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Universality class of the special adsorption point of two-dimensional lattice polymers
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In recent work [Rodrigues et al., Phys. Rev. E 100, 022121 (2019)], evidence was found that the surface
adsorption transition of interacting self-avoiding trails (ISATs) placed on the square lattice displays a nonuni-
versal behavior at the special adsorption point (SAP) where the collapsing polymers adsorb. In fact, different
surface exponents φ (s) and 1/δ(s) were found at the SAP depending on whether the surface orientation is
horizontal (HS) or diagonal (DS). Here, we revisit these systems and study other ones, through extensive Monte
Carlo simulations, considering much longer trails than previous works. Importantly, we demonstrate that the
different exponents observed in the reference above are due to the presence of a surface-attached-globule (SAG)
phase in the DS system, which changes the multicritical nature of the SAP and is absent in the HS case. By
considering a modified horizontal surface (mHS), on which the trails are forbidden from having two consecutive
steps, resembling the DS situation, a stable SAG phase is found in the phase diagram, and both DS and mHS
systems present similar 1/δ(s) exponents at the SAP, namely, 1/δ(s) ≈ 0.44, whereas 1/δ(s) ≈ 0.34 in the HS
case. Intriguingly, while φ (s) ≈ 1/δ(s) is found for the DS and HS scenarios, as expected, in the mHS case φ(s) is
about 10% smaller than 1/δ(s). These results strongly indicate that at least two universality classes exist for the
SAPs of adsorbing ISATs on the square lattice.

DOI: 10.1103/PhysRevE.108.024146

I. INTRODUCTION

The study of dilute polymers in solution has been a long
enterprise with great deal of effort in both theoretical and
experimental fields [1–4]. Besides the vast number of polymer
applications [5], this has been motivated also by the inter-
esting fundamental physical properties of these systems. Of
interest here is the polymer conformation, which is highly
affected by the solvent conditions and temperature T of the
solution [1]. For instance, in a good solvent (and/or at high
T ), flexible polymers are usually found in a swollen coil
phase, and by decreasing the solvent quality (and/or T ) the
polymer may eventually collapse into a dense globule at the
so-called θ point [1]. An even richer phase behavior can be
observed when the polymer is close to an attracting surface,
where it may adsorb depending on T , the solvent quality, and
surface properties [6,7].

In this context, lattice models have been widely used to
investigate the various thermodynamic phases, phase transi-
tions, and critical properties of dilute polymers [8]. In these
coarse-grained models, details such as the polymer chemical
composition and chemical bonds are not explicitly taken into
account, while complex effects such as excluded volume and
hydrophobicity are represented in a simple manner through in-
lattice interactions [1–3,8]. For instance, the canonical lattice
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model for collapsing polymers is the interacting self-avoiding
walk (ISAW) [9]: walks where each lattice site (edge) can
be visited by at most one monomer (bond), with an energy
−εb < 0 associated with each pair of nonbonded nearest-
neighbor (NN) monomers. This model does indeed present a θ

point, where a continuous coil-globule transition takes place,
which is found to be of tricritical nature in a grand-canonical
description of the system [10], as theoretically predicted by
de Gennes [11]. Therefore, in three-dimensional (3D) lattices,
the θ exponents assume mean-field values, with logarithmic
corrections to scaling [2]. In the 2D case, these exponents
are nonclassical and believed to be those found by Duplantier
and Saleur (DS) [12] in the exact solution of the ISAW on
a hexagonal lattice with hidden hexagons, as confirmed in
several numerical works [13].

A different model for collapsing polymers, also receiv-
ing considerable attention in the literature, is the interacting
self-avoiding trail (ISAT) [14]. In this case, each site of a
q-coordinated lattice can be visited by up to �q/2� monomers,
respecting the restriction of only one bond per edge, and the
(bulk) self-attraction interaction is associated with multiply
visited sites. On the square lattice, for example, an energy
−εb < 0 is associated with each doubly visited site, regardless
of being a crossing or a “collision” of the trail. If crossings are
forbidden in this system, one recovers the vertex-interacting
SAW (VISAW) model by Blöte and Nienhuis (BN) [15],
whose solution presents a tricritical point with exponents dif-
fering from the DS ones. Such a difference triggered a long
debate on what the generic exponents for the θ point of 2D
polymers are (see, e.g., Refs. [16–18] for clear discussions
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FIG. 1. Qualitative phase diagrams, as suggested by previous
works in the literature, for the adsorbing (a) ISAW and (b) ISAT
models on the square lattice, in terms of the strengths of surface
(εs/kBT ) vs bulk (εb/kBT ) interactions. The solid (dashed) lines are
continuous (discontinuous) transition lines. The red squares indicate
the SAPs.

on this). For the continuous collapse transition of the ISAT
model, several controversial results have been reported in the
literature, with works indicating that it belongs to the same
universality class as the BN model [19] or some other unde-
termined universality class [20,21], while recent mean-field
solutions on hierarchical lattices have suggested that it may
be of bicritical nature [22].

