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Energy transport between heat baths with oscillating temperatures
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Energy transport is a fundamental physical process that plays a prominent role in the function and perfor-
mance of myriad systems and technologies. Recent experimental measurements have shown that subjecting a
macroscale system to a time-periodic temperature gradient can increase thermal conductivity in comparison to a
static temperature gradient. Here, we theoretically examine this mechanism in a nanoscale model by applying a
stochastic Langevin framework to describe the energy transport properties of a particle connecting two heat baths
with different temperatures, where the temperature difference between baths is oscillating in time. Analytical
expressions for the energy flux of each heat bath and for the system itself are derived for the case of a free
particle and a particle in a harmonic potential. We find that dynamical effects in the energy flux induced by
temperature oscillations give rise to complex energy transport hysteresis effects. The presented results suggest
that applying time-periodic temperature modulations is a potential route to control energy storage and release in
molecular devices and nanosystems.
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I. INTRODUCTION

Discovering and understanding the fundamental physi-
cal mechanisms governing energy transport processes at the
nanoscale is one of the most important problems in the molec-
ular sciences [1–10]. Vibrational, electronic, and radiative
energy transport mechanisms, as well as their interplay, man-
ifest at the nanoscale in complex nonequilibrium processes
[7,11–29]. Gaining a deeper understanding of these mech-
anisms is becoming increasingly important to advance the
development of multiple technologies. Energy transport plays
a prominent role in the function of physical, biological, and
technological systems [4,11,30]. Therefore, developing accu-
rate theoretical tools to describe energy transport processes
is critical. At the nanoscale, controlling energy transport in
the form thermal energy, i.e., heat, has broad applications
to advance the design of electronic devices [2,31–33], ther-
moelectric molecules and materials [34–37], and phononic
systems that use heat to perform logical operations [11,21,38].
Recent advances in the ability to probe energy transport at the
atomistic level, both theoretically [39,40] and experimentally
[41,42], facilitate the use and manipulation of energy transport
properties in practical molecular applications.

There have been significant recent advances in the exper-
imental set-ups used to examine nanoscale heat transport.
Specifically, several groups have developed experimental
techniques capable of measuring thermal conductance at the
single-molecule level [41,42]. These advances open the pos-
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sibility to probe, characterize, and utilize energy transport
effects by tailoring molecular structural characteristics. En-
ergy transport through molecular structures typically involves
complex nonequilibrium dynamics [18,38,43–46] due to the
interplay between multiple heat transport mechanisms at the
nanoscale. Advanced theoretical tools are therefore needed
to describe these nanoscale processes, which typically do
not follow macroscale principles, for example, Fourier’s law
[47–51].

At the macroscale, periodic modulation of a temperature
gradient can enhance heat flow leading to increased thermal
conductivity in comparison to a static temperature gradient
[52]. However, the molecular origins of this enhanced ther-
mal conductivity have not been established. Here, we explore
how the thermal transport properties of a model nanoscale
system can be modified by applying periodic temperature
modulations. Time-dependent temperatures can be used to
affect, control, and probe molecular properties of systems
ranging in size from large macromolecules to single atoms
[53–55]. Temperature modulations play a prominent role in
the function of a multitude of systems including: pyroelec-
tric materials [56–58], thermal batteries [59,60], molecular
ratchets [61–63], thermal devices with memory [64,65], and
calorimetry devices [66,67].

In this article, we use a paradigmatic model of a nanoscale
system to examine the energy transport properties of a particle
connecting two heat baths with different temperatures, where
the temperature difference between baths is periodic in time
(see Fig. 1). Theoretical frameworks describing the thermo-
dynamics of a system in contact with one or more heat baths
with time-dependent temperatures have a rich history [68–78].
However, these previously developed theoretical formalisms
cannot be used to accurately describe the model we con-
sider in this article because of one or more of the following:
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FIG. 1. Schematic diagram of the model used in this work. The
system, represented by a labeled rectangle, is in contact with two
heat baths, L(left) and R(right). Bath L is represented by a red
circle and bath R is represented by a blue circle. The time-dependent
temperatures of the baths are TL(t ) and TR(t ). The temperatures of
each bath are oscillating in time, as illustrated by the graphs at the
bottom of the figure. The energy of the system E (t ) oscillates due to
the temperature oscillations. The black curves with arrows illustrate
the energy flow channels in the model. The energy fluxes in/out of
each bath are JL and JR.

(a) they are constructed for the case of a system in contact
with a single heat bath and therefore do not describe energy
transport properties between multiple baths with different
temperatures, (b) they are derived from macroscale princi-
ples that do not accurately capture nanoscale energy transport
properties, and/or (c) they assume the system is in a qua-
sistatic state and therefore do not describe the limit of fast
temperature oscillations.

The specific theoretical formalism we apply is a stochastic
Langevin equation describing a single particle that bridges
two heat baths with oscillating temperatures. The time-
dependent temperature difference between the two baths
affects the energy transport through the system (the particle)
and results in phenomena, for example, energy flux hysteresis,
that are not present in the case of a static temperature differ-
ence. Analytical expressions for the different energy fluxes
in the model, specifically the energy flux from each bath
and from particle itself, are derived for the case of a free
particle and a particle in a harmonic potential. The results
of stochastic molecular dynamics simulations are in strong
agreement with the derived results, supporting the validity of
the derived energy flux expressions. We find that the energy
transport properties can be significantly altered by the tem-
perature oscillations.

The remainder of the article is organized as follows: Sec-
tion II contains a description of the model used to examine
energy transport between heat baths with oscillating temper-
atures. In Sec. III, the definitions and general formalism for
energy transport are presented, including definitions of how
the energy fluxes in the model are determined. Section IV con-
tains derivations of the energy flux expressions for two cases:

(a) a free particle (Sec. IV A) and (b) a particle in a harmonic
potential (Sec. IV B). Results and discussion about each case
are included in the corresponding section. Conclusions and
future directions are presented in Sec. V.

