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Coined quantum walks on the line: Disorder, entanglement, and localization
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Disorder in coined quantum walks generally leads to localization. We investigate the influence of the local-
ization on the entanglement properties of coined quantum walks. Specifically, we consider quantum walks on
the line and explore the effects of quenched disorder in the coin operations. After confirming that our choice
of disorder localizes the walker, we study how the localization affects the properties of the coined quantum
walk. We find that the mixing properties of the walk are altered nontrivially with mixing being improved at
short time scales. Special focus is given to the influence of coin disorder on the properties of the quantum state
and the coin-walker entanglement. We find that disorder alters the quantum state significantly even when the
walker probability distribution is still close to the nondisordered case. We observe that, generically, coin disorder
decreases the coin-walker entanglement and that the localization leaves distinct traces in the entanglement
entropy and the entanglement negativity of the coined quantum walk.
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I. INTRODUCTION

Quantum walks have shown significant potential in quan-
tum computing applications as a practical tool to build
quantum algorithms [1–12]. Even more so, quantum walks are
computationally universal as Childs has shown in his seminal
paper [13]. Long-standing results of quantum walks outper-
forming their classical counterparts, see, e.g., Refs. [6,7,14–
19], thus substantiate the promises of quantum technologies to
revolutionize real-world applications in the near future, such
as high-performance computing or secure communications
[20–25]. Despite continuous progress in quantum computing,
arguably two of the most influential quantum algorithms have
been developed decades ago, namely Shor’s factorizing algo-
rithm [26] and Grover’s search algorithm [27]. It turns out
that designing algorithms with quantum advantage is intricate
[28] and thus, it is important to properly understand the fun-
damental building blocks of these algorithms which can be
formulated as quantum walks.

In this work we will study the influence of of disorder on
the entanglement properties of quantum walks. Disorder may
arise naturally as undesirable error from faulty quantum oper-
ations but could potentially be used as a tailored resource to
improve computational performance of quantum algorithms.
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It is wellestablished that disordered quantum media may lead
to wave localization since the discovery of Anderson local-
ization [29], see also Ref. [30] for a comprehensive overview.
Localization has been explored in a variety of setups [31–39],
even without disorder [40]. However, its influence on en-
tanglement witnesses in quantum walks has not been fully
explored, with some notable exceptions [41–43]. As quantum
entanglement is a computational resource [44], it is important
to understand how entanglement and localization affect one
another.

To this end, we are interested in coined quantum walks
(CQWs) that are routinely described as bipartite quantum
systems consisting of a “walker” and a “quantum coin,” see
Fig. 1. The walker may occupy sites on a certain geome-
try (line, circle, general graphs, etc.) and the coin is a two
level system1 whose state determines the walker propagation.
Further details will be introduced in Sec. II. CQWs are gen-
eralizations of classical random walks to the quantum realm.
Similar to a classical random walk on the line, where a coin
toss decides whether a walker hops left or right, a quantum
coin toss decides how the walker spreads. Here we explore
the effects of quenched disorder in the quantum coin toss such
that the coin differs on different lattice sites.

In contrast to their classical counterparts, CQWs are gen-
erally deterministic since the underlying dynamics is unitary.
Further differentiating factors are that CQWs occupy sev-
eral sites simultaneously due to quantum superposition, and
the coin-walker interaction yields entanglement. It has been
argued that the natural classical counterparts of CQWs are

1For CQWs on graphs or higher dimensional geometries, quantum
coins with more levels are necessary.
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FIG. 1. Illustration coined quantum walk. A CQW is a bipartite
quantum system consisting of a “walker” and a “quantum coin.”
Here, the walker takes on discrete positions (green) and the coin
is a two-level system (orange). The shading illustrates the wave
function of each subsystem with the overlap illustrating coin-walker
entanglement.

classical random walks with one-step memory [45]. This
memory may yield faster spreading than a Markovian classical
random walk. However, CQWs still spread asymptotically
faster, due to quantum interference [45].

Beyond their computational universality, CQWs find ap-
plications in, e.g., neural networks to capture the structure
of graphs [46,47]. Here, feature-dependent coins are used at
different nodes and CQWs can be used to classify graphs.
Hence, coin features may be exploited to perform tasks and
coin operations play a fundamental role in the character of
CQWs which further motivates our study of the effect of
quenched coin disorder on entanglement witnesses.