To investigate the adsorption transition, it is common to
introduce a (flat, homogeneous, and impenetrable) surface
in the systems above, such that one end of the polymer is
tethered to it, giving a (surface) energy −εs < 0 to either each
monomer or each bond touching the surface. When defined on
the square lattice (where the “surface” is a line), the adsorbing
ISAW system is known to present four phases, as indicated in
Fig. 1(a). The desorbed coil and globule phases are stable for
small εs/kBT (where kB is Boltzmann’s constant); polymers
have a negligible number, ms, of surface contacts, and the two
phases are separated by a line of θ points. For large εs/kBT
the system is found in an adsorbed phase, forming quasi-one-
dimensional configurations where ms ∼ n, with n being the
chain length. The coil-adsorbed transition is critical, and the
associated line meets the θ line at a multicritical point known
as the special adsorption point (SAP) [23–26]. The change
from the globule to the adsorbed phase [e.g., by increasing
the surface interaction εs/kBT , while keeping the bulk one
(εb/kBT ) fixed] is a bit more complex. While early works
reported a direct globule-adsorbed transition [23,27], further
studies have revealed the existence of an intermediary phase,
known as the surface-attached-globule (SAG) phase [24–26],
which is characterized by a simultaneous maximization of
monomer-surface and (nonadjacent) monomer-monomer con-
tacts. Continuous globule-SAG and SAG-adsorbed transitions
were found in Refs. [25,26], yielding the phase diagram dis-
played in Fig. 1(a) for the square lattice. We notice that, on
the cubic lattice, the adsorbed phase can be in an extended
(2D coil) or collapsed (2D globule) configuration, so that an
additional transition exists in the phase diagram of Fig. 1(a)
[25,26]. Some controversy regarding the existence of a SAG
phase is also found in the literature for this 3D case (see, e.g.,
Refs. [25,26,28,29]).

The phase behavior of adsorbing ISATs has also been
considered in several works. For example, the model defined

on the triangular lattice displays a very rich phase diagram,
with desorbed coil, globule, and crystal phases, besides two
types of adsorbed phases [30]. However, no evidence of a
stable SAG phase was found in Ref. [30]. In the same fashion,
a SAG phase has never been observed in previous studies
of this model on the square lattice [21,31–33]. For instance,
recent flatPERM simulations of this system (where flatPERM
refers to the flat-histogram version of the pruned-enriched
Rosenbluth method) [33] for the case where the surface is
in the horizontal direction of the square lattice and εs is as-
sociated with monomer-surface contacts (let us refer to this
case as the “HS case”) revealed a phase diagram analogous to
the one depicted in Fig. 1(b), with a discontinuous globule-
adsorbed transition, beyond the continuous coil-adsorbed and
coil-globule ones. A similar behavior was found in a transfer
matrix study by Foster [31], where the surface interaction was
associated with bond-surface contacts (let us call this case the
“BS case”).

The critical properties of the adsorption transitions are
also the subject of much recent interest, in part motivated by
the numerical studies by Plascak et al. [34] suggesting that
the critical exponents for the ordinary adsorption (i.e., the
coil-adsorbed transition) may depend on the strength of bulk
interactions, being thus nonuniversal. Subsequent works have,
however, provided evidence to the contrary, indicating that the
exponent variation may be a consequence of strong finite-size
corrections [33,35,36]. The possibility of nonuniversal behav-
ior has recently been raised also for the special adsorption
of ISATs on the square lattice [33]. Three scenarios for the
surface-trail interactions were analyzed in Ref. [33]: the HS
and BS cases discussed just above, and a “DS case” where the
surface is in the diagonal direction and thus εs is associated
with each monomer touching it. Intriguingly, different surface
exponents were found in each case, with 1/δ(s) = φ(s) ≈ 0.44
for the DS scenario (in good agreement with a previous study
of this system [21]) and appreciably smaller values for the BS
and HS cases. It is noteworthy that trails with up to n = 10 240
steps were analyzed in Ref. [33]; no indication was found that
such differences are due to finite-size effects.

In order to understand this very interesting issue, we revisit
the ISAT adsorption here, via extensive flatPERM and PERM
simulations, focusing on square lattices in the HS and DS
scenarios. Detailed analyses of the phase diagrams of these
systems reveal that the multicritical nature of the SAP of the
ISAT model does indeed depend on surface details. In fact,
while we confirm the phase behavior of Fig. 1(b) for the HS
scenario, in the DS case a diagram analogous to the one for the
ISAW [Fig. 1(a)] is obtained. As a means to explain the origin
of this difference, we investigate also a modified horizontal
surface (mHS) system—where the trails have to leave the
surface after each step on it (resembling the DS situation)—
which also has the phase behavior of Fig. 1(a). For the three
(HS, DS, and mHS) scenarios, the critical surface exponents at
the SAP were carefully estimated, for trails with up to 102 400
steps. While the exponent 1/δ(s) suggests the existence of two
universality classes for the special adsorption, depending on
whether the SAG phase is present or absent, a more complex
behavior is found for the exponent φ(s).

The rest of the paper is organized as follows. In Sec. II
we define the model and surface scenarios analyzed, as well
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FIG. 2. Example of a trail configuration in the mHS scenario,
where the trail has to leave the surface after each step on it. A
Boltzmann weight ω is associated with each doubly visited site in
the bulk (regardless of it being a crossing or a “collision”), while
each monomer at the surface has a weight κ . The dot represents the
origin, where the trail starts.

as the Monte Carlo methods and quantities of interest. The
phase diagrams of these systems are investigated in Sec. III,
while the critical behavior at the SAP is analyzed in Sec. IV.
Our final discussions and conclusion are presented in Sec. V.