II. MODEL

The model we use to examine nanoscale heat transport
in the presence of temperature oscillations consists of a sin-
gle particle that is in contact with two heat baths, both of
which have temperatures that are oscillating in time. Specif-
ically, the two heat baths, denoted by L for “left” bath and
R for “right” bath, have periodically oscillating temperatures
TL(t ) = TL(t + TL) and TR(t ) = TR(t + TR) where TL and TR

are the respective periods of oscillation. A schematic diagram
of the model is shown in Fig. 1. The Langevin equation of
motion for the system is

ẋ = v,

v̇ = −γLẋ − γRẋ − m−1∂xU (x) + ξL(t ) + ξR(t ), (1)

where x is the position of the particle, v is the particle ve-
locity, U (x) is the potential energy, γL and γL are dissipative
(friction) terms for each bath that parametrize the system-bath
coupling strength, and ξL(t ) and ξR(t ) are stochastic noise
terms that obey the following correlations:

〈ξL(t )ξL(t ′)〉 = 2γLkBm−1TL(t )δ(t − t ′),

〈ξR(t )ξR(t ′)〉 = 2γRkBm−1TR(t )δ(t − t ′),

〈ξL(t )ξR(t ′)〉 = 0,

〈ξL(t )〉 = 0,

〈ξR(t )〉 = 0,

(2)

where m is the particle mass and kB is the Boltzmann constant.
The notation 〈. . .〉 denotes an average over realizations of the
noise. These correlations are at the Markovian limits describ-
ing the physical situation in which the intensity (strength) of
the noise of each bath is oscillating in time, and that intensity
depends on the temperature of that bath at the current time
t but not on the temperature at previous times t ′. Theoreti-
cal formulations of time-dependent temperatures that include
non-Markovian effects have been developed [70,71]. Here we
will only examine the Markovian case. Specifically, Eq. (1)
is a special two-bath memoryless limit of the generalized
Langevin equation derived in Ref. [70]. We will examine two
cases for the potential: a free particle with U (x) = 0 and a
particle in a harmonic potential U (x) = 1

2 mkx2. We define
the temperatures of each bath to take the specific oscillatory
forms

TL(t ) = T (0)
L + �TL sin(ωLt ), (3)

TR(t ) = T (0)
R + �TR sin(ωRt ), (4)

where T (0)
L and T (0)

R are the temperatures of the two baths in
the limit of vanishing of oscillations, �TL and �TR define the
amplitude of the oscillations, and ωL and ωR are oscillation
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frequencies. In the case in which ωL and ωR are commen-
surable, the system and heat currents are periodic, and we
denote the total period of the model as T . The instantaneous
temperature difference between the two baths is

�T (t ) = TL(t ) − TR(t ). (5)

III. HEAT TRANSPORT

The energetic properties of the system can be described
using the Sekimoto formalism for stochastic energetics [79]
which involves separating the terms in Eq. (1) into contri-
butions to the system energy change and contributions to
the energy change in the baths. We specifically separate the
expected energy fluxes in our model into three terms:

(1) Jsys is the energy flux in/out of the system. It is gener-
ated by changes in the energy of the system. Part of the energy
transferred by this flux will be partitioned to the right bath and
part will be partitioned to the left bath.

(2) JL is the energy flux associated with the left bath.
(3) JR is the energy flux associated with the right bath.
The sum of the energy fluxes obeys conservation of energy:

JL(t ) + JR(t ) + Jsys(t ) = 0. Using the stochastic energetics
formalism, the expected energy fluxes in/out of the baths and
the system (see Fig. 1) can be expressed as [12,13,20,79]

JL(t ) = mγL〈v2(t )〉 − m〈ξL(t )v(t )〉, (6)

JR(t ) = mγR〈v2(t )〉 − m〈ξR(t )v(t )〉, (7)

Jsys(t ) = ∂t 〈E (t )〉, (8)

where E (t ) is the energy of the system, 〈v2(t )〉 is the sec-
ond velocity moment of the system, and 〈ξL(t )v(t )〉 and
〈ξR(t )v(t )〉 are noise-velocity correlation functions. We use
a sign convention such that the energy flux expressions are
positive when energy enters the corresponding bath/system
and negative when energy leaves the bath/system. The system
energy flux can be separated into the sum of two parts

Jsys(t ) = J (L)
sys (t ) + J (R)

sys (t ), (9)

where J (L)
sys and J (R)

sys are the part of the system energy flux that
flows in/out of the left bath and right bath, respectively.

Because the bath temperatures are varying, the system
will not reach a nonequilibrium steady state (NESS). Instead,
the system approaches a time-dependent nonequilibrium state
(TDNS) with an average energy that is oscillating in time. In
a system that is in a NESS, ∂t 〈E (t )〉 = 0 and JL(t ) = −JR(t ).
However, in the case of periodic temperatures the system
energy can be a time-dependent quantity leading to a nonvan-
ishing derivative of the energy with respect to time.

Our analysis will focus on examining the heat current prop-
erties over a period of oscillation. The expected heat that is
obtained/released by the baths or the system K ∈ {L, R, sys}
over the time interval [0, T ] is

QK =
∫ T

0
JK(t ′)dt ′. (10)

For the purpose of examining energy storage capabilities of
the system, it will often be useful to separate the total energy
change QK into two parts [80], the energy obtained by the

bath/system

Q+
K =

∫ T

0
JK(t ′)�[JK(t ′)]dt ′, (11)

and the energy lost by the bath/system

Q−
K =

∫ T

0
JK(t ′)�[−JK(t ′)]dt ′, (12)

where � is the Heaviside function.