The manuscript is organized as follows. In Sec. II, we
introduce CQWs and the coin disorder we consider. In Sec. III,
we briefly verify that the coin disorder yields a walker lo-
calization. We study the influence of the localization on the
mixing properties in Sec. IV. In Sec. V we explore how the
localization affects the quantum state of the bipartite system
by considering the state fidelity, the entanglement entropy and
the entanglement negativity. In Sec. VI, we summarize our
results and discuss some interesting future directions.

II. THE MODEL

CQWs are bipartite quantum systems made up from a
walker and a quantum coin, see Fig. 1. Here, we consider
arguably the simplest setup where the coin is a two-

level system with corresponding coin Hilbert space Hc =
span{|↓〉 , |↑〉} = C2 and the walker propagates on the in-
finite line (alterations are readily introduced). Thus, the
position x of the walker can take on discrete values x ∈
Z and the walker Hilbert space is Hw = span{|x〉 | x ∈ Z}.
The composite system is described by quantum states |ψ〉
residing in the Hilbert space H = Hw ⊗ Hc, i.e., |ψ〉 =∑

x∈Z,σ=↑,↓ ψx,σ |x, σ 〉 where we write |x, σ 〉 = |x〉 ⊗ |σ 〉.
This bipartite system undergoes a two-step discrete-time dy-
namics as follows. Given a quantum state |ψ (t )〉 ∈ H at time
t , first a quantum coin operator C is applied. C is such that, al-
though it acts on the full Hilbert space, the walker occupation
probability, i.e.,

px = |〈x,↑ |ψ (t )〉|2 + |〈x,↓ |ψ (t )〉|2 (1)

remains unchanged. Subsequently, a shift operator S is applied
that propagates the walker along the line depending on the
state of the two-level system, i.e., |ψ (t + 1)〉 = SC |ψ (t )〉.
Time-evolved states are thus deduced from the initial state as

|ψ (t )〉 = (SC)t |ψ (0)〉 . (2)

Arguably the most studied CQW is the Hadamard walk which
is defined by the following operators:

C = 1w ⊗ H = 1w ⊗ 1√
2

[
1 1
1 −1

]
, (3)

S =
∑
x∈Z

|x + 1,↑〉 〈x,↑| + |x − 1,↓〉 〈x,↓| . (4)

Here, H is the Hadamard gate. For the Hadamard walk, each
site is equivalent and a “fair” coin toss propagates the walker.
The initial coin configuration yields the potential for an un-
derlying drift in the Hadamard walk since the time evolution
is unitary. This is circumvented by considering the initial state

|ψ (0)〉 = 1√
2

(|0,↓〉 + i |0,↑〉). (5)

The initial coin state is an eigenstate of the Y gate. Since the
Hadamard gate is a superposition of the X and the Z gate, this
initial coin state ensures that there is no drift and the dynamics
is symmetric.

The Hadamard walk and its applications have been exten-
sively studied, see, e.g., Refs. [48–52] to name a few. Due
to the spatial homogeneity of the coin operator, the time-
evolved wave function can even be analytically derived [49].
In Appendix A we recall how to solve the Hadamard walk,
following Ref. [49]. For the initial state (5) we find

〈x,↓ |ψ (t )〉 = 1 + (−1)t+x

2(t+3)/2

∫ π

−π

dk

2π
e−ikx (

√
1 + cos2 k − i sin k)t

(
1 + cos k√

1 + cos2 k
+ i

e−ik√
1 + cos2 k

)
, (6a)

〈x,↑ |ψ (t )〉 = 1 + (−1)t+x

2(t+3)/2

∫ π

−π

dk

2π
e−ikx (

√
1 + cos2 k − i sin k)t

(
i

[
1 − cos k√

1 + cos2 k

]
+ eik√

1 + cos2 k

)
. (6b)

The most salient feature of the walker occupation prob-
ability for the Hadamard walk consists of two ballistically
propagating peaks emerging from the origin, see Fig. 2.

