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Particle-photon radiative interactions and thermalization
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We analyze the statistical properties of radiative transitions for a molecular system possessing discrete,
equally spaced, energy levels, interacting with thermal radiation at constant temperature. A radiative fluctuation-
dissipation theorem is derived and the particle velocity distribution analyzed. It is shown analytically that,
neglecting molecular collisions, the velocity distribution function cannot be Gaussian, as the equilibrium value
for the kurtosis κ is different from κ = 3. A Maxwellian velocity distribution can be recovered in the limit of
small radiative friction.
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I. INTRODUCTION

One of the main contributions of quantum mechanics
is the discovery that molecules possess an internal energy
structure, owing to which they radiatively interact with the
electromagnetic field via emission and absorption of energy
quanta (photons) [1,2]. This phenomenon has a deep in-
fluence on the statistical and thermodynamic properties of
molecular systems, as shown by Einstein, Debye, and many
others [3,4], as regards both equilibrium and nonequilibrium
properties. The theory of the specific heats of molecules (for
instance, diatomic molecules) [5] and of solids [6] cannot be
correctly framed without considering the quantum descrip-
tion of the excitations of the internal mechanical degrees of
freedom.

The electromagnetic field, described by the system of the
Maxwell equations, is responsible for mechanical actions in
its interaction with material bodies (massive matter) due to
momentum exchange (radiation pressure). This has been well
known since Maxwell’s time, and this currently finds impor-
tant fields of applications in the study of condensed matter,
in microtechnology and microfluidics, and in biology, as it
is possible to manipulate mechanically micrometric particles,
cells, and molecules through the use of light beams (optical
tweezers) [7–9], focus particles at a given spatial location
(optical traps) [10], or induce extreme thermal conditions in
molecular assemblies via optical interactions (laser cooling
techniques) [11–13].

Nevertheless, the most remarkable effect, as regards ther-
modynamic properties, is that the momentum exchange
between matter and radiation (recoil effect) is the phys-
ical mechanism leading to thermalization. As shown by
Einstein [14], considering exclusively radiative interac-
tions between a molecular gas of identical molecules of
mass m and thermal radiation at constant temperature T ,
the squared variance of the particle velocity entries 〈v2

i 〉,
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i = 1, 2, 3, (since 〈vi〉 = 0) equals at equilibrium the
Maxwellian result [4]

〈
v2

i

〉 = kB T

m
, (1)

where kB is the Boltzmann constant.
In this article we analyze the statistical properties of this

interaction, formulating the problem in the form of a stochas-
tic process over the increments of a Poisson counting process,
applying the formalism recently proposed in [15] for stochas-
tic chemical reactions. Extending the analysis to momentum
transfer, we derive a radiative fluctuation-dissipation rela-
tion and the statistical properties of the particle velocities at
equilibrium. Throughout this article we consider exclusively
radiative interactions as regards particle momentum dynam-
ics, deliberately neglecting the influence of particle-particle
collisions. This choice has been made in order to enucleate
and clarify the effects of the momentum exchange between
particles and radiation on the statistical mechanical properties
of a particle gas.

The properties of particle-particle collisions have been
thoroughly addressed in [16,17] where the concept of con-
servative mixing transformations acting on a vector-valued
ensemble was introduced in order to highlight the existence
of an alternative distributional root to Gaussianity, completely
different from the additive procedure of summation of random
variables characteristic of the Central Limit Theory. In a phys-
ical perspective any thermalization process in a molecular gas
is a consequence of the interplay between radiative processes
and particle-particle collisions. We consider here only the
first mechanism, since the sole presence of radiative effects
is responsible for the achievement of an equilibrium veloc-
ity distribution characterized by a linear scaling equation (1)
between the second-order velocity moments and tempera-
ture, even in the absence of significant collisional interaction.
Therefore, the theory presented here applies to the case of
extremely diluted particle gas systems in which the radiative
emission-absorption processes are more frequent than binary
collisional events. Despite the fact that radiative interactions
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provide the physical mechanism for thermalization, in the
meaning of Eq. (1), the resulting velocity distributions deviate
from the Maxwellian, and a Gaussian shape is recovered in the
limit of small radiative friction. The analysis of light-matter
interactions developed in this article is grounded on a stochas-
tic modeling of the radiative events, and this is complementary
to the statistical description based on the semiclassical evolu-
tion of the density matrix addressed in [18,19]. The advantage
of the event-based formulation adopted in this article is that it
not only provides the frequency of occupation of the energy
level but it permits a simple description of the momentum
transfer between energy quanta and matter, and thus the es-
timate of the equilibrium velocity distributions.

The article is organized as follows. Section II briefly in-
troduces the problems and reviews the basic conservation
principles that apply and the meaning of Einstein’s result [14].
Section III develops the stochastic equations for the occu-
pation numbers of the internal energy levels of a molecular
system interacting with a given number of photons. We adopt
the approximation of closed system discussed in [20], de-
riving the equilibrium properties. Section IV addresses the
thermalization problem, i.e., the statistics of the momentum
exchange between a particle gas and thermal radiation at
constant temperature T . A new stochastic formulation of the
particle equations of motion over the increments of a Poisson
process is developed (the Appendix addresses some techni-
calities associated with this class of equations). A radiative
fluctuation-dissipation theorem is formulated and the func-
tional form of the velocity distribution function thoroughly
considered in Sec. VII, showing its generic deviation from the
Maxwellian behavior.

