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Two-dimensional dilute Baxter-Wu model: Transition order and universality
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We investigate the critical behavior of the two-dimensional spin-1 Baxter-Wu model in the presence of a
crystal-field coupling � with the goal of determining the universality class of transitions along the second-
order part of the transition line as one approaches the putative location of the multicritical point. We employ
extensive Monte Carlo simulations using two different methodologies: (i) a study of the zeros of the energy
probability distribution, closely related to the Fisher zeros of the partition function, and (ii) the well-established
multicanonical approach employed to study the probability distribution of the crystal-field energy. A detailed
finite-size scaling analysis in the regime of second-order phase transitions in the (�, T ) phase diagram supports
previous claims that the transition belongs to the universality class of the four-state Potts model. For positive
values of �, we observe the presence of strong finite-size effects, indicative of crossover effects due to the
proximity of the first-order part of the transition line. Finally, we demonstrate how a combination of cluster and
heat-bath updates allows one to equilibrate larger systems, and we demonstrate the potential of this approach for
resolving the ambiguities observed in the regime of � � 0.
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I. INTRODUCTION

Most of the commonly studied spin models of statistical
mechanics such as the Ising and Potts or O(n) models are spin-
inversion symmetric. A notable exception to this rule is the
Baxter-Wu (BW) model [1,2] that was originally introduced
by Wood and Griffiths [3,4]. The commonly studied version
is defined on the triangular lattice with N sites and has the
Hamiltonian function

HBW = −J
∑
〈i jk〉

σiσ jσk, (1)

where J > 0 denotes a ferromagnetic exchange coupling.
The sum 〈i jk〉 extends over all elementary triangles, and
σi = ±1 are Ising-like spin-1/2 variables. The presence of
three-spin interactions leads to the mentioned violation of
spin-inversion symmetry, and it results in a fourfold degener-
acy of the ground state: there is one ferromagnetic state with
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all spins up, and three ferrimagnetic states with down spins
in two sublattices and up spins in the third. The triangular
lattice can be decomposed into three sublattices, A, B, and
C, as shown in Fig. 1. Note that the model of Eq. (1) is
self-dual [3,4], resulting in the same critical temperature as
that of the spin-1/2 Ising model on the square lattice, i.e.,
kBTc/J = 2/ ln (

√
2 + 1) = 2.269185 · · · , where kB denotes

Boltzmann’s constant.
An exact solution of the model was provided early on

by Baxter and Wu [1,2], supplying the critical exponents
α = 2/3, ν = 2/3, and γ = 7/6. In the following, it was also
shown that its critical behavior corresponds to a conformal
field theory with central charge c = 1 [5,6]. Due to the four-
fold symmetry of the ground state, it is expected that the
critical behavior of the q = 4 model Potts and of the Baxter-
Wu model belong to the same universality class [7]. While,
therefore, the critical exponents of the two models are iden-
tical, the same does not apply to the scaling corrections: the
four-state Potts model exhibits logarithmic corrections with
system size [8], whereas the Baxter-Wu model has power-
law corrections with a correction-to-scaling exponent ω = 2
[5,6]. Recently, the model has attracted renewed attention, and
various aspects of its critical behavior have been studied in
substantial detail [9–17].

A natural generalization of the Baxter-Wu model (1)
results from the consideration of three spin orientations
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FIG. 1. Representation of the triangular lattice of the Baxter-Wu
model as a superposition of three sublattices, A, B, and C. Each
sublattice corresponds to spins of the same color. The spins are
shown in the ferromagnetic ground state.

σi = {−1, 0, 1} and the inclusion of an additional crystal-field
(or single-ion anisotropy) coupling �. The resulting Hamilto-
nian then reads

H = −J
∑
〈i jk〉

σiσ jσk + �
∑

i

σ 2
i = EJ + �E�, (2)

where EJ and E� denote the contributions of the exchange and
the crystal field, respectively, to the total energy. Note that
in the following we will use reduced units where J = 1 as
well as kB = 1. This choice of units follows the past notation
of some of the present authors implementing multicanonical
simulations on spin-1 Blume-Capel and Baxter-Wu models,
see the discussion in Sec. III. Although still rather simple, for
this spin-1 model there exists no exact solution, except for the
case � → −∞, where only configurations with σi = ±1 are
allowed and the pure spin-1/2 Baxter-Wu model is recovered,
as well as for zero temperature, where the four ordered phases
coexist with the paramagnetic phase in a multiphase point at
�/J = 2 (accordingly, no transition is observed for �/J >