The width of these peaks scales asymptotically as O(t1/3)
and between the peaks, the wave function is essentially uni-
formly distributed [49]. Over time, coin and walker become
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FIG. 2. Walker distribution of the Hadamard walk. We depict the
occupation probability px for different times t = 20, 40, 60, 80 for a
Hadamard walk with the initial state (5). We observe that the center
probability p0 vanishes and that the distribution flattens with time.
The amplitudes of the traveling peaks decay over time. These results
are obtained from the simulation of Eq. (2).

entangled. This entanglement can be quantified by the entan-
glement entropy (EE), viz.,

S = tr ρc ln ρc. (7)

Here, ρc = trw ρ is the reduced density matrix of the coin
obtained by tracing out the walker. For the Hadamard walk,
the EE settles to a constant value around 0.605 [52].2

Certain aspects of disorder in quantum walks have been
studied in the past, see, e.g., Refs. [53–57]. Here, we are
interested in the effects of disorder in the coin operator on
CQWs. We consider the gate

G(r) =
( √

r
√

1 − r√
1 − r −√

r

)
(8)

with r ∈ [0, 1]. For certain values of r the gate G reduces to
common gates, viz.,

G(0) = X, G(1/2) = H, G(1) = Z. (9)

We shall consider CQWs in which the lattice site x has an
assigned random number rx and an associated gate G(rx ). The
coin operator is then altered as follows:

C({rx}) =
∑
x∈Z

|x〉 〈x| ⊗ G(rx ). (10)

G(rx ) is still composed of an X and a Z gate, viz., G(rx ) =√
rxZ + √

1 − rxX, such that the initial state in Eq. (5) still
yields a symmetric propagation.

Although the coin operator is still in block diagonal form,
it does not trivially factorize anymore into a product of two
operators acting on Hw and Hc separately due to the site

2We considered the natural logarithm to estimate this value which
is therefore distinct from values reported elsewhere, e.g., in Ref. [52].

dependent coin operations. We introduce a parameter W that
controls the disorder strength, i.e.,

rx = 1
2 (1 + W ξx ). (11)

Here, ξx ∈ [−1, 1] are uniformly distributed random numbers.
This choice readily recovers the Hadamard walk for W = 0
and a completely disordered walk for W = 1.

To analyze the influence of the quenched coin disorder
on CQWs, we study different disorder realizations. We write
{ξ (i)

x }, where i = 1, ..., N labels the realization. Each realiza-
tion i yields a pure quantum state ρi(t ) = |ψ (i)(t )〉〈ψ (i)(t )| at
all times. Any system quantity f can be evaluated by either
first evaluating the density matrix of the ensemble of realiza-
tions, viz.,

ρi(t ) = 1

N

N∑
i=1

|ψ (i)(t )〉 〈ψ (i)(t )| (12)

and then evaluating the ensemble average f (ρi ) or by first
evaluating f for a certain realization and then computing the
realization average

f (ρi(t )) = 1

N

N∑
i=1

f (|ψ (i)(t )〉 〈ψ (i)(t )|). (13)

For linear observables, both averages are equivalent, and the
expectation values of an operator O can be defined uniquely
as 〈O〉 = Tr(Oρi ). Hence, the walker occupation probability
px = tr(|x〉 〈x| ρi ) is directly obtained as

px(t ) = 1

N

N∑
i=1

| 〈x,↑ |ψ (i)(t )〉 |2 + | 〈x,↓ |ψ (i)(t )〉 |2. (14)

However, for nonlinear f , such as the entanglement entropy,
the two averages differ.

III. LOCALIZATION

It is expected that the model introduced in Sec. II shows a
localization phenomenon. In this section we briefly illustrate
key indicators of the localization.

In Fig. 3 we show the walker occupation probability of a
CQW [see Eq. (14)] on the infinite line after 100 time steps for
different disorder strengths W . For W = 0, i.e., the Hadamard
walk, we again observe the characteristic peaks from Fig. 2.
For small to moderate disorder strengths (W = 0.2, 0.4) these
peaks persist but also a third, central peak appears which is
qualitatively different from the Hadamard walk. For larger
disorder strengths, we observe that the central peak is the
dominating feature of the probability distribution indicating
that the walker is effectively trapped with, at most, a very slow
underlying dynamics. This behavior is indicative of an Ander-
son localization in the disordered CQW and we further study
the walker probability distribution in Fig. 4. The emergent
center peak can be quantified by the return probability p0 of
finding the walker on its initial site x = 0. For the Hadamard
walk it is known that p0 decays algebraically as ∼1/t . In
Fig. 4(a), we see this algebraic decay for W = 0 (note the log-
arithmic scales). For different disorder strengths W > 0, we
see that the center peak does not vanish. Instead, we observe
a finite return probability for W > 0 and the corresponding
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FIG. 3. Walker distribution of the disordered CQW. We show
the occupation probability px after t = 100 time steps for a CQW
with the disordered coin operator in Eq. (10) and the initial state
(5) for different disorder strengths W . We observe that the center
peak does not vanish in the disordered case and increases with the
disorder strength. Furthermore, the traveling peaks are suppressed
with increasing disorder. These results are obtained by averaging
over 1000 independent coin operator initialization.