II. RADIATIVE INTERACTIONS

The interaction between a molecular system with radiation
develops through (1) radiative processes of emission and ab-
sorption of radiation, (2) photon-molecule scattering, and (3)
interactions with the zero-point energy field [21,22]. Accord-
ing to the analysis developed in [14], we neglect scattering
processes, and the interactions with zero-point fluctuations,
focusing exclusively on the effects of radiative transitions.
Consider the transition of a quantum system (molecule) from
the energy level E1 to the energy level E2 due to absorption of
an energy quantum of frequency ν, with

E2 − E1 = h ν, (2)

where h is the Planck constant. This elementary event ful-
fils the fundamental principles of conservation of energy and
momentum. Let v1 and v2 be the velocities of the molecule
before and after the radiative interaction with the photon (in
the present case an absorption event). Since a photon of energy
h ν possesses a momentum pφ given by

pφ = h ν

c
n, (3)

where c is the speed of light in vacuo and n the unit vector in
the direction of propagation, in the low-velocity limit (so that
relativistic corrections can be neglected), the energy balance
reads

E1 + 1
2 m |v1|2 + h ν = E2 + 1

2 m |v2|2, (4)

where m is the mass of the molecule, and the momentum
balance takes the form

m v1 + h ν

c
n = m v2. (5)

As the kinetic energy contributions are negligible, since using
Eq. (5), Eq. (4) can be expressed as

E1 + h ν (1 − ε) = E2, ε = 2 v · n
c

+ h ν

m c2
, (6)

and ε is small in the nonrelativistic limit (v/c � 1), and
for generic molecular systems (hν/mc2 � 1), Eq. (4) can be
simplified as

E1 + h ν = E2. (7)

As observed in [14], the radiative interactions, once consid-
ered in the reference frame of the moving particle, should
account for relativistic corrections, specifically related to the
property that the equilibrium spectral density of the radiation
(the Planck distribution) is not Lorentz covariant. Once ex-
pressed in the reference frame of the molecule involved in the
interaction, a dissipative term proportional to the ratio v1/c
arises in the momentum balance, so that Eq. (5) should be
substituted by a dissipative dynamics, containing a friction
term, the occurrence of which provides the equilibrium re-
sult (1); see also [4,23]. In the remainder of this paper we
take this result for given, leaving to a future work a thorough
and comprehensive discussion of the validity of momentum
conservation in radiative processes.

III. THERMALIZATION OF INTERNAL QUANTUM
STATES

Consider a system of identical molecules interacting with
radiation through emission and absorption of energy quanta.
For simplifying the analysis, the following assumptions are
made:

(1) The molecules are characterized by a countable num-
ber of equally spaced energy levels Ek , with Ek+1 > Ek , k =
0, 1, . . . , and

Ek+1 − Ek = Eδ = h ν. (8)

(2) The molecules interact with a photon gas at thermal
equilibrium with temperature T .

(3) The system is closed and isolated, as regards both
molecules and photons.

The last assumption simplifies the analysis but does not
alter the physics of the problem and the results obtained at
equilibrium.

Let pk (t ) be the number density in the occupation of the
k level at time t , p0

k its initial value at time t = 0, q(t ) the
density of photons at the resonant frequency ν, and q0 its
initial value. Mass conservation implies that

∞∑
k=0

pk (t ) =
∞∑

k=0

p0
k = Ptot. (9)

As the system is supposed to be isolated, i.e., closed with re-
spect to radiation, the principle of conservation of the “virtual
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photon number” applies, dictating that

q(t ) +
∞∑

k=1

k pk (t ) = q0 +
∞∑

k=0

k p0
k . (10)

The interaction of the molecules with the photon gas implies
the emission or absorption of radiation, where the emission
process can be either a spontaneous or a stimulated transition,
i.e., induced by a collision with an incoming photon. There-
fore, if λ is the emission rate, we have

λ = λs + λ0 q(t ), (11)

where λs is the rate of spontaneous emission, while the ab-
sorption rate μ is given by

μ = μ0 q(t ). (12)

As shown by Einstein [14], the specific rate of absorption and
stimulated emission should be equal:

μ0 = λ0. (13)

Consider for simplicity transition processes among nearest-
neighboring energy levels. The inclusion of higher-order
transitions does not add any new physics, making solely the
notation more complicated and lengthy. The balance equa-
tions for this process read

d pk (t )

dt
= −{[λs + λ0q(t )] ηk + λ0 q(t )} pk (t )

+ [λs + λ0 q(t )] pk+1(t ) + λ0 q(t ) pk−1(t ), (14)

k = 0, 1, . . . , where η0 = 0, ηk = 1 for k = 1, 2, . . . , and
p−1 = 0, and

dq(t )

dt
= [λs + λ0 q(t )]

∞∑
k=1

pk (t ) − λ0 q(t )
∞∑

k=0

pk (t ). (15)

In a stochastic representation of the process, let Nk (t ) be
the number of molecules in the kth level, and Nq(t ) the
photon number. If Ng is the granularity number chosen [15],∑∞

k=0 Nk (0) = Ng, the relations between Nk (t ) and pk (t ) and
between q(t ) and Nq(t ) are expressed by

pk (t ) = Ptot
Nk (t )

Ng
, q(t ) = Ptot

Nq(t )

Ng
. (16)

Expressed in terms of Nk (t ), Nq(t ), the balance equations (14)
and (15) thus become

dNk (t )

dt
= −{

[̃λs + λ̃0Nq(t )] ηk + λ̃0 Nq(t )
}

Nk (t )