II. MODELS, SIMULATIONS, AND QUANTITIES
OF INTEREST

A. Models and simulation methods

A self-avoiding trail (SAT) is a lattice path where each
lattice edge can be visited only once. This restriction intro-
duces an excluded volume effect, mimicking the one present
in dilute polymers, so that the SAT can be regarded as a model
for such polymers in a good solvent. By placing the monomers
on the lattice sites, �q/2� monomers are allowed per site on a
lattice of coordination q. The interacting SAT (ISAT) model is
obtained by assigning attractive on-site interactions between
the monomers in multiply occupied sites. Thereby, on the
square lattice, which is the case of interest here, each site can
be visited at upmost twice, and an energy −εb < 0 will be
associated with each such doubly occupied site.

To investigate the polymer adsorption, we consider that
the square lattice is limited by a sticking boundary “surface”
(a straight line, actually) where one end of the polymer is
tethered. The attractive polymer-surface interaction will be
introduced in the ISAT model by assigning an energy −εs < 0
to each monomer lying on the surface. Beyond the cases of
a horizontal surface (HS) and a diagonal surface (DS) (see
Fig. 1 of Ref. [33] for an illustration of them), we investi-
gate the ISAT considering also a modified horizontal surface
(mHS) which does not allow two consecutive steps of the
trail on it. Namely, the trail is forced to leave this surface
after each step there, as illustrated in Fig. 2. This leads to
an adsorbed state that resembles the one of the DS scenario,
where the trail naturally has to leave the surface after each
contact with it, forming a stairlike configuration in the fully
adsorbed (ground) state.

By defining the Boltzmann weights κ = eεs/kBT and ω =
eεb/kBT , we may write the partition function of the system as

Zn(κ, ω) =
∑

ms,mb

C(n)
ms,mb

κmsωmb, (1)

where C(n)
ms,mb

is the number of n-step trails with ms surface
contacts and mb doubly visited sites. Then, the expected value

of any quantity Q is given by

〈Q〉(κ, ω) = 1

Zn

∑

ψn

κms (ψn )ωmb(ψn )Q(ψn), (2)

where the sum is evaluated over all n-step trails ψn.
To estimate these averages, we have performed numer-

ical simulations with the PERM [37] and flatPERM [38]
algorithms. They both are methods where the trails are
stochastically grown starting from a monomer at the origin,
which is placed on the surface here. Strategies for pruning
and enriching trails based on their statistical weights are em-
ployed to avoid trapped configurations and large dispersion
of the weights, common problems of more simple methods
such as the Rosenbluth-Rosenbluth one [39]. The flatPERM
algorithm, in its more general form, is used to determine
C(n)

ms,mb
; hence it is a more suitable method for exploring large

portions of the parameter space (ω, κ ). We used a form of
flatPERM where one of the parameters is kept fixed, which
reduces the dimension of the density of states, allowing us
to sample longer trails. Indeed, trails with up to 1024 steps
were simulated, for several values of fixed ω (or κ), with
∼109 samples being generated in each case. The version of the
PERM considered here is equivalent to flatPERM with both
parameters kept fixed. We performed these PERM simulations
along the coil-globule line (i.e., at ω = 3 [21]) for several
values of κ in the vicinity of the special adsorption point. In
this case, we were able to sample much longer trails, with up
to 102 400 steps. For each point (ω = 3, κ ), a total of ≈1010

trails were sampled for each scenario.

B. Quantities of interest

An important quantity to characterize the adsorption tran-
sition is the surface internal energy un, defined as

un(κ, ω) = 〈ms〉
n

, (3)

where 〈ms〉 is the average number of polymer-surface con-
tacts. This energy is also the order parameter for the
adsorption transition. Close to the adsorption point it is ex-
pected to behave as [40,41]

un ∼ nφ−1 f (τn1/δ ), (4)

where τ = T − Ta is the temperature relative to the adsorption
transition point Ta and the scaling function f (x) is a constant
at x = 0. Thereby, the exponent φ can be estimated from
the scaling un ∼ nφ−1 at T = Ta. Moreover, the crossover
exponent 1/δ is related to the finite-size scaling of the pseud-
ocritical temperature Ta(n) through

Ta(n) = Ta + const × n−1/δ. (5)

Hence the exponent 1/δ can be obtained from the relative
fluctuation in the number of monomers at the surface:


n(T ) = d ln un

dTa
=

〈
m2

s

〉 − 〈ms〉2

〈ms〉 , (6)

whose maximum scales as


n,max ∼ n1/δ. (7)
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At the normal adsorption transition, these exponents are
given by φ = 1/δ = 1/2 in two dimensions [42], whereas
a different value is expected for the special adsorption
transition, as indeed observed in several works (see, e.g.,
Refs. [21,31,33]). We recall that the special transition takes
place at (ω, κ ) = (3, κs), since ωs = 3 is the critical parameter
for the coil-globule transition for the ISAT on the square
lattice [21,31,33]. So, in order to determine the exponents at
the special point it is imperative to first estimate κs with a
good precision. One of the best ways to do this is through the
components of the mean squared end-to-end distance, R2

n, par-
allel and perpendicular to the surface [35,36]. For horizontal
surfaces, these components are simply given by

R2
⊥,n(ω, κ ) = 〈

y2
n

〉
, (8)

R2
‖,n(ω, κ ) = 〈

x2
n

〉
, (9)

where xn and yn are the endpoint components of the n-step trail
(since the starting point is located at the origin). The definition
is slight different for a diagonal surface, being

R2
⊥,n(ω, κ ) = 1

2

〈(
x2

n + y2
n

)〉
, (10)

R2
‖,n(ω, κ ) = 1

2

〈(
x2

n − y2
n

)〉
. (11)

Similarly to other metric quantities, these components present
a scaling behavior determined by the Flory exponents, ν⊥ and
ν‖ in this case, so that

R2
⊥,n ∼ n2ν⊥ , R2

‖,n ∼ n2ν‖ . (12)

In the nonadsorbed phases, ν⊥ = ν‖; in contrast, in the (quasi-
one-dimensional) adsorbed phase, ν⊥ → 0 and ν‖ → 1. Due
to finite-size effects, these exponents cross at some interme-
diate temperature, and the crossing point can be identified as
the pseudocritical temperature Ta(n).