IV. ENERGY FLUX DERIVATION AND RESULTS

A. Free particle

We first examine the case of free particle by setting
U (x) = 0. The equation of motion for a free particle con-
nected to two thermal baths can be expressed as

ẋ = v,

v̇ = −γ ẋ + ξL(t ) + ξR(t ), (13)

with

γ = γL + γR, (14)

being the effective friction. It is important to note that in
our analysis we will not assume that the system is in a qua-
sistatic nonequilibrium state. Because we do not make the
quasistatic assumptions, inertial effects due to the oscillating
temperatures can significantly affect the system’s heat trans-
port properties.

The equation of motion (13) is solved by the set of equa-
tions:

x(t ) = x0 +
∫ t

0
v(s) ds,

v(t ) = v0e−γ t +
∫ t

0
e−γ (t−s)ξL(s) ds +

∫ t

0
e−γ (t−s)ξR(s) ds,

(15)

where x0 is the initial position and v0 is the initial velocity of
the particle. These formal solutions can be applied to construct
expressions for the moments and time-correlation functions of
a particle driven by two thermal sources. The average energy
of the system, that is of the particle, is

〈E (t )〉 = 1
2 m〈v2(t )〉. (16)

Note that in the absence of temperature oscillations, i.e., in
the (�TL,�TR) → (0, 0) limit, the system reaches a nonequi-
librium steady state in which the energy of the system is
[70,79,81–83]

〈E〉 = 1
2 kBT, (17)

where

T = γLT (0)
L + γRT (0)

R

γL + γR
(18)

is the effective temperature of the system.
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To evaluate the energy flux for a free particle, we will need to evaluate the correlation functions in Eqs. (6)–(8). The
noise-velocity correlation functions 〈ξL(t )v(t )〉 and 〈ξR(t )v(t )〉 for a free particle can be constructed using Eq. (15),

〈ξL(t )v(t )〉 = 〈ξL(t )v0〉e−γ t +
∫ t

0
e−γ (t−s)〈ξL(t )ξL(s)〉 ds +

∫ t

0
e−γ (t−s)〈ξL(t )ξR(s)〉 ds = γLkBTL(t )

m
, (19)

〈ξR(t )v(t )〉 = 〈ξR(t )v0〉e−γ t +
∫ t

0
e−γ (t−s)〈ξR(t )ξL(s)〉 ds +

∫ t

0
e−γ (t−s)〈ξR(t )ξR(s)〉 ds = γRkBTR(t )

m
, (20)

where we have utilized 〈ξL(t )v0〉 = 〈ξR(t )v0〉 = 0 and the correlations in Eq. (2) to complete the evaluation.
The other correlation function that must be evaluated to obtain analytical expressions for the energy fluxes is 〈v2(t )〉. Squaring

the formal solution in Eq. (15) and applying the correlations in Eq. (2) yields

〈v2(t )〉 = v2
0e−2γ t +

∫ t

0

∫ t

0
e−γ (2t−s1−s2 )〈ξL(s1)ξL(s2)〉 ds1 ds2 +

∫ t

0

∫ t

0
e−γ (2t−s1−s2 )〈ξR(s1)ξR(s2)〉 ds1 ds2

+ 2
∫ t

0
e−γ (2t−s1 )〈ξL(s1)v0〉 ds1 + 2

∫ t

0
e−γ (2t−s1 )〈ξR(s1)v0〉 ds1 + 2

∫ t

0

∫ t

0
e−γ (2t−s1−s2 )〈ξL(s1)ξR(s2)〉 ds1 ds2,

= v2
0e−2γ t + kBT

m
(1 − e−2γ t )

+ 2kB

m

(
γL�TL(2γ sin(ωLt ) − ωL cos(ωLt ) + ωLe−2γ t )

4γ 2 + ω2
L

+ γR�TR(2γ sin(ωRt ) − ωR cos(ωRt ) + ωRe−2γ t )

4γ 2 + ω2
R

)
. (21)

The last three terms in the top equation vanish because 〈ξL(t )v0〉 = 0, 〈ξR(t )v0〉 = 0, and 〈ξL(t )ξR(t ′)〉 = 0. In the limit of
vanishing temperature oscillations, 〈v2(t )〉 = v2

0e−2γ t + kBT/m(1 − e−2γ t ), where the effective temperature T is defined in
Eq. (18). In the long-time limit this expression reduces to 〈v2(t )〉 = kBT/m.

A fraction of the total energy flux is energy that is obtained/released by the particle, the rest being heat current between baths.
In the long time limit, the system approaches a time-dependent (oscillatory) nonequilibrium state. In this limit, the exponential
terms vanish and the energy flux expressions simplify to

JL(t ) = γLkB

(
T − TL(t ) + 2γL�TL[2γ sin(ωLt ) − ωL cos(ωLt )]

4γ 2 + ω2
L

+ 2γR�TR[2γ sin(ωRt ) − ωR cos(ωRt )]

4γ 2 + ω2
R

)
, (22)

JR(t ) = γRkB

(
T − TR(t ) + 2γL�TL[2γ sin(ωLt ) − ωL cos(ωLt )]

4γ 2 + ω2
L

+ 2γR�TR[2γ sin(ωRt ) − ωR cos(ωRt )]

4γ 2 + ω2
R

)
, (23)

Jsys(t ) = kB

(
γL�TLωL[2γ cos(ωLt ) + ωL sin(ωLt )]

4γ 2 + ω2
L

+ γR�TRωR[2γ cos(ωRt ) + ωR sin(ωRt )]

4γ 2 + ω2
R

)
, (24)

which are independent of the initial velocity v0. Equa-
tions (22)–(24) are the primary results of this subsection. They
are analytical expressions for the energy fluxes generated in
the TDNS. It is also important to note that because the system
is in a TDNS, the net energy flux from the system Jsys(t ) does
not vanish. It can be verified that by combining Eqs. (22)–
(24), the conservation of energy relation

JL(t ) + JR(t ) + Jsys(t ) = 0 (25)

is satisfied.
In the limit of quasistatic (QS) temperature oscillations,

at every time instant the system is characterized by a Gibbs
distribution with effective temperature

T (QS)(t ) = γLTL(t ) + γRTR(t )

γL + γR
. (26)

The QS limit implies that the temperature of the bath is vary-
ing slowly enough such that the relaxation rate of the system γ

is much faster than the oscillation rates of both temperatures.
In the QS limit defined by (ωL/γ , ωR/γ ) → (0, 0), the energy

flux expressions reduce to

J (QS)
L (t ) = kB

γLγR

γL + γR
[TR(t ) − TL(t )],

J (QS)
R (t ) = kB

γLγR

γL + γR
[TL(t ) − TR(t )], (27)

J (QS)
sys (t ) = 0.