+ [̃λs + λ̃0 Nq(t )] Nk+1(t ) + λ̃0 Nq(t ) Nk−1(t ),

dNq(t )

dt
= [̃λs + λ̃0 Nq(t )]

∞∑
k=1

Nk (t ) − λ̃0 Nq(t )
∞∑

k=0

Nk (t ),

(17)

with

λ̃s = λs, λ̃0 = λ0
Ptot

Ng
. (18)

A stochastic Markovian dynamics follows from Eqs. (17)
and (18), applying the formalism developed in [15], by

considering as stochastic variables the energy state of each
molecule and Nq(t ). Let σα (t ) = 0, 1, . . . be the energy state
of the αth molecule at time t , h = 1, . . . , Ng. The evolution of

{σα (t )}Ng

α=1 follows the Markovian dynamics,

dσα (t )

dt
= −ησα (t )

dχ (e)
α (t, λ̃s + λ̃0 Nq(t ))

dt

+ dχ (a)
α (t, λ̃0 Nq(t ))

dt
, (19)

while

dNq(t )

dt
=

Ng∑
α=1

ησα (t )
dχ (e)

α (t, λ̃s + λ̃0 Nq(t ))
dt

−
Ng∑

α=1

dχ (a)
α (t, λ̃0 Nq(t ))

dt
, (20)

where {χ (e)
α (t, λ̃s + λ̃0 Nq(t ))}Ng

α=1 and {χ (a)
α (t, λ̃0 Nq(t ))}Ng

α=1
are two families of Ng independent Poisson counting pro-
cesses, mutually independent of each other, associated with
the emission and absorption events of the αth molecules.
Observe that the transition rates of these processes depend
explicitly on the photon number Nq(t ).

Given {σα (t )}Ng

α=1, the occupation number Nk (t ) of the kth
energy level is given by

Nk (t ) =
Ng∑

α=1

δk,σα (t ), (21)

where δk,σα
are the Kronecker symbols, so that δk,σα (t ) = 1 if

σα (t ) = k, and zero otherwise.
Consider the equilibrium properties of this system, indicat-

ing with p∗
k and q∗ the equilibrium values. Equation (14) for

k = 0 at steady state becomes

−λ0 q∗ p∗
0 + (λs + λ0 q∗) p∗

1 = 0, (22)

so that

p∗
1 = λ0 q∗

λs + λ0 q∗ p∗
0. (23)

An analogous relation applies for generic k = 1, 2, . . . ,
namely,

p∗
k+1 = λ0 q∗

λs + λ0 q∗ p∗
k . (24)

Therefore, as expected, the equilibrium distribution of level
occupation is given by

ph = C

(
λ0 q∗

λs + λ0 q∗

)h

= C exp

[
−h log

(
λs + λ0 q∗

λ0 q∗

)]
.

(25)

It is a discrete Boltzmann distribution, where the term
log((λs + λ0 q∗)/λ0 q∗) can be identified with the Boltzmann
factor Eδ/kB T ,

Eδ

kB T
= log

(
λs + λ0 q∗

λ0 q∗

)
, (26)
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and this provides an alternative definition of equilibrium tem-
perature T based on radiative interactions

T = Eδ

kB

1

log
(

λs+λ0 q∗
λ0 q∗

) . (27)

From Eq. (27), temperature is uniquely specified, once the
equilibrium photon density q∗ is given. Consequently for ra-
diative processes the equilibrium temperature is one-to-one
with the steady-state value of the photon density q∗. Two limit
cases can be considered. For λs � λ0 q∗, i.e., for low photon
densities, Eq. (26) simplifies as

log

(
λs

λ0 q∗

)
= Eδ

kB T
, ⇒ q∗ = λs

λ0
e−h ν/kB T . (28)

In the opposite case, λs � λ0 q∗, i.e., in the high photon-
density limit,

log

(
1 + λs

λ0 q∗

)
	 λs

λ0 q∗ = Eδ

kB T
, (29)

and thus the equilibrium photon density q∗ is proportional to
the temperature T :

q∗ = kB T

h ν

λs

λ0
. (30)

Next, consider the expression for q∗. Set λ = λs + λ0 q∗, and
μ = λ0 q∗, for notational simplicity, and x = μ/λ < 1, so that
the equilibrium occupational distribution can be expressed
compactly as p∗

k = C xk . The conditions expressed by Eqs. (9)
and (10) become at equilibrium

∞∑
k=0

p∗
k = Ptot (31)

and

q∗ +
∞∑

k=1

h p∗
k = q0 +

∞∑
k=1

p0
k = �0. (32)

Since
∑∞

k=0 xk = 1
1−x ,

∑∞
k=1 k xk = x

(1−x)2 , we have for the
normalization constant C,

C = Ptot (1 − x), (33)

and Eq. (32) becomes

�0 − q∗ = Ptot
x

1 − x
, (34)

which can be explicated with respect to q∗ to provide

q∗ = �0

1 + λ0
λs

Ptot
. (35)

Figure 1 depicts the evolution of q(t ) obtained from stochastic
simulations at λ0 = 10−3 for different values of λs. In the
simulations we have chosen Ptot = 10, and the initial condi-
tions are p0

k = 10 δk,10, corresponding to an initial population
in the 10th excited state. The stochastic simulations refer to
a granularity number Ng = 104, and 100 energy levels have
been considered. The steady-state distributions of the oc-
cupation of the energy levels are depicted in Fig. 2 for the
same values of the parameters of Fig. 1. From the long-term
behavior of q(t ), the equilibrium value q∗ can be obtained.
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c

q(
t)

t

FIG. 1. q(t ) vs t for different values of λs: symbols are the
results of stochastic simulations (19) and (20), lines correspond to the
solution of the continuous model. Line a: λs = 0.01; line b: λs = 0.1;
line c: λs = 1.