plateau value increases with W . Hence, the character of the
probability distribution is significantly altered and the spread-
ing is slowed down. In Fig. 4(b) we further characterize the
slow dynamics by considering the mean squared displacement
of the quantum walker, viz.,

〈x2〉 =
∑
x∈Z

pxx2. (15)

For the Hadamard walk we see that, as expected, 〈x2〉 grows
quadratically, indicating a ballistic dynamics [note again the
logarithmic scale in Fig. 4(b)]. For W > 0, we find that
the mean squared displacement deviates from that of the
Hadamard walk on a finite time scale that decreases with

increasing disorder strength and eventually always becomes
subdiffusive. This is evident upon assuming a power-law
behavior, i.e., 〈x2〉 ∼ tσ which allows to extract the growth
exponent σ as

d log〈x2〉
d log t

= σ. (16)

In Fig. 4(c) we extract the growth exponent numerically
by interpolating the data using smoothed cubic splines and
evaluating the numerical derivative. For W = 0, we find
asymptotically ballistic spreading, i.e., σ → 2 for t → ∞.
Conversely, a diffusive dynamics would yield σ = 1. When
σ = 0, there is no spreading and instead localization takes
place [58]. For any W > 0, we see from Fig. 4(c) that σ → 0.
Hence, we conclude that the CQW with coin disorder local-
izes on the length and timescales we explored. In Appendix B
we confirm that our findings also hold true for reflective and
periodic boundary conditions.

IV. MIXING PROPERTIES

Mixing in CQWs describes how close the walk is to a cer-
tain limiting distribution. This is of fundamental importance
in various speedup claims in quantum algorithms [59]. In
this section we study how the localization affects the mixing
properties of the DTQW.

To describe mixing in the presence of disorder we compare
the walker occupation probability distributions with the flat
distribution. To ensure a meaningful flat state for the infinite
system, we must consider that our initial system state implies
that at even (odd) times, only even (odd) sites can be occupied.
Hence, we must consider the flat state restricted to the sites
that correspond to the parity of the current time step and that
lay within the physical light cone |x| � t of the dynamics.
Thus, we refer to the following probability distribution

pflat (x, t ) =
{

1/(t + 1), |x| � t ∧ (t − x) even
0, else (17)

as the flat distribution at time t for the system on the infinite
line. The mixing ratio M is then defined by the 1 norm of the

FIG. 4. Influence of disordered coin operators on walker distribution. We consider different properties of the walker distribution and the
quantum state for different disorder strengths W = 0 (gray), W = 0.2 (lighter green), W = 0.4 (light green), W = 0.6 (green), W = 0.8 (light
brown), W = 1 (brown). Panel (a) shows the return probability p0. For W = 0 we observe an algebraic decay as p0 ∼ t−1 (as indicated by
the black dashed line). Conversely, for W > 0 we see that p0 > 0 at all times with the plateau value increasing for stronger disorder. In panel
(b) we show the mean squared displacement. For W = 0 we find the expected algebraic growth. For W > 0 we observe a significantly slowed
down dynamics. In panel (c) this is confirmed by analyzing the growth exponent σ , see Eq. (16). While the Hadamard walk shows σ → 2, for
W > 0 we consistently find σ → 0. All results are averaged over 1000 independent disorder realizations.
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FIG. 5. Mixing Ratio. We show the mixing ration M introduced
in Eq. (18) for different disorder strengths W . For the Hadamard
walk (W = 0) we observe a strong mixing with M ≈ 1. However,
most disordered CQWs with W > 0 show a stronger mixing in the
transient regime than the Hadamard walk. Asymptotically, the disor-
dered CQWs do not have significant overlap with the flat distribution,
i.e., M → 2. All results are averaged over 1000 independent disorder
realizations.

distance

M = ‖px − pflat‖1. (18)

The mixing ratio satisfies 0 � M � 2 with M ≈ 0 indicating
strong mixing and a probability distribution close to the flat
state. Conversely, M ≈ 2 indicates that the walker probability
distribution and the flat state do not have significant overlap.