III. PHASE BEHAVIOR OF THE ADSORBING ISATs

A. HS and DS systems

We will start our study of the adsorbing ISATs by revisiting
and completing the phase diagrams for the HS and DS sys-
tems. Since the collapse transition of the ISAT on the square
lattice is exactly known to be located at ωs = 3 [21] and this
is a bulk transition, not affected by the presence of a weakly
interacting surface, a coil-globule line is expected in the phase
diagrams for the adsorbing ISATs at ω = ωs = 3 for small
κ , as indeed observed in Refs. [21,31,33]. This line ends at
the special adsorption point (SAP), where the collapsing trails
adsorb. For ω < 3, upon increasing κ one finds a continuous
coil-adsorbed transition, often referred to as the ordinary ad-
sorption transition. A detailed analysis of this transition for the
HS and DS systems was reported in Ref. [33], revealing that
the surface exponents along the corresponding critical lines
agree with those for the SAW universality class: φ = 1/δ =
1/2 [42]. Some evidence for a first-order globule-adsorbed
transition was also found in Ref. [33] for ω > 3, indicating
phase diagrams analogous to the one in Fig. 1(b) for both the
HS and DS scenarios. However, this analysis was based on
very short trails (with up to 128 steps) in some cases, and thus
we will concentrate on this region here to determine how the
collapsed chains (for small κ) become adsorbed (for large κ).
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FIG. 3. Fluctuation 
n as a function of κ for fixed ω = 3.50 for
the HS (a) and DS (b) scenarios and lengths (from bottom to top)
n = 128, 256, 512, and 1024. The vertical dotted lines in (b) indicate
the location of the globule-SAG (κc) and SAG-adsorbed (κ∗

c ) phase
transitions for n = 1024.

Figure 3 shows the variation of the fluctuation in the num-
ber of monomers at the surface with κ , for ω = 3.50. In the
HS case [Fig. 3(a)], one finds a single peak in this quantity,
confirming the existence of a direct globule-adsorbed transi-
tion, as suggested in Ref. [33]. Moreover, the fast increase in
the height of these peaks with length n is a clear signature of
the first-order nature of this transition. We have confirmed this
also through the density of states C(n)

mb,ms
versus κ (not shown),

which displays a bimodal behavior around the transition point.
Similar results are found for other values of ω > 3, yielding
a first-order globule-adsorbed transition line in the phase dia-
gram, which starts at the SAP and extends to large values of ω.
Hence the diagram for the HS case is indeed analogous to the
one shown in Fig. 1(b), as can be seen in Fig. 4 of Ref. [33],
where the HS scenario was denoted as MS.

A quite different behavior is found here for the adsorption
of the collapsed phase in the DS case. As shown in Fig. 3(b),
upon increasing κ the polymer-surface-contact fluctuations
present now two peaks in the region of ω > 3. Therefore
two transitions take place in the system there, one at κc and
another one at κ∗

c > κc. Note that, in contrast to the HS case,
the maxima of both peaks in Fig. 3(b) display a slow increase
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FIG. 4. Effective surface exponent φ(n) as a function of κ , for
ω = 3.50 and several lengths n, for the HS (a) and DS (b) systems.
The asymptotic values of κc and κ∗

c , for this ω are indicated by the
vertical dotted lines in (b).

with the length n, indicating that these transitions are contin-
uous. The analysis of the density of states confirms this, and
moreover, it shows that for weak surface interactions (i.e., for
κ < κc) the trail has few polymer-surface contacts (un ≈ 0)
and a large number of doubly visited sites, as expected for
the globule phase of ISAT. In the opposite regime of very
strong interactions (i.e., for κ > κ∗

c ) the chains are adsorbed,
displaying a fast increase in the surface energy with κ (note
that un → 1 for κ � κ∗

c ) and a fast decrease in the number
of sites occupied by two monomers (which vanishes for κ �
κ∗

c ). For κc < κ < κ∗
c , one finds an intermediate phase, which

is dense (having a number of doubly occupied sites similar to
the globule one) but has a macroscopic number of monomers
at the surface, characterizing a SAG phase.

Evidence for the existence (absence) of a SAG phase in
the DS (HS) system is found also in the φ exponent, which is
expected to assume the values φ = 0 in the desorbed phase,
φ = 1/2 in the SAG phase, and φ = 1 in the fully adsorbed
phase [24,25]. Following the scaling in Eq. (4), effective expo-
nents, φ(n), were estimated here as φ(n) = ln(un/un/2)/ ln 2.
Figures 4(a) and 4(b) compare the variation of φ(n) with κ ,
for fixed ω = 3.50, for the HS and DS systems, respectively.
In the former case, the exponents rapidly change from φ ≈ 0
to φ ≈ 1, presenting an abrupt variation close to the transition

point, where it becomes negative (for long trails) due to the
discontinuous nature of the globule-adsorbed transition in the
HS system. On the other hand, a smooth variation of φ(n) is
seen in Fig. 4(b) for the DS case, clearly demonstrating the ex-
istence of three regions or phases: φ → 0 for small κ; φ → 1
for large κ; and approximate plateaus at intermediate values
of κ (where the variation in φ is certainly due to finite-size
effects) that get close to φ = 1/2 as n increases. This confirms
the existence of a continuous globule-SAG transition at κc

and a SAG-adsorbed one at κ∗
c in the DS scenario, whereas a

single discontinuous globule-adsorbed transition exists in the
HS case.