This is depicted in Fig. 3 as a function of λs. Finally, Fig. 4
depicts the value of the scaling exponent ζ of p∗

k , p∗
k = Ce−kζ

obtained for the data of Fig. 2, compared to the theoretical ex-
pression ζ = log[(λs + λ0 q∗)/λ0 q∗], revealing the excellent
agreement of the stochastic simulations with the theoretical
values.

IV. IMPLICATIONS OF RADIATIVE EVENTS
IN THE VELOCITY STATISTICS

From the work by Einstein on emission and absorption of
radiation [14] it becomes clear that thermalization processes,
i.e., the relaxation of a physical system far from equilib-
rium towards the thermal equilibrium, could be considered as
quantum effects driven by emission and absorption of energy
quanta.
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10-2

100

 0  5  10  15  20

a b

c

p
k*

k

FIG. 2. p∗
k vs k for different values of λs: symbols are the results

of stochastic simulations (19) and (20), lines correspond to the expo-
nential (Boltzmann) distribution (25) with q∗ given by Eq. (35). Line
a: λs = 0.01; line b: λs = 0.1; line c: λs = 1.
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FIG. 3. q∗ vs λs for λ0 = 10−3, Ptot = 10, φ0 = 100. Symbols
(◦) are the results of the stochastic simulations (with Ng = 104), line
corresponds to Eq. (35).

This is certainly the case of a diluted gas of massive par-
ticles (molecules) interacting with thermal radiation (i.e., a
photon gas at thermal equilibrium, the statistical properties of
which are described by the Planck distribution), in which the
following assumptions can be made:

(1) Particle dynamics is characterized by two main inter-
actions: (1) emission and absorption of energy quanta by a
particle and (2) particle-particle collisions. The assumption
of “diluted system” indicates that solely binary collisions are
relevant.

(2) These two processes can be considered as instan-
taneous events characterized by a Markovian transition
structure.

(3) Between two subsequent events (be they particle-
photon radiative interactions or particle-particle collisions),
the particle motion is purely inertial, i.e., frictionless and in
the absence of external or interparticle potentials.

 0

 0.5

 1

 1.5

 2

 2.5

10-3 10-2 10-1 100

ζ

λs

FIG. 4. Exponent ζ vs λs for λ0 = 10−3, Ptot = 10, φ0 = 100.
Symbols (◦) are the results of the stochastic simulations (with Ng =
104), line corresponds to the theoretical expression obtained from the
continuous model.

Moreover, relativistic corrections determine the emergence
of a dissipative term in the momentum dynamics proportional
to the velocity of the molecule. Let us further assume that
the particles (molecules) can be represented by a two-level
system, where E1 and E2 are the two energy levels E2 > E1

and E2 − E1 = h ν.
In this section we consider exclusively particle-photon ra-

diative interactions and their effects on momentum transfer
and velocity statistics, leaving the interplay between radiative
processes and mechanical collisions to a subsequent analysis.

Following the assumptions discussed above, the momen-
tum equation for a generic particle, due to the radiative
interactions, can be described by means of the stochastic
differential equation

m
dv
dt

= (−η v + b)
dχ (t, λ)

dt
, (36)

where m is the particle mass, and v its velocity vector. The
coefficient η is the radiative friction factor, possessing the
dimension of a mass. As addressed in Einstein’s work [14],
the radiative friction is an emergent property of the momen-
tum exchange between a molecule and a photon during the
radiative process (be it emission or absorption), related to the
well-known recoil effect. In Eq. (36), χ (t, λ) is a Poisson pro-
cess possessing transition rate λ, and b is a random variable
corresponding to the photon momentum.

Equation (36) is a nonlinear impulse-driven stochastic dif-
ferential equation [24–27]. Just because of the presence of
the factor −η v multiplying the distributional derivative of the
Poisson counting process, the proper mathematical setting of
this class of equations requires some caution, as addressed
in the Appendix. In point of fact, there is a strong anal-
ogy between the mathematical formalization of this class of
impulse-driven stochastic differential equations and the set-
ting of nonlinear Wiener-driven Langevin equations, leading
to the Itô, Stratonovich, and Hänggi-Klimontovich formula-
tions [28,29].

It is important to notice that Eq. (36) corresponds to an
impulsive description of momentum transfer in which even
the radiative dissipation acts impulsively, consistently with
the instantaneous description of elementary quantum events
in a stochastic formalism [30]. Consequently, the statistical
properties associated with Eq. (36) find no direct counterpart
with the stochastic description widely used in statistical me-
chanics in which dissipation is due to the steadily interaction
with the surrounding fluid, and thus is described as a contin-
uous process as in the classical Langevin equations [31,32].
It is therefore not surprising that the equilibrium distributions
associated with the impulsive process Eq. (36) may deviate
from the Gaussian paradigm characterizing Langevin equa-
tions driven by Wiener processes.

In order to avoid confusion, even in the case of collision-
driven momentum exchange, the occurrence of Gaussianity in
the velocity distributions has nothing to do with the implica-
tions of the Central Limit Theorem (CLT) [33], as thoroughly
addressed in [16,17]. This stems from the fact that for non-
relativistic elastic collisions the squared norm of the velocity
is conserved, while CLT imples an additive route in which
a system of stochastic contributions provide the divergence
for the squared variance of the resulting sum. The latter
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mechanism clearly explains the emergence of the diffusion
equation from stochastic random motion, but it is not suited
for providing a cogent mathematical model for the collisional
momentum transfer. For this reason in [16,17] the concept of
conservative mixing transformations in a random ensemble
has been introduced as the distributive route to Gaussianity
alterative to the additive CLT route.