2).
Based on the analogy between the Baxter-Wu and the di-

luted Potts model [18], but also on a series of more recent
results [19–21], it is now well established that the phase
diagram of the spin-1 Baxter-Wu model in the (�, T ) plane
includes a multicritical point separating first- from second-
order transition regimes. This is in contrast to an earlier
prediction by finite-size scaling applied to transfer-matrix cal-
culations, where a continuous transition only occurs in the
limit � → −∞ [22]. In this respect, the model resembles the
well-known Blume-Capel ferromagnet [23], which exhibits
a phase diagram with ordered ferromagnetic and disordered
paramagnetic phases separated by a transition line with first-
and second-order segments (the latter in the Ising universality
class) connected by a tricritical point, whose location is known

[19]

[21]

[28]

[30]

[29]

FIG. 2. Phase diagram of the two-dimensional spin-1 Baxter-
Wu model including several estimates of transition points. The
black dashed and continuous lines correspond to first- and second-
order phase transitions, respectively. The intermediate regime
between the two pentacritical point estimations by Dias et al.
[19] (�pp, Tpp) ≈ (0.8902, 1.4) and Jorge et al. [21] (�pp, Tpp) ≈
(1.68288(62), 0.98030(10)) is not crossed by a line as its status is
currently unclear.

with high accuracy [24–27]. In contrast, there is no consensus
on the precise location of the multicritical point for the spin-1
Baxter-Wu model; see Fig. 2 but also Fig. 5 of Ref. [21] for
a summary regarding the phase diagram. Along the first-order
transition line of Fig. 2 three ferrimagnetic phases and one fer-
romagnetic one coexist with the paramagnetic phase, forming
a quintuple line that arrives at a pentacritical point where all
five phases become identical.

In addition to the question of the location of the multicrit-
ical point, the reign of universality along the second-order
segment of the transition line has been put into question.
While some earlier results based on the transfer matrix and
conformal invariance suggested a continuous variation of crit-
ical exponents with the crystal field along the second-order
transition line [20], more recent studies reported a match
of the observed critical behavior with that of the four-state
Potts model [19]. Some authors have also suggested the
scenario of a mixed-order transition with both first-order
and second-order properties [28]. Recently, however, some
clear-cut evidence for a simple, continuous transition in the
universality class of the four-state Potts model in the regime
of � < 0 could be provided based on a highly optimized
combination of Wang-Landau simulations that cross the tran-
sition at constant � and multicanonical simulations operating
at constant temperature T [29,30], such that questions remain
mainly in the regime � � 0.

In the present work we study the spin-1 Baxter-Wu model
at several values of the crystal-field coupling that also reach
into the regime � > 0. To this end, we employ two comple-
mentary Monte Carlo schemes, a recently proposed variant of
studying Fisher’s partition function zeros [31] dubbed energy
probability distribution zeros [32], and the multicanonical
approach applied to the crystal-field energy [25,29,30,33].
While the latter method is well established in the literature,
the usefulness and robustness of the former has been demon-
strated for only a few cases to date, including some simple
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spin systems and polymer chains [32,34,35]. In this respect,
the purpose of the present work is twofold: first, to explore
the scope and limitations of the method of energy probability
distribution zeros for the more complicated spin-1 Baxter-Wu
model that lacks the up-down symmetry and, second, to inves-
tigate the criticality and universality of the model specifically
for � � 0, but still below the proposed location of the multi-
critical point.

The rest of the paper is organized as follows. In Sec. II
we outline the method based on the energy probability distri-
bution zeros and show results for both the pure spin-1/2 and
for the spin-1 Baxter-Wu model, the latter for several values
of the crystal-field coupling in the range −10 � � � 0.5. In
Sec. III we complement the outcomes of Sec. II via extensive
multicanonical simulations at fixed values of the temperature
in the regime where � � 0. Finally, in Sec. IV we summa-
rize the main findings of the current work, comparing the
implemented methodologies in the light of some additional
preliminary results at � = 0 obtained via an efficient numeri-
cal scheme that mixes cluster and heat-bath updates.

II. ENERGY PROBABILITY DISTRIBUTION ZEROS

A. Description and finite-size scaling

As was recently discussed in Refs. [32,34,35], the study
of zeros in the energy probability distribution (EPD) allows
for a straightforward determination of critical temperatures
and the shift exponent θ = 1/ν while avoiding the need of
computing traditional thermodynamic quantities, such as the
susceptibility or the specific heat. The method of EPD zeros
is closely related to the Fisher zeros of the canonical partition
function Z [31], expressed as