In the limit of vanishing temperature oscillations
(�TL,�TR) → (0, 0), which we will refer to as the static (S)
limit, the energy flux expressions reduce to the forms

J (S)
L = kB

γLγR

γL + γR

(
T (0)

R − T (0)
L

)
,

J (S)
R = kB

γLγR

γL + γR

(
T (0)

L − T (0)
R

)
, (28)

J (S)
sys = 0,
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FIG. 2. Time-dependence of the energy fluxes for the left bath
(top), right bath (middle), and the system (bottom) in the case of a
free particle connecting two heat baths with oscillating temperatures.
Each energy flux is shown in units of γ kBT . Time is shown in units
of the total oscillation period T . Parameters are γ = 2 (γL = 1, γR =
1), m = 1, T (0)

L = 0.8, T (0)
R = 1.07, �TL = 0.5, �TR = 0, ωL = 5,

ωR = 0. All parameters throughout are given in reduced units with
characteristic dimensions: σ̃ = 1 Å, τ̃ = 1 ps, m̃ = 10 mu, and T̃ =
300 K. In each panel, the black curve is the exact analytical result, the
dashed gray curve is the result given by the corresponding quasistatic
expression, and the noisy colored curves are the results generated
from molecular dynamics simulations.

which do not depend on time. These are well-known forms
for the heat current of a single particle in contact with two
heat baths with different temperatures [13].

Shown in Fig. 2 are the energy fluxes of the left bath,
the right bath, and the system for the situation in which the
temperature of one bath is oscillating and the temperature of
the other bath is constant. Both the analytical results and the
results of molecular dynamics (MD) simulations are shown.
The MD results are generated by integrating Eq. (1) using
the Euler-Maruyama scheme and then calculating the energy
fluxes using the stochastic energetics formalism [12,79]. The
parameters for all simulations in this article are given in
reduced units with characteristic dimensions: σ̃ = 1 Å, τ̃ =
1 ps, m̃ = 10 mu, and T̃ = 300 K. The parameter values used

in the all figures are listed in Table I in the Appendix. The
results of the MD simulations are in excellent agreement
with the analytical results for all three energy fluxes in the
model. It can be observed that even though the temperature
of the right bath is not oscillating, the effect of the oscillating
left bath temperature propagates through the system, causing
periodic fluctuations in the energy flux of the right bath. In the
quasistatic limit, the energy fluxes of the left and right baths
have the same magnitude but opposite signs while the system
energy flux is zero at all times. Significant differences in
the energy flux oscillation phase and magnitude are observed
between the exact analytical result and the quasistatic result.
These effects will play an important role in the generation of
the energy flux hysteresis, which is discussed later.

The energy fluxes for the case in which the temperatures of
both baths are oscillating at different frequencies are shown
in Fig. 3. The system-bath couplings are asymmetric, with
the coupling being stronger for the left bath than for the right
bath, γL > γR. In this case, complex dynamics are observed.
The oscillation frequency of the strongly coupled left bath is
dominate in the energy flux of the left bath while the weakly
coupled right bath exhibits features of multiple frequencies,
meaning it is influenced by the oscillations of both baths. The
system energy flux exhibits a complex pattern, combining the
functional characteristics of the left bath and right bath energy
fluxes. This because all the energy that is transported from the
left bath to right bath goes through system, hence the system
takes on characteristics of both bath energy fluxes. In the
quasistatic limit, the left and right fluxes are a mix of the two
sinusoidal temperature oscillation patterns, and, interestingly,
are more aligned with the weakly coupled right bath oscilla-
tion pattern. The system energy flux vanishes in the quasistatic
limit. The MD results are in excellent agreement the analytical
results over all these complex trends.

Hysteresis effects in electronic fluxes are of significant
interest in the field of neuromorphic computing and, more
broadly, in the development of logical devices with memory
[84–87]. Dynamical effects in the energy fluxes induced by
fast temperature oscillations relative to the system relaxation
rate (the system-bath coupling) can generate hysteresis ef-
fects. We will refer to these effects as intertial effects. Using
the derived energy flux expressions, we find that in the limit
of fast temperature oscillations in comparison to the system
relaxation timescale γ , the energy transport properties can
be significantly different than in the quasistatic limit of slow
temperature oscillations. In Fig. 4, the energy fluxes in the
model are shown as a function of the time-dependent tem-
perature difference between baths �T (t ). The t = 0 starting
point in each hysteresis loop is denoted by a circular marker.
Using the exact analytical results, hysteresis is observed in
all of the energy fluxes, meaning that the same temperature
difference can generate different flux values depending on the
time in the temperature oscillation period. This differs from
the quasistatic limit where the hysteresis effects vanish, as
shown by the solid black lines. We also observe transient
energy transport in the direction that goes against the thermal
gradient, that is, time periods in the oscillation cycle where
heat flows in the cold to hot direction. However, this effect is
only transient, and the net heat flow, i.e., the average energy
flux, is always in the direction (hot to cold) that obeys ther-
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FIG. 3. Time-dependence of the energy fluxes for the left bath
(top), right bath (middle), and the system (bottom) in the case of a
free particle connecting two heat baths with oscillating temperatures.
Each energy flux is shown in units of γ kBT . Time is shown in units
of the total oscillation period T . Parameters are γ = 1.7 (γL = 1.5,
γR = 0.2), m = 1, T (0)

L = 1, T (0)
R = 1, �TL = 0.2, �TR = 0.1, ωL =

2, ωR = 5. In each panel, the black curve is the exact analytical
result, the dashed gray curve is the result given by the corresponding
quasistatic expression, and the noisy colored curves are the results
generated from molecular dynamics simulations.

modynamics principles. The quasistatic results are shown as
black lines in each panel. In this limit, no hysteresis effects are
observed.