From the crossing points of the curves of φ(n) × κ for dif-
ferent values of n in Fig. 4(b), we may obtain estimates for the
effective critical exponents, φc(n), and for the pseudocritical
points κc(n) and κ∗

c (n). It turns out that in the vicinity of
the SAP these two critical points become very close (since
the globule-SAG and SAG-adsorbed critical lines meet at
the SAP, as discussed below), and crossings start appearing
only for curves for very large n. Moreover, it is hard to
sample characteristic configurations of trails for large ω (i.e.,
deep inside the collapsed phase) with growth methods such
as PERM and flatPERM, and consequently, the data present
considerable fluctuations in this region. For these reasons,
we were unable to reliably extrapolate the outcomes from
the crossing points for n → ∞. Anyhow, from the crossings
of curves for n = 896 and n = 1024, we found φc in the
intervals: 0.2 < φc < 0.3 for the globule-SAG transition and
0.7 < φc < 0.8 for the SAG-adsorbed transition.

Since the globule-SAG transition is a critical adsorption
transition, the corresponding critical line can be determined
by using the same procedure employed in Ref. [33] for the
coil-adsorbed transition. Namely, for a fixed value of ω, we
firstly determine the maxima in the 
n × κ curves and, then,
estimate the crossover exponent 1/δ from Eq. (7). Exponents
in the range 0.2 < 1/δ < 0.3 were found for the values of
ω analyzed here, in fair agreement with the values of φc

estimated above. Finally, by using these exponents in Eq. (5),
we extrapolate the pseudocritical points κc(n) obtained from
the crossing points of the curves of the Flory exponents ν⊥
and ν‖ versus κ , to determine the critical point. As ω tends
to ωs = 3, we find κc approximating the exact value for the
SAP in the DS case (κs = 3 [21]), strongly indicating that the
globule-SAG transition line starts at the SAP. As demonstrated
in Fig. 5(a), which presents the phase diagram for the DS sys-
tem, the line κc(ω) is a decreasing function of ω, in agreement
with the behavior found in Refs. [24,25] for adsorbing ISAWs.

The procedure above does not work for determining the
SAG-adsorbed transition line, because it happens between
two adsorbed phases and, thus, the end-to-end distance (and
related Flory exponents) gives no clue about the location of
the transition. Hence the clearest signature of this transition
is observed in the 
n × κ curves, such as those in Fig. 3(b),
where the values of κ at the maxima can be regarded as the
pseudocritical points κ∗

c (n). Along the SAG-adsorbed line we
estimate crossover exponents in a broad interval 0.3 < 1/δ <

0.6. Once again, it is hard to obtain reliable extrapolations of
κ∗

c (n) to the n → ∞ limit, due to strong finite-size corrections
and fluctuations in their values, which seems to be more
prominent in the SAG-adsorbed transition. For this reason, we
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FIG. 5. Phase diagrams for the DS (a) and mHS (b) systems.
The symbols are the estimated transition points, while the solid lines
connecting them are guides to the eye. Our results indicate that all
transition lines are continuous. The green squares denote the special
adsorption points.

are simply considering κ∗
c (n) for n = 1024 as the transition

point in the phase diagram of the DS system, in Fig. 5(a).
These results strongly indicate that the SAG-adsorbed line
meets the globule-SAG one at the SAP, giving rise to a phase
diagram qualitatively analogous to the one in Fig. 1(a) for
adsorbing ISAWs in two dimensions.

In order to understand why the SAG phase appears in the
DS system but is absent in the HS scenario, we start remarking
that it has the same bulk properties of the globule phase,
i.e., it is a compact configuration rich in doubly visited sites.
However, at the same time it has to have a macroscopically
large number of surface contacts. It turns out that when the
globule phase adsorbs onto the horizontal surface, the layer
immediately above the surface cannot be fully populated with
doubly visited sites. Indeed, in the HS case the adsorption
of a straight segment creates a kind of depletion zone just
above it, as illustrated in Fig. 6(a), hindering the formation
of compact configurations in this region. On the other hand,
as shown in Fig. 6(b), in the DS case the trail cannot have
straight segments along the surface, since it has to move away
from it after each contact. Therefore the configuration closest

FIG. 6. Illustrations of adsorbing globule configurations in the
(a) HS, (b) DS, and (c) mHS systems. The starting points of the trails
are denoted by the black circles.

to the straight one consists in a zigzag (or laddered) structure,
with the trail leaving and returning to the surface after every
two steps, producing a sequence of visited sites on the layer
just above it. This allows for the formation of doubly visited
sites in this layer and any other close to the surface, such
that the globule phase can adsorb (simultaneously maximizing
the monomer-monomer and monomer-surface interactions),
yielding the SAG phase in the DS case.