V. MOMENTUM TRANSFER AND RADIATIVE
FLUCTUATION-DISSIPATION RELATIONS

Equation (36) describes the momentum transfer in a ra-
diative process. Let t = t∗ be a time instant at which χ (t, λ)
exhibits a transition, so that in the neighborhood of t∗ Eq. (36)
is equivalent to

m
dv
dt

= (−η v + b) δ(t − t∗). (37)

Integrating the latter equation between t∗
− and t∗

+, and letting
v = v(t∗

−), v′ = v′(t∗
+), b = b(t∗), we have (see the Appendix)

v′ = e−η/m v + b
η

(1 − e−η/m), (38)

where η = m γ , so that γ is nondimensional, b = b r, where
b = h ν/c, corresponding to the norm of the momentum of
a photon with energy h ν, and r is a unit random vector,
|r| = 1, 〈r〉 = 0, where 〈·〉 is the average with respect to the
probability measure of r. Thus,

v′ = α v + b r (1 − α)

η
, (39)

where α = e−γ . Since it is reasonable to assume the absence
of correlation (independence) between the particle velocity v
and the direction r of the incoming or emitted photon (this is
certainly true for absorption and spontaneous emission, and
it can be extrapolated also in the case of stimulated emission
since particle velocity and the direction of the incoming pho-
ton are certainly uncorrelated from each other), it follows from
Eq. (39) that

〈|v′|2〉 = α2 〈|v|2〉 + b2 (1 − α)2

η2
. (40)

Enforcing at thermal equilibrium the condition 〈|v′|2〉 =
〈|v|2〉 = 3 kB T/m, we have

3
kB T

m
(1 − α2) = b2 (1 − α)2

η2
. (41)

Equation (41) represents the first radiative fluctuation-
dissipation relation, connecting the nondimensional friction
factor γ to the equilibrium temperature T .

In the limit for γ � 1, e−γ 	 1 − γ , and Eq. (41)
reduces to

6
kB T

m
γ = b2

m2
⇒ γ = (h ν)2

6 m c2 kB T
, (42)

which, setting Eφ = h ν, E0 = m c2, ET = kB T can be rewrit-
ten in a more compact way as

γ = E2
φ

6 E0 ET
. (43)

Equation (43) indicates that, in the low-friction limit, the
nondimensional radiative friction γ is proportional to the ratio
of the squared photon energy to the product of the particle rest
energy E0 times the characteristic thermal energy ET .

The momentum dynamics can be naturally expressed with
respect to the operational time n = 0, 1, 2, . . . corresponding
to the number of radiative events occurred, as

vn+1 = α vn + β rn+1, (44)

where β = b (1 − α)/η, and rn+1 is a family of vector-valued
independent unit random vectors, uniformly distributed on the
surface of the unit sphere. Equation (44) can be viewed as
an iterated function system [34] with a continuous systems
of linear contractive transformations. The discrete dynamics
Eq. (44) can be explicated

vn = αn v0 + β

n∑
j=1

αn− j r j . (45)

In the long-term limit, the first term, αn v0, depending on the
initial velocity condition, can be ignored as it decays expo-
nentially to zero, so that

vn = β

n∑
j=1

αn− j r j . (46)

Consider the correlation tensor 〈vn ⊗ vp〉, with p � n,

〈vn ⊗ vp〉 = β2
n∑

j=1

p∑
k=1

αn+p− j−k〈r j ⊗ rk〉. (47)

In the 3D space, enforcing the independence of r j and rk for
j = k, and the uniformity of the distribution on the surface of
the unit sphere, we have

〈r j ⊗ rk〉 = δ j,k I
3

, (48)

where I is the identity matrix, so that Eq. (47) becomes

〈vn ⊗ vp〉 = β2 I
3

αn+p
p∑

k=1

α−2 k . (49)

Making use of the elementary property

p∑
k=1

α−2 k = α−2 − α−2 (p+1)

1 − α−2
. (50)

Equation (49) can be rewritten as

〈vn ⊗ vp〉 = β̃2 I αn+p

3

(
α−2 − α−2 (p+1)

1 − α−2

)
. (51)

In the long-term limit n, p → ∞ (with n − p finite), we obtain

〈vn ⊗ vp〉 = β2

3
I

αn−p

1 − α2
= β2

3 (1 − α2)
I e−(n−p) log(1/α).

(52)

The latter result can be expressed with respect to the physical
time t , as (n − p) = t/〈τ 〉, where 〈τ 〉 = 1/λ corresponds to
the mean transition time. This leads to the expression for the

024147-6



PARTICLE-PHOTON RADIATIVE INTERACTIONS AND … PHYSICAL REVIEW E 108, 024147 (2023)

velocity autocorrelation tensor,

〈v(t + τ ) ⊗ v(τ )〉 = β2 e−ηr t/m

3 (1 − α2)
I, (53)

corresponding to an exponential decay with time t , where
the effective radiative dissipation factor ηr is defined by the
relation

ηr = m λ log

(
1

α

)
. (54)

The effective diffusivity D can be derived from the extension
of the Einstein fluctuation-dissipation relation to radiative pro-
cesses, D ηr = kB T , to obtain

kB T

m D
= λ log

(
1

α

)
. (55)

In the limit of small γ � 1, α = 1 − γ , and thus

D = kB T

m λ log
(

1
1−γ

) , (56)

which can be viewed as the second radiative fluctuation-
dissipation relation connecting the effective diffusivity D to
the statistics of radiative events.

