in Fig. 1(a). Its profile has a local stable state at
xi = −αi, and an unstable state at xi = +αi.

III. SIMULATION RESULTS

Following Refs. [16–18], after fixing a given target position
xi

F beyond the unstable equilibrium, the first-passage time
τi(xi

0, xi
F ), the time for the ith oscillator starting from an initial

position xi
0 to reach xi

F [Fig. 1(b)] is estimated through the
fifth-order Runge-Kutta algorithm [28], with a fixed time step
�t = 10−3. The initial conditions are xi(t = 0) = xi

0 = κ1αi.
The final states are fixed as xi

F = κ2αi, with κ1 < κ2, and
κ1,2 > 1.0. The initial conditions and the final states are there-
fore different depending on the value of the diversity level σ .
Having set the initial conditions and final states, the average
of times of the oscillators is estimated as the mean value of
the passage times of the network’s units: N−1 ∑N

i=1 τi(xi
0, xi

F ).
The MFPT (τ ) is subsequently estimated by averaging this
time over 104 different independent realizations with indepen-
dent random sets of the parameters αi.

In Fig. 2, we plot the MFPT τ versus the diversity σ , for
different values of the coupling constant C (as sketched in the
legend). Strikingly, the mean escape time exhibits a resonance
structure; viz., there exists a diversity σcr for which first
passage proceeds slower than for all other diversity strengths.
Two different regimes for the MFPT process can be observed,
depending on the coupling strength C (Fig. 2). When C =
Ccr � 1, the resonancelike structure appears. Upon lowering
C < Ccr we notice a substantial rise of the passage time.
For C > Ccr the graph exhibits only a moderately growing
MFPT followed by a decrease with higher diversity σ . In
general, for substantially lower (or higher) coupling compared
to Ccr , the passage time does not resonate but increases (or
decreases) monotonically with increasing σ . In this sense Ccr

represents indeed the optimal coupling strength for which

FIG. 2. Mean first-passage time τ from xi
0 = 1.5αi to xi

F = 2.0αi

evaluated from Eq. (1) versus the diversity level σ , and for different
values of the coupling C (see the colored legends). The DES effect
is observed for C around 1. The parameters used are μ = 2, ε = 1,
and N = 100. In (a) the structure is all-to-all global coupling, while
in (b) the network has a ring structure with nearest network coupling
and periodic boundary conditions.

resonancelike MFPT occurs. When the network structure
(Fig. 2), and size (Fig. 3) are varied, the appearance of such
a clear-cut optimum value of the diversity for maximum time
duration is still observed. This strongly resembles the NES
effect, ubiquitously found in different physical systems with
time-dependent noise [10–18,26,27]. Since the system is de-
terministic, the phenomenon is diversity induced instead of
noise induced; thus a diversity-enhanced stability (DES).

IV. MEAN-FIELD ANALYSIS

To study the effects of diversity analytically, the mean-field
approach is applied by introducing the global variable χ (t ) =
N−1 ∑N

i=1 xi. Equation (1) can be rewritten as

ẋi = x2
i − α2

i + C(χ − xi ). (2)

After averaging Eq. (2) over N oscillators,

χ̇ = 1

N

N∑
i=1

x2
i − 1

N

N∑
i=1

α2
i . (3)

Following Refs. [21,22,29,30], we then define δi as
the difference between xi and χ , i.e., xi = χ + δi. The

FIG. 3. Graphical representation of the mean first-passage time
(τ ) when the network diversity varies, with different network size
(N) and structures. In (a) the structure is an all-to-all global coupling,
while in (b) the network has a ring structure with nearest network
coupling and periodic boundary conditions. For all the simulations,
xi

0 = 1.5αi, xi
F = 2.0αi, and C = 1.
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FIG. 4. (a) Graphical representation of the effective potential
from Eq. (2), Veff(χ ) = −χ 3/3 − (ξ − a)χ for ξ − a < 0 (gray line)
(ξ − a = −2) and ξ − a > 0 (black line) (ξ − a = 1). The blue and
red dots are the starting and arrival points, respectively. (b) The
mean first-passage time is evaluated from Eq. (3) versus η. The gray
and black lines are obtained from the first and second analytical
expressions of tF , respectively, in Eq. (5). The parameters used are
χ0 = 1.5μ, χF = 2.0μ, and μ = 2.

quantity δi = xi − χ is introduced to represent the trajec-
tory deviation between xi and the average activity of the
system χ [21,22,29,30]. After development, N−1 ∑N

i=1 x2
i =

χ2 + 2M1χ + ξ , with M1 = N−1 ∑N
i=1 δi, ξ = N−1 ∑N

i=1 δ2
i .

Due to the effect of the diversity, it is assumed that M1 � 0
[21,22,29,30]. The parameter ξ will increase when diversity
increases [21,22,29,30]. After setting N−1 ∑N

j=1 α2
i = a, the

ensemble dynamics can be therefore translated into

χ̇ = χ2 + ξ − a. (4)

The MFPT tF obtained after integration of Eq. (4) is

−1√|η|
[

arctanh

(
χF√|η|

)
− arctanh

(
χ0√|η|

)]
+ t0, if ξ < a,

1√
η

[
arctan

(
χF√

η

)
− arctan

(
χ0√
η

)]
+ t0, if ξ > a, (5)

η = ξ − a. The variables χF and χ0 are the average po-
sitions at the final (tF ) and initial time (t0), respectively. It
can be easily verified that tF increases or decreases mono-
tonically depending on the values of η [Fig. 4(b)]. Thus it
highlights increasing (decreasing) MFPT for weaker (higher)
diversity, suggesting the existence of a critical value ξcr (or
σcr) separating the two monotonic regimes of MFPT variation
with the increasing diversity. Despite the rough approximation
[Eq. (4)], this nonmonotonic dependence on the diversity is in
good qualitative agreement with the results of the numerical
simulations of Eq. (1).