B. mHS system

The reasoning above led us immediately to inquire whether
the SAG phase can be induced in the HS scenario if in some
way the adsorbing portion of the trail also visits a similar
number of sites twice in the layer just above the surface.
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This can be achieved by considering a modified HS (mHS)
system where, after each step on the horizontal surface, the
trail is forced to move away from it, somewhat mimicking
the DS scenario as shown in Fig. 6(c). In fact, the completely
adsorbed configuration in this case has a square wave form,
while in the DS case it is triangular-wave-like.

The thermodynamic behavior of the mHS case was ob-
tained following the same procedures as above for the other
systems, once again for trails with up to 1024 steps. Analo-
gously to the other cases, a desorbed coil phase is found in the
region of small κ and ω. By increasing ω, a coil-globule tran-
sition is observed at ωs = 3 for small values of κ , as expected.
Moreover, upon increasing κ , for fixed ω < 3, the system
undergoes a continuous coil-adsorbed transition. For a given
ω < 3, we find that this transition occurs for κmHS > κHS.
This is indeed expected, since the trails are forced to leave
the surface in the mHS case, thus decreasing the number of
polymer-surface contacts when compared with the HS sce-
nario, and it requires a larger κ to adsorb. When compared
with the DS system, however, the transitions occur for smaller
κ’s in the mHS case, as seen in Fig. 5. This happens because
it is naturally easier for the trails to get closer to a horizontal
boundary than to a diagonal one, besides the fact that in each
visit to the surface the trail makes two contacts with it in mHS
case, but a single one in the DS system. Critical exponents
1/δ ≈ φ ≈ 1/2 were found along the coil-adsorbed transition
line, though some deviations from this value were observed
close to ωs, which are certainly due to strong finite-size cor-
rections in this region, as also observed for the DS and HS
systems in Ref. [33].

For ω > 3, the globule phase is observed in the mHS
scenario for small values of κ , as just mentioned above. By
increasing κ , for a fixed ω, a behavior very similar to the one
for the DS case is found. As demonstrated in Fig. 7(a), the
fluctuation 
n displays two peaks, indicating the presence of
three phases in this region. Figure 7(b) shows the variation
of the effective exponent φ(n) with ω, for n = 1024 and
fixed κ = 1.0, κ = 2.5, and κ = 4.0. While for κ = 1.0 the
exponents always remain close to φ = 0, consistent with the
expected behavior for the coil and globule phases, for κ = 2.5
they change from φ ≈ 0 to φ ∼ 1/2, indicating the presence
of a SAG phase for large ω. For κ = 4.0 one finds φ ≈ 1
in the adsorbed phase, for small ω, and then a decrease to
φ ≈ 1/2, confirming the existence of the SAG phase in the
mHS system.

The faster increase of the maxima of 
n at the SAG-
adsorbed transition, as well as the somewhat abrupt variation
in φ(n) × ω in this case, as observed in Fig. 7, may indicate
that this is a discontinuous transition. However, no bimodal
behavior was found in the density of states close to the SAG-
adsorbed transition or close to the globule-SAG transition.
Therefore it seems that these are both continuous transitions,
similarly to the DS case. It is also noteworthy that, for a given
ω, un(κ ) is larger in the mHS case than in the DS one, which
may explain the different behavior in the second peak of 
n

in Figs. 3(b) and 7(a). The resulting phase diagram for the
mHS system is depicted in Fig. 5(b), which is qualitatively
analogous to the DS one, with all transition lines meeting at
the SAP. This demonstrates that the phase behavior of these
adsorbing models can be strongly affected by simple changes
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FIG. 7. (a) Fluctuation 
n as a function of κ for the mHS case, for
fixed ω = 3.50 and several lengths n. (b) Effective surface exponents
φ(n) vs ω, for n = 1024 and three values of κ , as indicated by the
legend.

in the surface features. Moreover, this confirms that the deple-
tion effect caused by the adsorption of straight segments in the
HS scenario is indeed the reason for the absence of the SAG
phase in this system.

IV. SPECIAL ADSORPTION POINT

Next, we explore in detail the special adsorption point
(SAP), determining its location for each scenario and the
surface exponents φ(s) and 1/δ(s) on it.

We remark that the existence of a SAG phase in the DS and
mHS systems modifies the multicritical nature of their SAPs,
when compared with the one for the HS scenario. Indeed,
while in the former case four continuous transition lines meet
at the SAPs (see Fig. 5), in the HS case there are only two
such lines connecting with a line of coexistence. Hence the
surface exponents do not necessarily have to be the same
for these systems at their SAPs, which explains the different
values reported for φ(s) and 1/δ(s) for the DS and HS scenarios
in Refs. [21,33]. This also raises the interesting question of
whether the exponents for the mHS and DS systems are the
same, belonging to a possible universality class for trail sys-
tems with a SAG phase. To answer this, besides characterizing
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the SAP behavior for the mHS case, we also improve the
results for the other systems, by performing extensive PERM
simulations at ω = 3, for several values of κ in the vicinity of
the SAPs. Since these simulations were carried out keeping
both ω and κ fixed, we were able to investigate trails with up
to 102 400 steps (which are ten times longer than those con-
sidered in Ref. [33]) and very large statistics, with up to ∼1010

trails being grown for each scenario and set of parameters.
To determine the value of κs, we estimate first pseudocrit-

ical points κs(n) from three distinct quantities: the points of
maxima in the curves of 
n, the crossing points of the parallel
and perpendicular Flory exponents, and the crossing points of
the surface exponents φ, all of them measured as a function of
κ . We obtain the asymptotic values of κs following the same
procedure employed in the previous section, i.e., by firstly
determining the crossover exponent for each model and, then,
using such exponents to extrapolate κs(n) to the n → ∞ limit.
Figure 8(a) shows the finite-size estimates of 1/δ(s), where
one sees that these exponents have very similar values for the
DS and mHS systems, which fluctuate in the interval 0.430 <