VI. STATISTICAL CHARACTERIZATION
OF THE VELOCITY DISTRIBUTION FUNCTION

In this section we consider the statistical properties of parti-
cle velocities emerging from purely radiative interactions with
an equilibrium photon bath. To this end, it is convenient to dis-
cuss separately the 2D case from the 3D situation. Rescaling
the velocity variables v �→ v/σph, with respect to the variance
of the photon forcing term σph,

σph = β√
d

, (57)

where d = 2, 3, the rescaled equation attains the simple form

v′ = α v +
√

d r, (58)

where the random vector r is defined, in two dimensions, as

r =
(

cos φ

sin φ

)
(59)

with a uniform probability density function pφ (φ),

pφ (φ) = 1

2 π
, φ ∈ [0, 2 π ], (60)

while in the 3D case

r =
⎛⎝sin θ cos φ

sin θ sin φ

cos θ

⎞⎠ (61)

with a joint probability density function pθ,φ (θ, φ)

pθ,φ (θ, φ) = sin θ

4 π
, (θ, φ) ∈ [0, π ] × [0, 2π ]. (62)

Owing to isotropy, in the 2D case it is sufficient to consider
the 1D velocity dynamics

v′ = α v +
√

2 cos φ, pφ (φ) = 1

2 π
, φ ∈ [0, 2 π ],

(63)
and similarly in the 3D case, the equivalent 1D model be-
comes

v′ = α v +
√

3 cos θ, pθ (θ ) = sin θ

2
, θ ∈ [0, π ]. (64)

To begin with, consider the 2D case, for which

〈cos2 φ〉 = 1
2 , 〈cos4 φ〉 = 3

8 . (65)

Therefore, at equilibrium 〈v〉 = 0, and

〈v2〉 = α2 〈v2〉 + 1, (66)

i.e.,

〈v2〉 = 1

1 − α2
. (67)

As regards the qualitative statistical properties, the main issue
is the deviation from a Gaussian behavior. For this reason, it
is interesting to consider the fourth-order moment and, out of
it, the kurtosis. Enforcing the independence between v and φ

random variables, the fourth-order moment takes the form

〈v4〉 = 〈(α v +
√

2 cos φ)4〉 = α4 〈v4〉 + 6 α2 〈v2〉 + 3
2 (68)

so that

〈v4〉 = 3 (1 + 3 α2)

2 (1 − α2) (1 − α4)
. (69)

From Eqs. (67) and (69) the expression for the kurtosis κ (α)
follows:

κ (α) = 〈v4〉
〈v2〉2

= 3 (1 + 3 α2) (1 − α2)2

2 (1 − α2) (1 − α4)
= 3 (1 + 3 α2)

2 (1 + α2)
.

(70)
A Gaussian behavior is expected for α → 1, since

lim
α→1

κ (α) = 3. (71)

Next, consider the 3D case, for which

〈cos2 θ〉 = 1
3 , 〈cos4 θ〉 = 1

5 . (72)

Also in this case 〈v〉 = 0 and 〈v2〉 is given by Eq. (67). As
regards the fourth-order moment, we have

〈v4〉 = 〈(α v+
√

3 cos θ )4〉 = α4 〈v4〉+ 6 α2 〈v2〉+ 9
5 , (73)

and therefore,

〈v4〉 = 21 α2 + 9

5 (1 − α2) (1 − α4)
. (74)

Consequently, the kurtosis is given by

κ (α) = (21 α2 + 9) (1 − α2)

5 (1 − α4)
= 3 (3 + 7 α2)

5 (1 + α2)
. (75)

Also in this case, the Gaussian limit is recovered for α → 1.
Conversely, in the limit for α → 0 the kurtosis attains its
minimum value κmin, where

κmin =
{

3
2 d = 2
9
5 d = 3

. (76)
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FIG. 5. Kurtosis κ (α) vs α. Symbols are the results of stochas-
tic simulations, lines represent the analytical expressions Eqs. (70)
and (75). Line a and ◦: 2D case; line b and �: 3D case.

Figure 5 depicts the simulation results for the kurtosis com-
pared with the analytical predictions (70) and (75). These
results refer to an ensemble of 109 realizations of the process.

The density functions for a generic entry of the velocity
field (say, v1 in the 2D case and v3 in the 3D case) are depicted
is Figs. 6 and 7 for the 2D and the 3D case, respectively. The
velocities appearing in these figures are normalized to unit
variance.

As expected from the analysis of the kurtosis, for low
values of α, these distributions deviate significantly from the
normal distribution pn(v),

pn(v) = 1√
2 π

e−v2/2. (77)

In the limit for α → 1, p∗(v) approaches pn(v) as expected.
Already at α = 0.99 the resulting normalized velocity density
is indistinguishable from the normal distribution.

Deviations from Gaussian velocity distributions have been
experimentally observed for cold matter [35–39], and the
present model for radiative interactions provides a simple the-
oretical interpretation of it. In point of fact, the most important
conceptual result of the present analysis is that the occurrence
of Gaussian velocity distribution at equilibrium is not a “law
of nature” but rather the consequence of the range of tempera-
tures at which most of the experiments are performed. Indeed,
the values at which α < 0.9 in atomic and molecular systems
corresponds to very low temperatures (T < 10−6 K), and for
this reason the prominent field of application of the present
analysis involves cold-matter physics.