Interestingly, we observe from Fig. 5 that a small amount
of disorder W initially increases the mixing of the quantum
walk (e.g., for W = 0.2). This means that disordered walks
are more homogeneously distributed at short time scales than
a Hadamard walk. However, eventually M → 2 for W > 0 in
all cases we considered. The fact that for W > 0, all walks
tend toward the maximum mixing ratio implies that the flat
state and the walker probability distributions do not have
significant overlap. This means that the walker spreads sig-
nificantly slower than the physical light cone x = t . In turn,
the Hadamard walk (W = 0) keeps up with the light cone and
the mixing ratio does not reach M = 2.

V. QUANTUM STATE PROPERTIES

Despite that the localization itself is the subject of many
studies, the effects on the intrinsic quantum state of the bi-
partite quantum systems are not yet fully explored. It is the
purpose of this section to analyze these effects of the localiza-
tion on the quantum states of the CQWs. First, we compare
the quantum state for the disordered system with that of the
Hadamard walk. This will indicate to which extent the dis-
order affects the quantum state of the CQW. We then study
how the coin-walker entanglement is altered by the presence
of disorder.

FIG. 6. State fidelity. We compare the quantum state for W >

0 to that of the Hadamard walk (W = 0) using the state fidelity,
see Eq. (19). The quantum state quickly deviates from that of the
Hadamard walk, even for small W . All results are averaged over 1000
independent disorder realizations.

A. State fidelity

To understand how the quantum state is altered by the coin
disorder, we quantify the closeness of the disordered quantum
state, see Eq. (12), to that of the Hadamard walk at the same
time, see Eq. (6). For two density matrices, ρ and σ, this can
be quantified by the state fidelity F (ρ, σ ) = (tr

√√
ρσ

√
ρ))2.

For a pure state σ = |ψ (t )〉 〈ψ (t )|, as is the case for the
Hadamard walk, F can be written in terms of the individual
disorder realizations as follows:

F (t ) = 1

N

N∑
i=1

| 〈ψ (i)(t )|ψ (t )〉 |2. (19)

F ≈ 1 indicates that the quantum state ρ(t ) has significant
overlap with that of the Hadamard walk at the same time.
Conversely F ≈ 0 means that both states do not overlap. Fig-
ure 6 shows the state fidelity as a function of time for different
disorder strengths. We observe that for all W > 0 we find
F → 0, meaning that the quantum state asymptotically has
no overlap with the underlying Hadamard walk. We also see
that the state fidelity drops sharply for initial times, implying
that even though the walker probability distribution px might
look similar at short times, the quantum state of the composite
system differs strongly from that of the Hadamard walk. This
can be observed, e.g., for W = 0.2 from Figs. 4 and 6. The
larger the disorder strength the faster the state ρ(t ) deviates
from that of the Hadamard walk.

B. Entanglement entropy

We have seen that disorder alters the quantum state of
the CQW even when localization is not yet apparent (e.g.,
for W = 0.2 and t � 100). To further quantify the impact
of disorder on the quantum state, we study the coin-walker
entanglement of the quantum state in the presence of disorder.
The initial state given in Eq. (5) is a pure product state and
thus, walker and coin are initially not entangled. Without
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FIG. 7. Entanglement entropy. For W > 0, we trace out the
walker degrees of freedom for each disorder realization and evaluate
the resulting EE. The results are averaged over 1000 independent
disorder realizations. With increasing W, oscillations emerge that
further support the localization hypothesis. The inset shows that the
EE is rather constant for even (odd) time steps.