1/δ(s) < 0.448. For the HS model, on the other hand, signifi-
cantly smaller values are found, in the range 0.332 < 1/δ(s) <

0.352. Since these exponents fluctuate around constant val-
ues without any clear tendency to increase or decrease, we
may simply take their average for long trails to obtain an
estimate of their asymptotic values. Considering lengths n >

10 000, this yields 1/δ
(s)
DS = 0.439(3), 1/δ

(s)
mHS = 0.438(5),

and 1/δ
(s)
HS = 0.343(6), strongly indicating that the DS and

mHS exponents are indeed the same. We notice that our result
for the HS case is slightly larger than the previous estimate
from Ref. [33] [1/δ(s) = 0.303(22)], which is likely due to
the much longer trails considered here.

With the crossover exponents at hand, we may use them
in a finite-size scaling ansatz analogous to Eq. (5) to find the
asymptotic values of κs at the SAPs. Since κs is exactly known
for the DS case [21], it is interesting to start the analysis with
this system, to benchmark our method. In fact, this gives the
extrapolated results κs = 3.005(5) [from the crossings of the
φ(n)], κs = 3.002(3) (from the crossings of the Flory expo-
nents), and κs = 2.998(8) (from the maxima of 
n), in striking
agreement with the expected result κs = 3 [21]. Although the
three quantities return very similar values for κs, the pseudo-
critical values from the maxima of 
n present much stronger
corrections than those from the crossing points of φ(n) and
ν⊥/‖. The very same behavior is observed in Fig. 8(b) for the
mHS system, as well as in the HS case (not shown). Similarly
to Fig. 8(b), in all cases the data are very well linearized when
plotted against n−1/δ(s)

with the values of 1/δ(s) found above.
This demonstrates the reliability of these exponents and gives
further confirmation that the DS and mHS systems behave in
the same way. Since the extrapolated values of κs obtained
from different quantities are always very close to each other,
we have determined the location of the SAPs by taking their
average, which gives κ (DS)

s = 3.002(5), κ (HS)
s = 1.927(2), and

κ (mHS)
s = 2.602(5).

To determine the exponent φ(s), we have considered two
different methods: (i) the crossing points of curves of φ(n)
and φ(n + �n) versus κ (considering trail sizes in the in-
terval 10 240 � n � 102 400 with �n = 10 240), and (ii) the
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FIG. 8. (a) Effective crossover exponents 1/δ(s) as a function of
n−0.5 for all scenarios considered. (b) Extrapolation of the pseudo-
critical estimates of κs for the mHS system from the three indicated
quantities. (c) Effective exponents φ (s) vs n−0.5 for all analyzed
systems. The dotted line in (a) indicates the value 1/δ(s) = 0.44
previously found in the literature, while the dashed lines in (b) and
(c) correspond to the best linear fits of the data in each case.

scaling of the surface internal energy in Eq. (4) at the SAP
(i.e., for ωs = 3 and the values of κs just estimated above).
Although approach (i) has the advantage of allowing us to
estimate φ(s) without knowing the SAP location, we observed
that it usually gives not so precise results, because even small
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fluctuations in the curves of φ(n) × κ can produce appreciable
variations in their crossing points. Method (ii) yields more
precise estimates for effective φ(s)(n), calculated by averaging
the slopes of several linear fits of ln un × ln n curves at the
SAP for n-length trails. Figure 8(c) shows the extrapolation
of the exponents calculated in this way at the central values
of the estimates for κs above. It is important to notice that
the outcomes from this procedure are very sensitive to the
values of κs used. In fact, a variation of such values at the third
decimal place (within their error bars) may yield a change at
the second decimal place in the final results for φ(s). Despite
these caveats, consistent exponents were obtained from both
methods, when the central values of κs are used in proce-
dure (ii). For example, in the DS system, method (i) gives
exponents in the range 0.432 < φ(s) < 0.461, whose average
yields φ

(s)
DS = 0.449(14), while from approach (ii) we ob-

tain φ
(s)
DS = 0.446(4). Both results agree quite well with each

other, as well as with previous estimates φ(s) ≈ 0.44 [21] and
φ(s) ≈ 0.447(18) [33]. In the HS case, we find 0.323 < φ

(s)
HS <

0.359 with the average value φ
(s)
HS = 0.347(16) in approach (i),

which agrees quite well with φ
(s)
HS = 0.349(5) obtained from

method (ii). Interestingly, this exponent agrees quite well with
φ(s) = ν/ν (s) = 8/23 ≈ 0.3478, conjectured in Ref. [43] for
the SAP of the VISAW model, by assuming that ν (s) = 3/2
(as suggested by the transfer matrix results from Ref. [43])
and ν = 12/23 (the exact BN value [15]). For the mHS
system, method (i) gives 0.387 < φ

(s)
mHS < 0.421 with the av-

erage φ
(s)
mHS = 0.398(12), while approach (ii) yields φ

(s)
mHS =

0.390(6). Intriguingly, for the mHS system our results sug-
gest that φ

(s)
mHS �= 1/δ

(s)
mHS, whereas an equality between these

exponents is found in the other cases. Moreover, the exponent
φ

(s)
mHS ≈ 0.39 is very close to the exact value for the ISAW

model: φ(s) = 8/21 ≈ 0.3809 [41].