The equilibrium distributions f ∗(|v|) for the modulus of
the normalized velocity |v| are depicted in Fig. 8 for the sake
of completeness, although they do not add any further physical
insight to the above analysis of velocity statistics.

As regards the two asymptotic distributions obtained in the
limit for α → 1 and α → 0, their mathematical justification
is straightforward, but their physical interpretation is rather
interesting.

As discussed above, the Gaussian profile is recovered in
the limit for α → 1. In the present case, this corresponds to
the situation in which the velocity dynamics possesses the

 0

 0.4

 0.8

 1.2

-3 -2 -1  0  1  2  3

p*
(v

)

v

10-6

10-4

10-2

100

-4 -2  0  2  4

a

b

p*
(v

)

v

(a)

(b)

FIG. 6. Equilibrium velocity distribution p∗(v) of a generic
Cartesian entry of v in the 2D case. (a) α = 0.1, 0.3, 0.5, 0.7. The
arrow indicates increasing values of α. (b) High values of α: symbols
(�) correspond to stochastic simulations at α = 0.9, symbols (◦) at
α = 0.99. The solid line represents the normal distribution pn(v).

strongest memory of its past history. The latter interpretation
follows also from the exponential decay of the velocity au-
tocorrelation function that, for α → 1, is characterized by an
exponent ηr/m → 0. In this sense the fluctuation-dissipation
relation can be viewed as a dissipation-memory condition for
particle-photon interactions (momentum exchange).

In the particle-photon dynamics described by Eq. (36) the
above mentioned memory effects (that should not be con-
fused with the lack of Markovianity, as the process is strictly
Markovian, and its transition mechanism has no memory)
determine the occurrence of a normal distribution for the
velocity entries. This phenomenon can be easily interpreted
by considering the simplest linear relaxation dynamics for an
observable y(t ),

dy(t )

dt
= −� y(t ) − f (t ), (78)

where f (t ) is a stochastic impulsive forcing and � > 0 the
relaxation rate, the solution of which, neglecting the decaying
initial condition, is expressed by the convolutional integral

y(t ) =
∫ t

0
e−�(t−τ ) f (τ ) dτ. (79)
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FIG. 7. Equilibrium velocity distribution p∗(v) of a generic
Cartesian entry of v in the 3D case. (a) α = 0.1, 0.3, 0.5, 0.7. The
arrow indicates increasing values of α. (b) high values of α: symbols
(�) correspond to stochastic simulations at α = 0.9, symbols (◦) at
α = 0.99. The solid line represents the normal distribution pn(v).

Assuming f (t ) = ∑∞
i=1 fi δ(t − t∗

i ), where t∗
i < t∗

i+1, and fi

generic random variables, we have in the limit for � → 0 that

y(t ) =
n(t )∑
i=1

fi, (80)

where n(t ) is the integer n(t ) = ∑∞
i=1

∫ t
0 δ(τ − t∗

i ) dτ .
Equation (79) clearly indicates that the only physical way

for the velocity dynamics could perform a summation of the
random photon momentum kicks, corresponding to the classi-
cal setting of the CLT, is to possess an infinite memory of its
past history, corresponding to � → 0. In this case, the velocity
dynamics corresponds to the summation of the independent
random kicks induced by the photon bath.

It is also interesting to consider the other limit, α → 0,
corresponding to the complete absence of memory in velocity
dynamics, as Eq. (44) reduces in this limit to

vn+1 = β rn+1, (81)

and consequently, the velocity statistics is simply a rescaled
sampling of the statistics of photon momenta. Consider the
2D case, and let v a velocity entry, say, v1, for which in the
limit for α → 0 we have (upon normalization)

v =
√

2 cos φ, (82)

 0
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FIG. 8. Equilibrium distributions f ∗(|v|) of the modulus |v| ob-
tained from stochastic simulations. (a, b) 2D case; (c, d) 3D case.
Lines a refer to α = 0.1; lines b to α = 0.3; lines c to α = 0.5.
The arrows in panels (b) and (d) indicate increasing values of α =
0.7, 0.9, 0.99.

φ being uniformly distributed in [0, 2π ). The equilibrium
distribution function for v is thus given by

F ∗(v) = 1

2 π

∫
{√2 cos φ<v}

dφ = 1

π

∫ π

arccos y/
√

2
dφ

= = 1 − 1

π
arccos

(
v√
2

)
(83)

in the interval v ∈ (−√
2,

√
2), while F ∗(v) = 0 for v <

−√
2 and F ∗(v) = 1 for v >

√
2. Differentiating F ∗

v (v) with
respect to v, the density function p∗(v) follows

p∗(v) = 1√
2 π

1√
1 − v2/2

, v ∈ (−
√

2,
√

2) (84)

and zero otherwise. Figure 9(a) compares the results of
stochastic simulations of the velocity dynamics via Eq. (44)
at low α values, and the analytical expression for the limit
velocity density function (84) in the 2D case. Analogously, in
the 3D case, by considering v = v3 = √

3 cos θ , θ ∈ [0, π ),
we have

F ∗(v) = 1

2

∫ π

arccos(v/
√

3)
sin θ dθ = 1

2

(
1 + v√

3

)
(85)

in v ∈ (−√
3,

√
3). Consequently, the density function p∗(v)

is piecewise constant in the limit for α → 0,

p∗(v) =
{

1
2

√
3

v ∈ (−√
3,

√
3)