disorder, the system remains at all times in a pure state,
and therefore the EE [see Eq. (7)] is a good entanglement
quantifier. As we have explained in Sec. II, in the presence
of coin disorder we may consider either the ensemble average
or the realization average. The ensemble average describes the
statistical state of the system but is generally not pure and thus,
the EE is not a faithful entanglement witness. Conversely,
every realization stays in a pure state at all times and thus,
the EE is a good entanglement witness for each individual
run. Hence, to quantify the effects of disorder on the EE we
consider the EE for each realization individually and average
the resulting EEs afterwards. In Fig. 7 we show the resulting
EE. First, we see that we recover the well-known result for the
Hadamard walk for W = 0 [52]. Further, we observe that the
average EE of the CQW with coin disorder is lower than that
of the Hadamard walk, indicating that the disorder effectively
decreases the entanglement between walker and coin. With
increasing W , we also observe that fluctuations are introduced
to the entanglement entropy. Interestingly, these fluctuations
do not vanish upon increasing the number of disorder real-
izations. We may understand these oscillations as a footprint
of the localization phenomenon taking place. This is because
the quantum state cannot be immobile since only those sites
can be occupied that coincide with the time parity (even,
odd). Hence, even a state that we consider localized will alter
between even and odd time steps. The stronger the disorder,
the faster the localization occurs such that even and odd states
are picked from the initial transient regime and thus show a
significantly distinct entanglement character. Hence, the EE
for even (odd) steps is rather constant (see inset in Fig. 7) but
the localization prevents further approaching a unique EE, as
is the case for the Hadamard walk.

C. Entanglement negativity

To further investigate the entanglement properties of the
CQW with coin disorder, we consider the ensemble of realiza-

FIG. 8. Entanglement negativity. For different values of the coin
disorder W , we depict the entanglement negativity between coin
and quantum walker. For W = 0, we observe N � 0.45 for large
times, clearly indicating an entangled quantum state. Conversely,
for W > 0 we see N → 0. We consider 1000 independent disorder
realizations.

tions. The resulting mixed state ρ is the accurate description of
the bipartite quantum system and not pure. An entanglement
witness for such mixed states is the entanglement negativity
which is defined as [60]

N = −1

2

(
1 −

∑
i

|λ′
i|
)

. (20)

Here, λ′
i are the eigenvalues of the partial transpose ρ ′ of the

density matrix ρ, viz.,

ρ ′
xσ,x′σ ′ = ρxσ ′,x′σ , (21)

with x, x′ ∈ Z and σ, σ ′ ∈ {↑,↓}. Naturally, if ρ can be writ-
ten as a sum of product states of individual subsystem density
matrices, so can ρ ′. The normalization tr ρ = 1 is carried
over to ρ ′ such that

∑
i λ

′
i = 1. Thus, in the case that ρ ′ is

a sum of product states, all λ′
i � 0 such that

∑
i |λ′

i| = 1 and
consequently N = 0. Any negative eigenvalue will indicate a
nonseparable quantum state and thus the presence of entan-
glement. In this case

∑
i |λ′

i| > 1, and thus N > 0.
In Fig. 8 we show our results for the entanglement negativ-

ity for the CQW with coin disorder. For the Hadamard walk,
we recover the established behavior of the negativity [61]: fol-
lowing an initial transient regime, N settles to a constant value
and remains finite. For W > 0, we observe a sharp drop of
the entanglement negativity and a continuous downward trend
N → 0. This behavior hints at an absence of entanglement in
the ensemble of initializations. However, we stress that this
does not mean that the quantum state is not entangled but we
may understand the vanishing of N as an indication that the
quantum state is “more separable.” This, again, is a trace of
the localization in the entanglement properties of the walk: if
the state was separable, then the walker state is unaffected by
coin state yielding an effectively frozen walker.
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VI. CONCLUSION AND OUTLOOK

The Hadamard walk, often referred to as quantum analog
of the classical random walks, is a well-studied system that
has been considered in a variety of different setups. Here,
we addressed the question how quenched disorder in the
coin operations influences properties of the quantum state of
CQWs. First, we confirmed that the disorder we introduce
leads to a localization as is expected. As indicators for the
localization we observed the suppression of the ballistically
traveling peaks in the walker occupation probability along
with the the emergence of a new, prominent center peak and
the sublogarithmic growth of the mean square displacement.

Next, we investigated the effects of the localization on the
mixing properties of the CQW. To our surprise, we found
an initial regime in which the disordered system is more
uniformly distributed than the Hadamard walk. However,
asymptotically the localization forces the quantum state to be
significantly different from the flat distribution.