V. CONCLUSION

By performing extensive flatPERM and PERM simula-
tions, we have studied the thermodynamic properties of
adsorbing ISATs for three surface scenarios on the square
lattice: a horizontal surface (HS) case, a diagonal surface (DS)
case, and a modified HS (mHS) case where the trail is forced
to leave a horizontal surface after each step on it. Our careful
analyses uncover key properties of these systems.

We found a surface-attached-globule (SAG) phase in
the DS system, between the globule and adsorbed phases,
which previous studies of this scenario [21,33] did not ob-
serve. Therefore, similarly to adsorbing ISAWs, the DS
system’s phase diagram presents four stable phases: des-
orbed coil, globule, SAG, and adsorbed. Our results strongly
indicate that all transition lines separating them are con-
tinuous, so that the DS system’s special adsorption point
(SAP) is featured by the meeting of four continuous tran-
sition lines: coil-globule, coil-adsorbed, SAG-adsorbed, and
globule-SAG. The same phase behavior is found in the mHS
case. Indeed, due to the geometric restrictions imposed by
the surfaces in both DS and mHS scenarios, their fully ad-
sorbed phases consist in wavelike conformations that equally
visit the surface and the first layer of sites just above it.

Out of these ground states, this property allows the collapsed
phase to partially wet these surfaces, yielding a stable SAG
phase.

In contrast, in the HS system, the adsorbed configurations
are featured by long straight segments on the surface, which
creates a kind of “depletion zone” in the layer just above
them (where the sites cannot be doubly occupied), prevent-
ing a simultaneous maximization of monomer-monomer and
monomer-surface contacts. For this reason, the SAG phase
is not observed in the HS case, and a direct (first-order)
globule-adsorbed transition is found in its phase diagram. This
explains also why the SAG phase was not found in previous
works [31,33] for the BS system, where bonds (rather than
sites) of the trail interact with a horizontal surface. It is worth
remarking also that no surface-induced depletion effect exists
for ISAWs, where the sites are always visited by at most
one monomer. Thereby, we may expect that different surface
scenarios shall not change the topology of the ISAW phase
diagrams.

These results are in agreement with the recent reasoning of
Foster et al. [32] to explain the different universality classes
for the collapse transition in the ISAW and ISAT models.
Indeed, it was argued in Ref. [32] that, while long enough
ISAWs do not “see” the underlying lattice (so that their critical
properties only depend on dimensionality), the ISAT behavior
may depend on the lattice where they are placed. By the same
token, it is somewhat expected that the thermodynamic prop-
erties of adsorbing ISATs may be indeed sensitive to details
of the surface. We emphasize, however, that for all scenarios
considered here and elsewhere [33], critical surface exponents
consistent with the expected value φ = 1/δ = 1/2 were found
for the ordinary adsorption transition.

A different situation is observed for these exponents at the
SAPs, whose multicritical nature in the HS case is different
from that in the DS and mHS scenarios. This certainly ex-
plains the different values of φ(s) and 1/δ(s) found in previous
works [21,32,33] and confirmed here. In fact, given the very
long trails considered in our analysis (with up to 102 400
steps), it seems very unlikely that the appreciable difference
between the crossover exponents in Fig. 8(a) (yielding 1/δ

(s)
DS

and 1/δ
(s)
mHS ≈ 0.44 and 1/δ

(s)
HS ≈ 0.34) is due to finite-size

corrections. Instead, it strongly indicates that two universality
classes exist for the SAPs of ISATs on the square lattice,
depending on whether the SAG phase is present (as in the DS
and mHS systems) or absent in the phase diagram (as in the
HS case).

The φ(s) exponents, notwithstanding this, seem to suggest
a different picture, since different values are found for each
system [Fig. 8(c)], with φ

(s)
HS < φ

(s)
mHS < φ

(s)
DS. A possible ex-

planation for this intriguing finding is the sensitivity of these
estimates with the value used for the SAP coordinate κs, so
that an inaccuracy in κs for the mHS case could be yield-
ing an underestimated result for φ

(s)
mHS. Indeed, the difference

between φ
(s)
mHS and 1/δ

(s)
mHS is only ≈10%, and in the DS

and HS scenarios we obtained φ(s) ≈ 1/δ(s), as expected. It
is important to remark, however, that the phase diagrams in
Fig. 5 indicate a subtle difference in the way the globule-SAG
critical line arrives at the SAPs for the DS and mHS scenarios.
In fact, in the latter case it appears to connect tangentially
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to the coil-adsorbed line, while in the DS system it forms
a very small angle with the (vertical) coil-globule line, sug-
gesting that the globule-SAG line and the coil-globule line
may become parallel at the SAP. Although it is unclear to
us how this could yield φ

(s)
mHS < φ

(s)
DS = 1/δ

(s)
mHS = 1/δ

(s)
DS, this

may be a clue to explain such behavior. Of course, additional
studies of these systems are needed to determine how many
sets of critical exponents exist for the special adsorption of
two-dimensional polymers. For instance, it is interesting to
analyze the mHS system using other approaches, as well as
to investigate the effect of different surface scenarios in other

related models (VISAW, ISAT with nearest-neighbor interac-
tions, and so on).
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