Z =
∑

E

g(E )e−βE = e−βε0

N∑
n=1

g(En)e−βnε, (3)

where E is the energy of the system, g(E ) is the number of
states having energy E (degeneracy), and β = 1/T . In the
last part of Eq. (3) we assume a discrete energy spectrum
E = En = ε0 + nε, where ε0 is the ground-state energy and
ε denotes the level spacing, n = 0, 1, 2, . . . ,N . Fisher noted
that since (3) is a polynomial in y = e−βε , it has N complex
zeros and since g(En) � 0 none of them are real. However, on
approaching the thermodynamic limit N → ∞, some zeros
might approach the real axis, thus leading to a nonanalytic-
ity at yc = e−βcε corresponding to the phase transition at the
inverse critical temperature βc. Since the partition function is
not so straightforward to sample in a Monte Carlo simulation,
we consider a somewhat different formulation. To this end, we
multiply the right-hand side of Eq. (3) by 1 = e−β0ε0 e+β0ε0 to
obtain

Zβ = e−�βε0

N∑
n=1

hβ0 (n)xn, (4)

where β0 is the inverse of some reference temperature,
�β = β − β0, hβ0 (n) = g(En)e−β0En , and x = e−�βε . Note
that hβ0 (n) is the unnormalized canonical energy probability
distribution at β0, and it can be easily estimated from an
energy histogram through Monte Carlo simulations. As is

easily seen, when β0 = βc the dominant zero of the EPD is
located at the fixed value xc = (1, 0) in the complex plane,
thus simplifying the analysis.

For the finite lattice systems of linear size L that are
amenable to numerical simulation, one can systematically
follow the behavior of the most dominant zero x∗

L that is
approaching the real axis at xc = (1, 0) as L is increased. In
this way, it is possible to use finite-size scaling arguments to
retrieve the critical temperature as well as the critical exponent
ν. Specifically, the algorithm proposed in Ref. [32] for this
purpose is as follows. We first choose a starting guess β

j=0
0 of

the inverse transition temperature and then iterate through the
following steps:

(1) Simulate the system at β = β
j
0 and construct a

histogram h
β

j
0
.

(2) Find all the zeros of the polynomial with coefficients
given by h

β
j
0
, i.e.,

N∑
n=1

h
β

j
0
(n)xn = 0. (5)

(3) Find the dominant zero (x j )∗. Then:
(1) if (x j )∗ is close enough to the point (1, 0), x∗

L =
(x j )∗ and stop;

(2) else, make

β
j+1
0 = −ε−1 ln [Re(x j )∗] + β

j
0 (6)

and return to step (i).
After setting a convergence criterion, one ends up with esti-

mates x∗
L for the dominant zeros and hence with pseudocritical

temperatures T ∗
L (β∗

L). Previous numerical results for several
spin systems of Ising, Potts, and Heisenberg type, as well as
for homopolymeric models, indicate that [32,34,35]: (i) the
choice of the starting temperature β0 is largely irrelevant for
arriving at the dominant zero x∗

L; (ii) for β ≈ βc, only states
with a nonvanishing probability are relevant to the transition,
thus allowing us to define a cutoff, hcut, affecting the left- and
right-hand side margins of the energy distribution. Discarding
configurations where h

β
j
0
(n) < hcut substantially reduces the

degree of the polynomial, especially with increasing system
size; and (iii) to further simplify the polynomial, one can
rescale the histogram by setting its maximum value to unity
so that max h

β
j
0

= 1, since an overall rescaling of the partition
function does not affect the location of the zeros.

According to the well-established finite-size scaling theory,
the shift of pseudocritical temperatures T ∗

L is described by the
power law [36,37]

T ∗
L = Tc + bT L−1/ν (1 + b′

T L−ω ), (7)

where Tc is the critical temperature of the infinite system, b
and b′ are nonuniversal parameters, ν is the critical exponent
of the correlation length, and ω denotes the correction-to-
scaling (Wegner) exponent, fixed hereafter to the predicted
value ω = 2 [5,6]. On the same ground, one also expects that
[32]

x∗
L = xc + bxL−1/ν (1 + b′

xL−ω ). (8)
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Since x∗
L ≈ (1, 0), the imaginary part Im(x∗

L ) should scale with
the system size as [32]

Im(x∗
L ) ∼ L−1/ν (1 + b′L−ω ). (9)

In this description, the standard process is to first compute the
critical exponent ν via Eq. (9), and then retrieve the critical
temperature Tc using Eq. (7).

B. Results

For the application of the EPD zeros method to the Baxter-
Wu model, histograms were accumulated using the standard
single-spin-flip Metropolis algorithm. To accommodate for all
ground states, periodic boundary conditions must be consid-
ered and the allowed values of the linear size of the lattice
L must be a multiple of three [19,20,29,30]. (Note that a
triangular lattice on the torus is tripartite when its linear
dimensions are multiples of three.) In the course of our simu-
lations we considered linear sizes in the range 12 � L � 120,
respecting this constraint (a practice followed also in the mul-
ticanonical and hybrid simulations described below). During
thermalization, 105 Monte Carlo steps per spin (sweeps) were
discarded for L � 45 and 3 × 105 sweeps for the larger sizes.
An additional 108 sweeps were performed to accumulate the
energy histograms, leading to a quite precise estimate of the
dominant root. The iterative process of finding the dominant
EPD zero terminated when the temperature difference be-
tween two consecutive steps became smaller than a predefined
accuracy of ε = 10−4. Note that one may also look at the
real part of the dominant zero and halt the process when
| Re(x∗