0 otherwise
, (86)

as depicted in Fig. 9(b).
This result is interesting from another point of view. The

case α → 0, corresponds physically to γ → ∞, i.e., to the
low-temperature limit. In these conditions, the statistics of
particle velocity corresponds to the pure sampling of the ran-
domness in the orientation of the incoming photons. Due to
isotropy, these orientations are distributed uniformly on the
surface of the unit sphere. As can be observed from Fig. 9
and from the calculations in the main text, the shape of the
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FIG. 9. Equilibrium velocity distribution p∗(v) at low α values.
(a) 2D case. Symbols represent the results of stochastic simulations
at α = 0.01 (�) and α = 10−6 (◦). The solid line is the analytical
expression Eq. (84). (b) 3D case. Symbols represent the results of
stochastic simulations at α = 0.01. The horizontal line is the analyt-
ical value p∗(v) = 1/2

√
3.

equilibrium distributions p∗(v) strongly depends qualitatively
on the dimension of the physical space in which photons
travel. Therefore, it is conceptually possible to obtain the
experimental determination of the dimension d , d = 2, 3, . . . ,
of the physical space from measurements of p∗(v).

VII. CONCLUDING REMARKS

This article has focused on radiative processes and their
thermalization properties in molecular systems (gases), ne-
glecting the influence of particle-particle collisions. This
restriction is aimed at isolating the role of emission and
absorption processes for understanding their peculiar fea-
tures. The interplay between radiative processes and elastic
collisions will be addressed in a forthcoming work, merg-
ing the theory developed in this article with the formalism
developed in [16,17]. Whenever the frequency of particle-
particle collisions is much less than that of radiative events,
the velocity density function is controlled by the latter. This
means that in this case, physically corresponding to highly
rarefied conditions and very low temperatures, deviations
from Gaussianity can be expected. Under these conditions,
i.e., when the thermalization process is controlled by radia-
tive processes, the equation for the temporal evolution of

particle momentum can be expressed in the form of a
nonlinear impulsive differential equation, driven by the dis-
tributional derivative of a Poisson counting process. This
formulation, which accounts for the Einstein representation
of radiative processes, introduces the concept of a radiative
mass η, describing statistically the dissipative recoil effect
associated with a radiative transition between two energy
levels. At high temperatures, the radiative mass is smaller
than the inertial mass, while it diverges for T → 0. From this
formulation, a radiative fluctuation-dissipation theorem can be
derived, associated with the exponential decay of the velocity
autocorrelation function.

The velocity distribution function has been thoroughly an-
alyzed. In the limit of small radiative friction, the velocity
distribution converges to the Maxwellian (Gaussian) profile,
while in the limit of high radiative dissipation it converges
to Eq. (83) controlled by the random and uniform distribu-
tion of the incoming and emitted photons. Deviations from
Gaussianity are not surprising, as the momentum equa-
tion (36) bears some similarity with the approach followed
in [40] for the statistical mechanical properties of a thermal
system. For the sake of completeness, it should be observed
that, while the values of 〈v2

i 〉 are not affected by elastic
particle-particle collisions, the latter modify significantly the
shape of the velocity distribution function. Experiments on
cold atoms have already shown deviations from Gaussian
velocity distributions [35–39], and this represents a qualita-
tive support to the theory developed in this article. Further
experimental work at very low temperatures, using, e.g., laser
cooling techniques, may provide a quantitative confirmation
of the present analysis, or the necessity of its generalization
and extension.

APPENDIX: NONLINEAR IMPULSIVE DIFFERENTIAL
EQUATIONS

The analysis of differential equations of the form (36)
and (37), in which the impulsive forcing is modulated by
a function of the unknown variable (a situation that can be
referred to as a nonlinear impulsive differential equation, in
analogy with the definition of nonlinear Langevin equations)
poses mathematical problems similar to those encountered
for the nonlinear Langevin equations (driven by a Wiener
forcing), associated with the Itô-Stratonovich dilemma. The
mathematical problems arise because the function v(t ) is dis-
continuous at t = t∗, and, therefore, a rule should be specified
to interpret this equation. In most of the literature [24–26] a
midpoint rule as been adopted. Let v = v(t∗

−) and v′ = v(t∗
+),

where t∗
± = limε→0 v(t∗ ± ε), ε > 0, and integrate Eq. (37) in

the interval [t∗ − ε, t∗ + ε] taking the limit for ε → 0,

m (v′ − v) =
∫ t∗

+

t∗−
[−η v(t ) + b] δ(t − t∗) dt, (A1)

and the midpoint rule assumes that for the integral
containing v ∫ t∗

+

t∗−
v(t ) δ(t − t∗) dt = v′ + v

2
, (A2)
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so that Eq. (A1) becomes

m (v′ − v) = −η

(
v′ + v

2

)
+ b. (A3)

This approach has been critically confuted in [27] on the basis
of simple principles of calculus. In point of fact, expressing
Eq. (37) componentwise,

m
dvi

η vi − bi
= −δ(t − t∗) dt, (A4)

i = 1, 2, 3, integrating over (t∗
−, t∗

+),

m

η

∫ t∗
+

t∗−

dvi

vi − bi/η
= −

∫ t∗
+

t∗−
δ(t − t∗) dt, (A5)

one finally obtains

m

η
log

(
v′

i − bi/η

vi − bi/η

)
= −1, (A6)

leading to Eq. (38). In the limit for η/m � 1, the midpoint
rule is recovered.
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