For σ = 0, ξ vanishes after an initial transient to wash
out the effect of the possibly different initial conditions for
the xi’s. For weaker diversity values of ξ (ξ < a), the global
variable χ will move from the initial to the final point slowly.
As the diversity increases, ξ increases and reaches higher val-
ues (ξ > a); the time spent, rather, decreases as the diversity
increases. We then predict a resonance effect for intermediate
values of the diversity for which τ will be maximum. A more
satisfying theory explicitly linking ξcr (or σcr) and C for DES
is left as an open question in this paper.

The energy barrier from the departure and arrival points
[Fig. 4(a)] Veff(χF ) − Veff(χ0) is considerably high in the

FIG. 5. Synchronization coefficient ρ of the MFTP (τi) all-to-all
globally coupled oscillators i with diversity level σ . The size of the
network is fixed at N = 50. The value of the coupling C used for
each case is specified in the colored legends.

lower diversity case compared to the higher diversity case.
Therefore, for very low diversity (ξ − a < 0), the averaged
state is subjected to a high potential barrier, as a consequence
of the divergence of the MFPT in the limit σ → 0. For in-
creasing diversity (ξ − a > 0), the particle can escape out
more easily, and the MFPT decreases. As the diversity reaches
a value σcr , the concavity of the MFPT curves changes. Close
to such a diversity, the MFPT process of the pseudoparticle is
optimally slowed down.

V. SYNCHRONIZATION ANALYSIS

To reveal a possible connection between the maximum
MFPT and the network synchronization, the degree of spatial
synchronization of the units is used as order parameter. To
quantify in a systematic way the synchronization capabilities
of the network, we computed a synchronization coefficient
adapted from [31]

ρ =
〈
τ 2

i

〉 − 〈τ i〉2

〈
τ 2

i

〉 − 〈τi〉2
, (6)

where · · · is the average over nodes (oscillators) and 〈· · · 〉
is the average over the different realizations. When ρ tends
to 1, the individual oscillators i have closer MFPT (τi) (syn-
chronized passage time) whereas ρ reaching 0 means that the
oscillators MFPTs are not synchronized. The synchronization
quantifier is plotted in Fig. 5 as a function of σ . For weak
diversity levels (σ � 0), the starting (xi

0) and final (xi
F ) state

values as well as αi are very close, therefore τi are identical
leading to ρ closer to 1. When the diversity becomes different
to 0 the synchronization becomes closer to 0. For intermediate
values of σ where the DES occurs, the synchronization coef-
ficient becomes optimal again. Beyond this critical value of
σ , the coefficient ρ falls again toward 0. More interestingly,
the optimal value of ρ does not increase linearly with the
coupling C. When the coupling gradually increases, the syn-
chronization increases, which is naturally expected. However,
after a critical value of C � 2, the maximal value deceases
again. This suggests that during the occurrence of the DES,
the diverse oscillator moves between the two states in a nearly
closer time (ρ � 0.6).
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VI. DISCUSSION

Diversity is widely established to play a positive function
in many coupled systems [19–25,29,32,33]. It can enhance
collective behaviors such as synchronization, control, res-
onance, or (de)coherence [19–22,25,29,32,33]. While the
original inspiring work of Fiasconaro et al. [16–18] on
stochastic systems showed that noise can enhance stability,
our results suggest that diversity can also enhance stability.

The present paper builds on many previous papers that have
already identified (pure) diversity-induced effects [21–25].
Here, another example of such an effect, analogous to
the NES effect [16–18], is provided. In contrast to the
literature [21–25], this paper studies the MFPT, which is a mi-
croscopic quantity, rather than a quantity measured indirectly
in a network of coupled oscillators, e.g., synchronization,
coherence, activation, or amplification.

Using experimental systems consisting of coupled elec-
tromechanical, power grid, or electrochemical oscillators, the
stability of the frequency-synchronization state is stabilized
by the random oscillator heterogeneity [25,32,33]. Though the
present study focused on the first-passage time from one state
to another, it would be interesting to investigate it in a practical
physical setup [25,32,33].

The investigation of the beneficial effects of diversity on
synchronization was evidenced by several authors [25,32–34].
The present study shows that it is possible to synchronize the
transition time of coupled oscillators with the right amount of
quenched disorder.

The DES phenomenon’s mechanism is very simple: de-
pending on the starting state, a percentage of the units is able
to slow down the system’s evolution toward the final state;
such units, via the coupling terms, are able to pull the others
in the direction of the force via a drive-over effect. Units with
short (start to arrival) distances cannot outnumber units with
long distances when there is too much diversity. This type
of resonancelike mechanism is expected to emerge in many
fields.

VII. CONCLUSION

In conclusion, we showed that heterogeneity, in the form
of quenched noise, may enhance the stability of metastable
systems without the help of external noise. We expect the
same effect to occur in other more complex coupled systems.
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