Energy flux hysteresis loops are shown in Fig. 5 for the
case in which the temperatures of both baths are oscillating,
but at different frequencies. Because of inertial effects brought
on by fast temperature oscillations, the energy fluxes are not
zero when �T = 0. The patterns generated are reminiscent of
Lissajous curves, but the interweaving paths and asymmetric
shapes result in complex loops and should be attributed to the
complexities that arise from fast temperature oscillations and
the resulting TDNS energy transport processes. Therefore,
the energy flux paths are different from the typical Lissajous
shapes. The relationships between the temperature bias and
the energy flux that give rise to hysteresis are only possible

FIG. 4. Energy flux as a function of temperature difference for
the left bath (top), right bath (middle), and the system (bottom) which
is a free particle. The parameters are the same as Fig. 2. Each energy
flux is shown in units of γ kBT and the temperature difference �T
is shown in units of T . In each panel, the colored curve is the exact
analytical result and the solid black line is the result given by the
quasistatic expression. The marker on each curve marks the value of
the respective energy flux at t = 0.

when the temperature oscillations are fast relative to the sys-
tem relaxation rates and so the system is not in a quasistatic
state.

As described by the equations in Sec. III, the energy fluxes
will accumulate and dissipate over a certain period of time.
The magnitude of energy storage and energy release are in-
sightful to calculate, as they relate how much total energy is
being stored and released by the system. This is analogous
to electric charges accumulating in electric circuits. In Fig. 6
the energy obtained by the system over a period of oscillation
is shown as a function of variation of the left system-bath
coupling γL while holding the right coupling γR constant.
The red line is the energy obtained by the system during
one period of temperature oscillation and the blue line is
energy released from the system during the same period. As
the coupling strength to the left bath is increased, the energy
obtained increases monotonically. The energy obtained and
the energy released have equal magnitude but opposite signs.
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FIG. 5. Energy flux as a function of temperature difference for
the left bath (top), right bath (middle), and the system (bottom) which
is a free particle. The parameters are the same as Fig. 3. Each energy
flux is shown in units of γ kBT and the temperature difference �T
is shown in units of T . In each panel, the colored curve is the exact
analytical result and the solid black line is the result given by the
quasistatic expression. The marker on each curve marks the value of
the respective energy flux at t = 0.

This illustrates that over a period of oscillation there is no net
energy storage in the system. More complicated patterns and
trends arise when extra layers of complexity are added, e.g.,
when nonzero potential energy forms are used as described in
the next section (see also Fig. 9).

B. Harmonic potential

Next, we examine the case in which the particle connecting
the two heat baths moves in a harmonic potential. The equa-
tion of motion for a particle in the potential U (x) = 1

2 mkx2

can be written as

ẋ = v,

v̇ = −γ ẋ − kx + ξL(t ) + ξR(t ), (29)

FIG. 6. Energy obtained (red top curve) and released (blue bot-
tom curve) by the system over one period of temperature oscillation
as function of the coupling parameter γL with γR = 2 held constant.
All other parameters are the same as Fig. 2. Energy is shown in units
of kBT . The coupling parameter is shown in units of 1/T .

with γ = γL + γR as before. For convenience we write
Eq. (29) as(

ẋ(t )
v̇(t )

)
=

(
0 1

−k −γ

)(
x(t )
v(t )

)
+

(
0

ξL(t ) + ξR(t )

)
. (30)

The complementary equation of Eq. (30) is(
ẋc(t )
v̇c(t )

)
= A

(
x(t )
v(t )

)
, (31)

with

A =
(

0 1
−k −γ

)
. (32)

Eigenvalues of A are

λ1 = 1
2 (−γ −

√
γ 2 − 4k),

λ2 = 1
2 (−γ +

√
γ 2 − 4k). (33)

For simplicity, we define

�λ = λ2 − λ1. (34)

The fundamental matrix solution of Eq. (31) is

M(t ) = (v1eλ1t v2eλ2t ), (35)

where v1 and v2 are eigenvectors. The solution of the initial
value problem is(

xc(t )
vc(t )

)
= M(t )M−1(0)

(
x0

v0

)
, (36)

which can expressed as

(
xc(t )
vc(t )

)
=

⎛
⎝ eλ1t (λ2x0 − v0) − eλ2t (λ1x0 − v0)

�λ
λ1eλ1t (λ2x0 − v0) − λ2eλ2t (λ1x0 − v0)

�λ

⎞
⎠.