L ) − 1| � ε, and also that smaller values of ε may be
considered, without any significant consequences in the re-
sults. Regarding the cutoff, the value hcut = 10−4 was used
throughout the simulations. Errors have been computed by
averaging over ten different independent runs. Finally, for all
fits performed throughout this paper we restricted ourselves to
data with L � Lmin, adopting standard χ2 test for goodness of
fit. Specifically, we considered a fit as being acceptable only
if Q > 0.01, where Q is the quality-of-fit parameter [38].

It is clear that determining the zeros of a high-order poly-
nomial is far from trivial, in general. In the present case, this
difficulty is being added to by the need to determine the cutoff
of the EPD while monitoring the precision of coefficients
h

β
j
0
(n) in order to obtain a sensible accuracy for the zeros.

The precision of the coefficients h
β

j
0
(n) strongly depends on

the length of the Monte Carlo time series. On the other hand,
even in case of rather accurate values of the coefficients results
still depend on the cutoff threshold of the EPD. However, as
it has been recently shown for the two-dimensional Ising and
six-state Potts models [39], the EPD method is indeed quite
robust against the cutoff threshold and the number of Monte
Carlo sweeps used, giving accurate results for the critical
parameters.

Since the method has not yet been checked on the spin-1/2
Baxter-Wu model, our first port of call is to test it against the
well-known exact results. Figure 3 depicts typical results for
the zeros of a system of size L = 75 at a temperature close
to the pseudocritical one. Note that since the density-of-states
factors g(En) are real, the zeros all come in conjugate pairs.
The top panel shows a global view of all zeros located around

FIG. 3. Zeros of the EPD in the complex plane for the spin-
1/2 Baxter-Wu model and a system with linear size L = 75 at
β = 0.43991, close to the corresponding pseudocritical temperature;
see also Eq. (5). (a) provides a global view of the zeros around a
unit-radius circle and (b) shows a zoom in on the area of the dominant
zero near (1,0). As discussed in the main text the roots appear in
conjugate pairs.

a unit circle, and the bottom panel depicts an enlargement of
the dominant zero (x j )∗ near the point xc = (1, 0). Changing
the temperature according to Eq. (6) will furnish a different
new dominant zero that converges to the desired x∗

L after
just a few iterations. The finite-size scaling analysis of the
imaginary part of the dominant root, as given by Eq. (9),
is shown in Fig. 4(a). A linear fit on a log-log scale gives
an estimate of ν = 0.668(6) for the critical exponent of the
correlation length, in very good agreement with the exact
result ν = 2/3 [1,2]. Fixing ν to this value and ω = 2 [40],
Eq. (7) gives Tc = 2.2692(4) in accordance with the exact
result 2.269185 · · · [2], see Fig. 4(b).

We proceed now to the study of the spin-1 Baxter-Wu
model at � = {−10,−1, 0, 0.5}. This selection allows a di-
rect comparison with results already reported in the literature
by other approaches [19,28–30]. For brevity, we choose to
show here in Fig. 5 the case � = 0.5, which is the largest
positive value of � considered in this work. The scaling anal-
ysis in both panels of Fig. 5 is in direct analogy with that of
Fig. 4, giving ν = 0.623(11) and Tc = 1.5301(3). Although
the estimate for Tc is in excellent agreement with conformal
invariance, see Table I, the value of ν appears to deviate from
the expected 2/3 result. A similar but slighter deviation was
observed also for the case � = 0, see again Table I. This
trend is a note of warning indicating the presence of strong
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TABLE I. Representative critical-point estimates (Tc or �c) of the phase diagram of the spin-1 Baxter-Wu model from the present work as
well as previous studies, including estimates of the critical exponent ν. In the first column we either indicate the value of � for simulations
that vary T or the value of T for simulations that vary �. Columns 2–5 feature results obtained in the current work from the EPD zeros
method (columns 2 and 3) and multicanonical simulations (columns 4 and 5). Columns 6–9 append earlier estimates from Wang-Landau (WL)
simulations (� = −10 and −1 [29] and � = 0 [28]) and conformal invariance (CI) [19]. The first line of results relates to the pure spin-1/2
model (� = −∞).

EPD Zeros MUCA WL CI
Simulation point Tc ν �c ν Tc ν Tc ν

� = −∞ 2.2692(4) 0.668(6) − − − − − −
� = −10 2.2578(4) 0.666(10) − − 2.2578(5) 0.655(17) 2.2578 0.6683

� = −1 1.8502(3) 0.660(12) − − 1.8503(9) 0.652(18) 1.8503 0.6601
T = 1.8503 − − −1.002(2) 0.671(6)a − − − −
� = 0 1.6606(5) 0.649(12) − − 1.66055(5) 0.644(1) 1.6606 0.6488
T = 1.6606 − − 0.0008(7) 0.652(10)b − − − −
� = 0.5 1.5301(3) 0.623(11) − − − − 1.5300 0.6369c

T = 1.5301 − − 0.4999(2) 0.654(19) − − − −
aFrom Ref. [29].
bThis estimate (and the one at T = 1.5301) corresponds to the average value of ν obtained from the fits of Fig. 9. Cross correlations were not
taken into account, but see Ref. [60].
cPrivate communication by the authors of Ref. [19].

finite-size effects as � approaches the location �pp of the
multicritical point, suggesting the need of studying larger sys-
tem sizes or further scaling corrections. Finally, in Fig. 6 we
provide a summary concerning the finite-size scaling behavior

FIG. 4. (a) Log-log plot of the imaginary part of the dominant
zero as a function of lattice size for the spin-1/2 Baxter-Wu model.
The solid line shows a fit of the form (9). (b) Finite-size scaling
analysis of the pseudocritical temperatures, see Eq. (7), where the
critical exponent ν is fixed to the value from (a).

of the imaginary part of the dominant zero for all values
of � considered, including the case of the spin-1/2 model.
Inspecting Fig. 6 one may observe that as we lower � from 0.5
to −10 the trend of the numerical data follows the expected
passage to the spin-1/2 model (� = −∞). However, this
approach appears to be rather slow, and it could be instructive
to study even more negative values of �. The gathered results

FIG. 5. The same as in Fig. 4 for the spin-1 Baxter-Wu model at
� = 0.5.
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FIG. 6. Log-log plot of the imaginary part of the dominant zero
as a function of the lattice size for both the spin-1/2 and spin-1
Baxter-Wu models. For the spin-1 case results at various values of
� are shown. The solid lines are fits of the form (9) as described in
the text.

for Tc and ν are listed in Table I and are critically discussed in
Sec. IV. Overall, we may deduce that the EPD zeros method
appears to be a promising alternative for determining critical
aspects of the transition in the Baxter-Wu model.

III. MULTICANONICAL SIMULATIONS

A. Method and observables

The multicanonical (MUCA) method [33] consists of a
substitution of the Boltzmann factor e−βE with weights that
are iteratively modified to produce a flat histogram, usually
in energy space. This ensures that suppressed states such as
those in the coexistence region in an (asymptotic or effective)
first-order transition can be reliably sampled, and a continuous
reweighting to arbitrary values of the external control pa-
rameter becomes possible [41,42]. Due to the two-parametric
nature of the density of states, g(EJ , E�), in the spin-1 Baxter-
Wu model, the process was applied only to the crystal-field
part E� of the energy. This allowed us to reweight to arbitrary
values of � while keeping the temperature fixed. Starting from
the partition function of Eq. (3) we can write

ZMUCA =
∑

EJ ,E�

g(EJ , E�)e−βEJW (E�), (10)

where the Boltzmann weight associated with the crystal-field
part of the energy has been generalized to W (E�). For a flat
marginal distribution in E�, it should hold that

W (E�) ∝ ZMUCA

⎡
⎣∑

EJ

g(EJ , E�)e−βEJ

⎤
⎦

−1

. (11)

In order to iteratively approximate the generalized weights
W (E�), we sampled histograms of the crystal-field energy.
Supposing that at the nth iteration a histogram H (n)(E�) was
sampled, then its average should depend on the weight of the
iteration W (n)(E�) as

〈H (n)(E�)〉 ∝
∑
EJ

g(EJ , E�)e−βEJW (n)(E�). (12)

From Eqs. (11) and (12) it follows that 〈H (n)(E�)〉 ∝
W (n)(E�)/W (E�). Hence, in order to approximate the W (E�)
that produces a flat histogram a weight modification scheme of
the form W (n+1)(E�) = W (n)(E�)/H (n)(E�) is justified. The
simulations can terminate when a flat enough histogram has
been sampled, based on a suitable flatness criterion. For our
purposes we used the Kullback-Leibler divergence to test the
flatness [42,43]. After this initial preparatory part, the final
fixed weights can be used for production runs.