(37)
The critical damping λ1 = λ2 solution is obtained by taking
the λ1 → λ2 limit in the previous equations.
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The formal solution of the stochastic equation of motion (30) is(
x(t )
v(t )

)
= M(t )M−1(0)

(
x0

v0

)
+

∫ t

0
M(t )M−1(s)

(
0

ξL(s) + ξR(s)

)
ds, (38)

where the first term on the right-hand side is the complementary part of the solution. The formal solution can be
written as

x(t ) = eλ1t (λ2x0 − v0) − eλ2t (λ1x0 − v0)

�λ
− 1

�λ

(∫ t

0
eλ1(t−s)ξL(s) ds +

∫ t

0
eλ1(t−s)ξR(s) ds

)

+ 1

�λ

(∫ t

0
eλ2(t−s)ξL(s) ds +

∫ t

0
eλ2(t−s)ξR(s) ds

)
, (39)

v(t ) = λ1eλ1t (λ2x0 − v0) − λ2eλ2t (λ1x0 − v0)

�λ
− λ1

�λ

(∫ t

0
eλ1(t−s)ξL(s) ds +

∫ t

0
eλ1(t−s)ξR(s) ds

)

+ λ2

�λ

(∫ t

0
eλ2(t−s)ξL(s) ds +

∫ t

0
eλ2(t−s)ξR(s) ds

)
. (40)

Using the formal solutions (39) and (40) and the noise correlations in Eq. (2), the noise-velocity correlation functions
〈ξL(t )v(t )〉 and 〈ξR(t )v(t )〉 in the heat current expressions in Eqs. (6) and (7) can be written as

〈ξL(t )v(t )〉 = 〈ξL(t )vc(t )〉 − λ1

�λ

(∫ t

0
eλ1(t−s)〈ξL(t )ξL(s)〉 ds +

∫ t

0
eλ1(t−s)〈ξL(t )ξR(s)〉 ds

)

+ λ2

�λ

(∫ t

0
eλ2(t−s)〈ξL(t )ξL(s)〉 ds +

∫ t

0
eλ2(t−s)〈ξL(t )ξR(s)〉 ds

)

= γLkBTL(t )

m
, (41)

〈ξR(t )v(t )〉 = 〈ξR(t )vc(t )〉 − λ1

�λ

(∫ t

0
eλ1(t−s)〈ξR(t )ξL(s)〉 ds +

∫ t

0
eλ1(t−s)〈ξR(t )ξR(s)〉 ds

)

+ λ2

�λ

(∫ t

0
eλ2(t−s)〈ξR(t )ξL(s)〉 ds +

∫ t

0
eλ2(t−s)〈ξR(t )ξR(s)〉 ds

)

= γLkBTR(t )

m
, (42)

here we have utilized 〈ξR(t )vc(t )〉 = 〈ξL(t )vc(t )〉 = 0 from causality by noting that all terms in vc(t ) contain initial velocity v0

or initial position x0.
The expectation value for the energy of the system is

〈E (t )〉 = 1
2 m〈v2(t )〉 + 1

2 mk〈x2(t )〉. (43)

The second velocity moment 〈v2(t )〉 can be evaluated by squaring the formal solution Eq. (40) and applying the noise correlations
leading to

〈v2(t )〉 = v2
c (t ) +

(
1

�λ

)2(
λ2

1

∫ t

0

∫ t

0
eλ1(2t−s1−s2 )〈ξL(s1)ξL(s2)〉 ds1 ds2 + λ2

1

∫ t

0

∫ t

0
eλ1(2t−s1−s2 )〈ξR(s1)ξR(s2)〉 ds1 ds2

+ λ2
2

∫ t

0

∫ t

0
eλ2(2t−s1−s2 )〈ξL(s1)ξL(s2)〉 ds1 ds2 + λ2

2

∫ t

0

∫ t

0
eλ2(2t−s1−s2 )〈ξR(s1)ξR(s2)〉 ds1 ds2

− 2k
∫ t

0

∫ t

0
eλ1(t−s1 )+λ2(t−s2 )〈ξL(s1)ξL(s2)〉 ds1 ds2 − 2k

∫ t

0

∫ t

0
eλ1(t−s1 )+λ2(t−s2 )〈ξR(s1)ξR(s2)〉 ds1 ds2

)

= v2
c (t ) −

(
1

�λ

)2(
γ kBT

m

(
λ1(1 − e2λ1t ) + λ2(1 − e2λ2t ) + 4k(1 − e−γ t )

γ

)

+ 2kBλ2
1

m

(
γL�TL(2λ1 sin(ωLt ) + ωL cos(ωLt ) − ωLe2λ1t )

4λ2
1 + ω2

L

+ γR�TR(2λ1 sin(ωRt ) + ωR cos(ωRt ) − ωRe2λ1t )

4λ2
1 + ω2

R

)
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+ 2kBλ2
2

m

(
γL�TL(2λ2 sin(ωLt ) + ωL cos(ωLt ) − ωLe2λ2t )

4λ2
2 + ω2

L

+ γR�TR(2λ2 sin(ωRt ) + ωR cos(ωRt ) − ωRe2λ2t )

4λ2
2 + ω2

R

)

− k
4kB

m

(
γL�TL(ωL cos(ωLt ) − γ sin(ωLt ) − ωLe−γ t )

γ 2 + ω2
L

+ γR�TR(ωR cos(ωRt ) − γ sin(ωRt ) − ωRe−γ t )

γ 2 + ω2
R

))
, (44)

where we have excluded the cross-correlation terms between the two baths (which all are equal zero) in the top equation for
brevity. The 〈x2(t )〉 term in Eq. (43) is evaluated in a similar fashion to 〈v2(t )〉, leading to

〈x2(t )〉 = x2
c (t ) −

(
1

�λ

)2(
γ kBT

m

[(
1 − e2λ1t

λ1

)
+

(
1 − e2λ2t

λ2

)
+ 4

(
1 − e−γ t

γ

)]

+ 2kB

m

{
γL�TL[2λ1 sin(ωLt ) + ωL cos(ωLt ) − ωLe2λ1t ]

4λ2
1 + ω2

L

+ γR�TR[2λ1 sin(ωRt ) + ωR cos(ωRt ) − ωRe2λ1t ]

4λ2
1 + ω2

R

}

+ 2kB

m

{
γL�TL[2λ2 sin(ωLt ) + ωL cos(ωLt ) − ωLe2λ2t ]