As has been shown in detail in Refs. [42,44], the mul-
ticanonical method can be adapted for the use on parallel
machines by performing the sampling of histograms in par-
allel, with each parallel worker using the same weights but
a different (independent) pseudorandom number sequence.
The accumulated histogram can then be used to update the
weights, keeping communication between the parallel parts of
the code minimal. This scheme has been successfully applied
for the study of spin systems in the past, including the spin-1
Blume-Capel and Baxter-Wu models [25,27,29,30,45]. Here
we performed our simulations on an Nvidia Tesla K80 GPU,
using a total of 26 624 workers assigned to independent copies
of the system. At each time, a subset of these threads are
actually running in parallel on the 4 992 cores of the device,
while the excess in the number of parallel tasks is employed
to hide the latencies due to memory accesses [46].

In the course of the multicanonical simulations (production
runs) the sampled observables include estimates of the mean
energy 〈E〉, the order parameter 〈m〉, which is estimated from
the root mean-square average of the magnetization per site of
the three sublattices A, B, and C [28,47,48],

m =
√

m2
A + m2

B + m2
C

3
, (13)

and the magnetic susceptibility

χ = βN[〈m2〉 − 〈m〉2]. (14)

As the multicanonical method allows for continuously
reweighting to any value of �, canonical expectation values
for an observable O = O({σ }) at a fixed temperature can be
attained by estimating the expressions

〈O〉� = 〈O({σ }) e−β�E�({σ })W −1(E�)〉MUCA

〈e−β�E�({σ })W −1(E�)〉MUCA
. (15)

In this framework, it is natural to compute � derivatives of
observables rather than the usual T ones. For instance, in place
of the usual specific heat one may define a specific-heat-like
quantity [25]

C� = 1

N

∂EJ

∂�
= −β[〈EJE�〉 − 〈EJ〉〈E�〉]/N, (16)

which shows the shift behavior expected from the usual spe-
cific heat [25,29,30]. Additionally, in order to obtain direct
estimates of the critical exponent ν from finite-size scaling,
one may compute the logarithmic derivatives of the nth power
of the order parameter [36,49,50]

∂ ln 〈mn〉
∂�

= −β

[ 〈mnE�〉
〈mn〉 − 〈E�〉

]
. (17)
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B. Results

We performed simulations at T = 1.6606 and T = 1.5301,
which approximate the critical points at � = 0 and � = 0.5,
respectively, see Table I, using system sizes 12 � L � 96,
again with periodic boundary conditions. For T = 1.6606,
4 × 106 sweeps were used in the production run for the small-
est system and 3 × 108 sweeps for the largest. For the lower
temperature T = 1.5301, due to its proximity to the proposed
multicritical point (see Fig. 2), sampling was increased to
2.5 × 107 sweeps in the production run for the smallest sys-
tem and 109 sweeps for the largest. After the initial iterations
for the calculation of the generalized weights, an additional
10% of the total production sweeps were discarded by each
worker for thermalization. Preliminary tests indicated that
distributing the production sweeps equally among the workers
results in sampling the equivalent of ∼5 autocorrelation times
worth of data points per worker for the larger temperature
and ∼20 for the smaller. The results were analyzed using the
jackknife resampling method [51] and the location of pseud-
ocritical points was estimated via reweighting and bisecting
in �.

As discussed in Refs. [21,28,29], there have been recent
reports of first-order transition features even along the pre-
sumed continuous part of the transition line. In relation to
such claims, we put forward here some additional evidence
for the clarification of the nature of the phase transition at
� < �pp. Following the prescription of Ref. [29] we studied
the reweighted probability density function P(E�). It is well
known that a double-peak structure in the density function
in finite systems is an expected precursor of the two δ-peak
behavior in the thermodynamic limit that is expected for a
first-order phase transition [52,53]. However, this observation
must be taken with a grain of salt, since there have been
many cases reported in the literature for which this two-peak
structure tends to a unique peak in the thermodynamic limit.
A warning example is the two-dimensional four-state Potts
model [54].

We start the presentation of our results with Fig. 7(a) where
we show the probability density function P(E�) for selected
system sizes at the temperatures T = 1.6606 and 1.5301. A
double-peak structure is observed in both cases, in agreement
with the evidence in Ref. [28] for � = 0. As is clearly visi-
ble, stronger first-order-like characteristics are present for the
lower-T (higher-�) example that is closer to the multicritical
point.

The multicanonical method is optimal for studying these
phenomena in the framework of the method proposed by
Lee and Kosterlitz [55], as it allows the direct estimation of
the barrier associated with the suppression of states during
a first-order phase transition. Considering distributions with
two peaks of equal height (eqh) [56], as the ones shown in
Fig. 7(a), allows one to extract the surface tension in the
E�-space,

�(L) = 1

2βL
ln

(
Pmax

Pmin

)
eqh

, (18)

where Pmax and Pmin are the maximum and local minimum
of the distribution P(E�), respectively. This parameter is

FIG. 7. (a) Reweighted canonical probability density functions
P(E�) for selected system sizes at T = 1.5301 (main panel) and
T = 1.6606 (inset). (b) Limiting behavior of the corresponding sur-
face tension �(L). For a better comparison of the pseudo-first-order
effects, data at T = 1.8503 (corresponding approximately to � =
−1) are also included [29].

expected to scale in two dimensions as

�(L) = �∞ + c1L−1 + c2L−2 + c3L−3, (19)

possibly with higher-order corrections [57–59]. For the sys-
tem under investigation here, the scaling behavior of the
surface tension �(L) is depicted in Fig. 7(b) for all tem-
peratures studied. The dashed lines show fits of the form
(19) with L � Lmin = 30 leading to a practically zero value
of �∞ in all cases. In particular, we obtain the extrapolated
values �∞ = −0.00005(11), −0.0003(9), and 0.0003(3), for
T = 1.8503, 1.6606, and 1.5301, respectively. This analysis
suggests a continuous transition in the thermodynamic limit
for the regime of � < �pp, in favor of the scenario originally
discussed in Ref. [29].

In order to extract critical crystal fields �c(T ) as well as a
first estimate of the correlation-length exponent ν, we present
in Fig. 8 the shift behavior of suitable pseudocritical fields
�∗

L. These are defined as the peak locations of �-dependent
curves, such as the specific heat C�, the magnetic susceptibil-
ity χ , and the logarithmic derivative of the order parameter
∂ ln 〈m〉/∂�. For each of the two temperatures studied the
dashed lines show joint fits to the expected power-law
behavior [25,27]

�∗
L = �c + bL−1/ν (1 + b′L−ω ), (20)
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FIG. 8. Shift behavior of several pseudocritical fields as a func-
tion of the inverse linear system size at the temperatures T = 1.5301
and T = 1.6606, corresponding roughly to � ≈ 0.5 and � ≈ 0,
respectively.

where �c and ν are common parameters and ω = 2 [5,6].
Using Lmin = 24 and 48 for T = 1.6606 and 1.5301, re-
spectively, the evaluated critical points �c(T = 1.5301) =
0.4999(2) and �c(T = 1.6606) = 0.0008(7) are in good
agreement with the results of Sec. II B but also with those
reported in Table I from Wang-Landau simulations [28] and
conformal invariance [19]. More importantly, our estimates
ν = 0.656(28) and 0.632(45) for T = 1.5301 and 1.6606, re-
spectively, confirm to a good accuracy the q = 4 Potts model
universality class [8].

Additional estimates for the critical exponent ν can be
extracted from the maxima of the logarithmic derivatives of
the order parameter according to Eq. (17), which are expected
to scale as [36,49,50](

∂ ln 〈mn〉
∂�

)∗
∼ L1/ν (1 + b′L−ω ). (21)

Figure 9 shows our data for n = 1 (main panel) and n = 2
(inset) at the two temperatures under study. The dashed lines
are power-law fits of the form (21) using Lmin = 36, providing
an average of ν = 0.654(19) and 0.652(10) for T = 1.5301

FIG. 9. Finite-size scaling behavior of the logarithmic deriva-
tives (17) of powers n = 1 (main panel) and 2 (inset) of the order
parameter.

FIG. 10. Finite-size scaling behavior of C∗
� (main panel) and χ∗

(inset).

and 1.6606, respectively, thus reinforcing the scenario of the
q = 4 Potts model universality class [7].

Finally, we turn to the finite-size scaling behavior of the
maxima of the specific heat, C∗

�, and magnetic susceptibility,
χ∗, in order to probe the critical-exponent ratios α/ν and γ /ν,
respectively. Figure 10 contains the relevant numerical data at
the two temperatures considered. The dashed lines are fits of
the expected form [27,29]

C∗
� ∼ Lα/ν (1 + b′L−ω ) (22)

and

χ∗ ∼ Lγ /ν (1 + b′L−ω ), (23)

with Lmin = 36. These led to the estimates α/ν = 1.13(5)
and 1.06(3), and γ /ν = 1.74(4) and 1.75(3) for T = 1.5301
and 1.6606, respectively. Here, at the lower temperature T =
1.5301 we had to include a second-order correction term
(∼L−2ω) in our fitting attempts to improve the quality of fit.
All of the above results are clearly compatible with the exact
values α/ν = 1 and γ /ν = 7/4 of the four-state Potts model
universality class [8].