4λ2
2 + ω2

L

+ γR�TR[2λ2 sin(ωRt ) + ωR cos(ωRt ) − ωRe2λ2t ]

4λ2
2 + ω2

R

}

− 4kB

m

{
γL�TL[ωL cos(ωLt ) − γ sin(ωLt ) − ωLe−γ t ]

γ 2 + ω2
L

+ γR�TR[ωR cos(ωRt ) − γ sin(ωRt ) − ωRe−γ t ]

γ 2 + ω2
R

})
. (45)

The energy flux expressions are obtaining by substituting the correlation functions derived in this subsection into Eqs. (6)–(8).
We are mostly concerned with the long-time limit of these expressions in which the system approaches a TDNS. The energy flux
expressions in the TDNS are

JL(t ) = −γLkBTL(t ) − γL

(
1

�λ

)2(
kBT (4k − γ 2)

+ 2kBλ2
1

{
γL�TL[2λ1 sin(ωLt ) + ωL cos(ωLt )]

4λ2
1 + ω2

L

+ γR�TR[2λ1 sin(ωRt ) + ωR cos(ωRt )]

4λ2
1 + ω2

R

}

+ 2kBλ2
2

{
γL�TL[2λ2 sin(ωLt ) + ωL cos(ωLt )]

4λ2
2 + ω2

L

+ γR�TR[2λ2 sin(ωRt ) + ωR cos(ωRt )]

4λ2
2 + ω2

R

}

− 4λ1λ2kB

{
γL�TL[ωL cos(ωLt ) − γ sin(ωLt )]

γ 2 + ω2
L

+ γR�TR[ωR cos(ωRt ) − γ sin(ωRt )]

γ 2 + ω2
R

})
, (46)

JR(t ) = −γRkBTR(t ) − γR

(
1

�λ

)2(
kBT (4k − γ 2)

+ 2kBλ2
1

{
γL�TL[2λ1 sin(ωLt ) + ωL cos(ωLt )]

4λ2
1 + ω2

L

+ γR�TR[2λ1 sin(ωRt ) + ωR cos(ωRt )]

4λ2
1 + ω2

R

}

+ 2kBλ2
2

{
γL�TL[2λ2 sin(ωLt ) + ωL cos(ωLt )]

4λ2
2 + ω2

L

+ γR�TR[2λ2 sin(ωRt ) + ωR cos(ωRt )]

4λ2
2 + ω2

R

}

− 4λ1λ2kB

{
γL�TL[ωL cos(ωLt ) − γ sin(ωLt )]

γ 2 + ω2
L

+ γR�TR[ωR cos(ωRt ) − γ sin(ωRt )]

γ 2 + ω2
R

})
, (47)

Jsys(t ) =
(

1

�λ

)2(
kB

(
λ2

1 + k
){γL�TLωL[ωL sin(ωLt ) − 2λ1 cos(ωLt )]

4λ2
1 + ω2

L

+ γR�TRωR[ωR sin(ωRt ) − 2λ1 cos(ωRt )]

4λ2
1 + ω2

R

}

+ kB
(
λ2

2 + k
){γL�TLωL[ωL sin(ωLt ) − 2λ2 cos(ωLt )]

4λ2
2 + ω2

L

+ γR�TRωR[ωR sin(ωRt ) − 2λ2 cos(ωRt )]

4λ2
2 + ω2

R

}

− 4λ1λ2kB

{
γL�TLωL[γ cos(ωLt ) + ωL sin(ωLt )]

γ 2 + ω2
L

+ γR�TRωR[γ cos(ωRt ) + ωR sin(ωRt )]

γ 2 + ω2
R

})
. (48)

Two observations are of note:
(1) Evaluating the net energy change over a period of

temperature driving using Eq. (10), contributions from the
trigonometric functions are zero. Therefore, for a single par-
ticle (a free particle or a particle in a harmonic potential)
connecting two heat baths, the periodic temperature driving

does not lead to enhanced energy transport in comparison to
static temperature limit.

(2) Due to the temperature oscillations, the energy fluxes
depend on k. This differs from the single-particle case without
temperature driving in which the energy fluxes are indepen-
dent of k [13].
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FIG. 7. Time-dependence of the energy fluxes in the case of
a particle in a harmonic potential connecting two heat baths with
oscillating temperatures. Each energy flux is shown in units of γ kBT .
Time is shown in units of the total oscillation period T . Parameters
are k = 5, γ = 2 (γL = 1, γR = 1), m = 1, T (0)

L = 0.8, T (0)
R = 1.07,

�TL = 0.2, �TR = 0, ωL = 5, ωR = 0. In each panel, the solid
black curve is the exact analytical result, the dashed black curve is
the analytical result in the free particle k = 0 limit, and the noisy
colored curves are the results generated from molecular dynamics
simulations.

In the quasistatic (ωL/γ , ωR/γ ) → (0, 0) limit, the de-
rived analytical expressions reduce to the same energy flux
expressions that were obtained for a free particle:

J (QS)
L (t ) = kB

γLγR

γL + γR
[TR(t ) − TL(t )], (49)

J (QS)
R (t ) = kB

γLγR

γL + γR
[TL(t ) − TR(t )], (50)

J (QS)
sys (t ) = 0. (51)

This implies that in the QS limit, the energy flux is inde-
pendent of the potential form for a harmonic system. In the
static limit defined by (�TL,�TR) → (0, 0), the system again
reduces to the well-known form for the heat current of a single
particle connecting two heat baths:

J (S)
L = kB

γLγR

γL + γR

(
T (0)

R − T (0)
L

)
, (52)

FIG. 8. System energy flux as a function of temperature differ-
ence for a particle in a harmonic potential. Hysteresis loops are
shown for k = 0 (red wider loop) and k = 25 (blue more narrow
loop). The temperatures of the baths are T (0)

R = T (0)
L = 1. Other pa-

rameters are the same as Fig. 2. Each energy flux is shown in units
of γ kBT and the temperature difference �T is shown in units of T .
The marker on each curve marks the value of the respective energy
flux at t = 0.

J (S)
R = kB

γLγR

γL + γR

(
T (0)

L − T (0)
R

)
, (53)

J (S)
sys = 0, (54)

which are independent of the potential form, as shown by
Lebowitz [13].

Figure 7 shows the time-dependent energy fluxes for the
left bath, right bath, and the system—in this case a particle
moving in a harmonic potential. As in the free-particle case,
the MD simulation results are in excellent agreement with the
analytical results. The dashed lines, representing the results
for a free particle, deviate from the results for a harmonic po-
tential. The difference between free particle and the harmonic
particle are observed as changes in the energy flux oscillation
phase and/or changes to the magnitude of oscillation. For
example, in the system energy flux, increasing k away from
the free particle k = 0 limit results in a reduced oscillation
amplitude.

The shape of the energy flux hysteresis loops are affected
by the harmonic forces in the particle potential. Figure 8
shows hysteresis loops for two values of k in the case where
one bath temperature is oscillating and the other is constant
(the parameters are the same as in Fig. 4). The characteristic
shape of the loops are similar to the free-particle case with the
noticeable difference that the added external potential makes
the hysteresis loop narrower, a reflection of the reduced energy
flux oscillation amplitude.

The energy obtained by the system Q+
sys over a period of

oscillation is shown in Fig. 9 as a function of the parameter
k. Results are shown for the parameters used in Fig. 2 (solid
curve) and in Fig. 3 (dashed curve). In both cases, the energy
obtained by the system goes down first with increasing k,
then goes up approaching a horizontal asymptotic limit. The
minima observed with respect to variation of k values are
interesting features of the system. No first-order parametric
resonances are observed that correspond to the minima in
the Q+

sys versus k curves, meaning that the minima do not
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FIG. 9. Energy obtained by the system over one period of oscil-
lation as function of k for two sets of parameters denoted I and II.
Parameter set I, shown as a solid curve, are the same as in Fig. 2.
Parameter set II, shown as a dashed curve, are the same as in Fig. 3.
Energy is shown in units of kBT and k is shown in units of γ 2.

correspond to k values equal to ω2
L, ω2

R, γ 2
L , or γ 2

R. Changing
the friction parameters γL and/or γR alters the shape of the
Q+

sys versus k curve, but does not alter the location of the
minimum. However, the location of the minimum is depen-
dent on the temperature oscillation frequencies. Generally,
as the temperature oscillation frequencies are increased, the
location of the minimum corresponds to a larger value of
k. Possible higher-order resonance and off-resonance states
may give rise to the dip in Q+

sys with respect to variation
of k. The overall trends of the two parameter sets shown in
Fig. 9 are similar, but the case with two baths oscillating with
different frequencies results in more energy being obtained by
the system across the entire range of k. We conjecture this is
due to constructive interference effects.

V. CONCLUSIONS

The energy transport properties of a particle connect-
ing two heat baths with different temperatures where the
temperature difference between baths is oscillating in time
have been derived. A stochastic Langevin formalism has been
applied to describe the energy transport in different regimes of
fast/slow temperature oscillations and system-bath coupling
strengths. Analytical expressions have been derived for the
time-dependent energy flux of each heat bath and for the

system itself for two cases: (a) a free particle and (b) a particle
in a harmonic potential. We find that the instantaneous energy
fluxes (the heat currents) are time-dependent, as expected,
due to the temperature oscillations and that in the long-time
limit the system relaxes to a time-dependent nonequilibrium
state. Energy exchange between the system and the heat baths
can be significantly affected by multiple factors such as the
temperature oscillation frequency, the magnitude of the tem-
perature oscillation, and, in the case that the temperatures of
both baths are oscillating, the ratio between the two oscillation
frequencies. In the limit of fast temperature oscillation relative
to the relaxation rate of the system, significant differences
are observed in the energy fluxes in comparison to the results
obtained in the quasistatic limit defined by slow temperature
oscillations.

The presented results illustrate that dynamical and inertial
effects in the energy flux induced by fast temperature oscil-
lations can give rise to complex energy transport hysteresis
effects. Our findings also suggest that applying time-periodic
temperature modulations could be a possible pathway to con-
trol energy flow in molecular devices and nanoscale systems.
The application of these effects in the design of thermal de-
vices with memory is a potential future research direction.
In the case of a single particle, either a free particle or a
particle in a harmonic potential, the thermal conductivity is
not enhanced by the temperature oscillations in comparison
to keeping the temperature gradient static. An increase in
thermal conductivity due to temperature oscillations, which
has been observed in macroscale systems, may arise at the
molecular level due to anharmonicities in the system or in-
teractions between multiples particles—both of which are not
included in the present model but are targets for future work.
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APPENDIX: FIGURE PARAMETERS

The parameter values used in the figures are listed in
Table I.

TABLE I. Parameter values used in each listed figure. All values are given in reduced units with characteristic dimensions: σ̃ = 1 Å,
τ̃ = 1 ps, m̃ = 10 mu, and T̃ = 300 K.

Figure m γL γR γ ωL ωR �TL �TR T (0)
L T (0)

R k

2 1 1 1 2 5 0 0.5 0 0.8 1.07 0
3 1 1.5 0.2 1.7 2 5 0.2 0.1 1 1 0
4 1 1 1 2 5 0 0.5 0 0.8 1.07 0
5 1 1.5 0.2 1.7 2 5 0.2 0.1 1 1 0
6 1 – 2 – 5 0 0.5 0 0.8 1.07 0
7 1 1 1 2 5 0 0.2 0 0.8 1.07 5
8 1 1 1 2 5 0 0.5 0 1 1 25
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