IV. SUMMARY AND OUTLOOK

In closing, we return to the question of the current un-
derstanding of the behavior of the model along the phase
boundary. Our results as well as some reference estimates
from the recent literature are summarized in Table I. On in-
specting these values, the following comments are in order: (i)
A very good agreement between different methods of estimat-
ing the location of points (�, T ) along the phase boundary of
the model is observed, cross validating the different numerical
approaches used in the present but also in previous works.
(ii) The values of the critical exponent ν at � < 0 are fully
compatible with the value 2/3 of the four-state Potts univer-
sality class [7,8] for all methods. However, with increasing
�, a slight decrease in the value of ν is observed and may
be attributed to the presence of finite-size effects that become
more pronounced as one approaches the pentacritical point
�pp ≈ 0.89–1.68 [19,21]. (iii) Although the multicanonical
simulations allowed us to significantly improve the limited
capability of the Metropolis algorithm to reduce correlations,
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FIG. 11. Finite-size scaling of the logarithmic derivatives of
powers n = 1 and 2 of the order parameter at the critical point
(�, T ) = (0, 1.6606), as indicated by the EPD zeros method; see
also Table I. The dashed lines are fits of the form (21). Data generated
via the hybrid approach.

much larger system sizes are required for a safe determination
of critical exponents, in particular in the regime 0 � � < �pp.

In light of the above discussion, it would be very valu-
able to have at one’s disposal some simulation method that
allows to equilibrate significantly larger systems than those
considered here. This holds especially for the scaling at
the pentacritical point itself, where one may need to take
into account possible multiplicative and additive logarithmic
corrections, similar to those present in the four-state Potts
model. A suitable cluster update for the spin-1/2 Baxter-Wu
model was proposed by Novotny and Evertz [61]. Its basic
idea is as follows: for each update step one of the sublattices
is chosen at random and its spins kept fixed, resulting in
an effective Ising model on the other two sublattices with
nonfrustrating couplings. Hence, the Swendsen-Wang [62]
algorithm can be applied for simulations of these embedded
models. Our preliminary tests indicate that a combination of
this cluster formalism, that improves the decorrelation of con-
figurations but is not ergodic as it does not affect the diluted
spins σi = 0, with the heat bath algorithm [63,64] results in
an efficient algorithm capable of thermalizing rather large
systems. A detailed analysis of the critical dynamical behavior
of this hybrid scheme will be discussed elsewhere [65].

Here, we confine ourselves to an exemplary application of
this technique to the case � = 0 beyond which the deviation
in the estimates of ν from the expected value 2/3 appears to
grow, cf. also Table I. In Fig. 11 we present the results of a test
calculation of the critical exponent ν from hybrid simulations
at the critical point (�, T ) = (0, 1.6606), studying systems
up to linear size Lmax = 240. The finite-size scaling analysis
of the logarithmic derivatives of the order parameter (for both
n = 1 and 2) produces the estimate ν = 0.669(3), in excellent
agreement with the value 2/3 [1,7,8]. A comparative set of
results for the critical exponent ν of the spin-1 Baxter-Wu
model at � = 0 is given in Table II, where one may notice
the superior accuracy of the hybrid approach.

To conclude, this work complements previous results that
map the universality class of the spin-1 Baxter-Wu model to

TABLE II. Summary of results for the critical exponent ν of the
spin-1 Baxter-Wu model at � = 0 obtained via conformal invari-
ance (second row) [19], Wang-Landau simulations (third row) [28],
EPD zeros (fourth row), and multicanonical simulations (fifth row).
The sixth row showcases the estimate of ν via the hybrid approach
[61,65], see also Fig. 11. For all methods the maximum accessible
system size Lmax used in the simulations is also given in brackets.
The third column highlights the deviation δν of each estimate from
the exact value [8], which is included in the last row for reference.

Method ν δν = |2/3 − ν|
CI
(Lmax = 12)a 0.6488 0.018

WL
(Lmax = 92) 0.644(1) 0.023(1)

EPD zeros
(Lmax = 120) 0.649(12) 0.018(12)

MUCA
(Lmax = 96) 0.652(10)b 0.015(10)

Hybrid
(Lmax = 240) 0.669(3) 0.002(3)

Exact solution 2/3 0

aNote that Lmax denotes the maximum strip width considered in
Ref. [19].
bAverage value of ν obtained from the fits of Fig. 9.

that of the four-state Potts model, a nontrivial task obscured
by the presence of strong finite-size effects as revealed by
our analysis. Clearly, it would be very instructive to add
data for additional values of � in the regime � > 0.5. Yet
this requires a huge computational effort given that crossover
phenomena become more pronounced as we move towards
the expected pentacritical point. In fact, in order to perform
a safe finite-size scaling analysis much larger system sizes
would be needed with increasing values of �. For future work,
we propose the following two-stage process: (i) identify with
good numerical accuracy the location of the pentacritical point
(�pp, Tpp), and (ii) perform extensive simulations around this
point using the hybrid approach in order to quantify all these
interesting phenomena outlined above, including crossover
effects and possible logarithmic corrections to scaling. A
possible tool for such an endeavor could be the field-mixing
technique [66] in combination with the numerical methods re-
ported in this paper. Such attempts are the subject of ongoing
investigations.
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