Finally, we explored to the effects of the disorder on the
quantum state of the composite system. The state fidelity
revealed that the quantum state with disorder is significantly
different from the Hadamard walk, even on time scales on
which the walker occupation probability is still similar to the
Hadamard walk. To further reveal the impact of disorder on
the quantum state, we considered the entanglement behavior
between the quantum coin and the walker. We presented two
separate approaches the results of which point in the same
direction. First, we studied the EE. We considered individ-
ual realizations of the CQW and averaged the EE of each
realizations. We found that the disorder lowers the average
EE per run with increasing disorder. Interestingly we also
observed that, with increasing disorder strength W , the EE
shows oscillations that do not decrease upon increasing the
number of disorder realizations. Rather, these oscillations are
a witness of the localization in the CQW in the following
sense: For W > 0, the walker state is frozen, and the larger W
the faster this happens. But the walker state cannot be equal at
all times since the system as we have set it up has an under-
lying even-odd parity. Hence, the system alternates between
two distinct states and these states differ in their entanglement
properties yielding increasing oscillations for increasing W as
the localization happens earlier in the transient regime.

Conversely, to quantify the entanglement properties of
the ensemble of realizations, we considered the entangle-
ment negativity. The negativity N is a faithful entanglement
quantifier for mixed states, but from N = 0 one cannot au-
tomatically deduce that there is no entanglement present in
the system. The negativity for the standard Hadamard walk
quickly converges to a finite value N > 0 indicating that the
state of the composite quantum system at late times is strongly
entangled. Upon introducing coin disorder, we observed that
the negativity quickly decays to zero, hinting at a quantum
state for the composite system that might be separable or for
which entanglement is at least not a dominating feature. This
would imply that the quantum coin state does not significantly
influence the walker state. Hence, since the coin induces the
walker dynamics, we may interpret this as further impact for
a walker localization.

It might first seem counterintuitive that the traces of the
localization in the EE and the entanglement negativity of the
disordered CQW look qualitatively different as the EE shows
oscillations and the negativity decays. However, both of these
quantities test different properties of the quantum state of the
composed system. The EE measures to extend to which the
quantum state of a particular disorder realization is separa-
ble and subsequently we averaged over the realizations. The
negativity, on the other hand, measures to which extent the
full density matrix is separable. Since both of these measures
are nonlinear in the quantum state, different aspects of the
entanglement properties of the system are tested and therefore
the localization shows different imprints on these quantities.

Despite the apparent simplicity of CQWs, there are a vari-
ety of directions with interesting research avenues to explore.
For example, it would be interesting to further explore the
interplay between disorder and coin-walker entanglement in
the current setup. One might, e.g., consider different initial
conditions that are entangled to varying degrees and see how
the disorder affects the entanglement over time. Along these
lines, one might as well consider a stochastic resetting [62,63].
This could potentially allow to inject entanglement back in the
system and might yield a more entangled steady state whose
localization properties need to be explored carefully. It would
also be interesting to study quenched coin disorder for differ-
ent topologies. Here, one might consider higher dimensional
regular lattices or complex networks with higher connectivity.
In these more complicated setups, it might be that localization
requires a minimal amount of disorder W > 0. In this context,
it would be also interesting to explore connections between
disordered CQWs and quantum Hall systems. This could be
done by linking CQWs with the Chalker-Coddington model
[64] and studying renormalization group approaches to CQWs
that have been previously used in quantum Hall systems, see,
e.g., Ref. [65].
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APPENDIX A: SOLUTION OF THE HADAMARD WALK

Here, we briefly outline the analytical solution of the
Hadamard walk, following Ref. [49]. We write

|ψ〉 =
∑

x

(
ψx,↓ |↓〉 + ψx,↑ |↑〉) |x〉 =

∑
x

| �ψx〉 |x〉 (A1)

with the two component vectors | �ψx〉 = (ψx,↓, ψx,↑). This
allows us to decompose the Hadamard gate into its row com-
ponents and deduce the recursion relation

| �ψx(t + 1)〉 = J+ | �ψx−1(t )〉 + J− | �ψx+1(t )〉 (A2)
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FIG. 9. Occupation probability Hadamard walk. We compare the walker occupation probability px resulting from the analytical solution
of the Hadamard walk [see Eq. (A10)] to that obtained from the numerical evaluation by iteratively applying the coin and shift operator [see
Eqs. (3) and (4)] to the initial state (5).

with the matrices

J+ =
(

0 0
1√
2

− 1√
2

)
, J− =

( 1√
2

1√
2

0 0

)
, (A3)

such that H = J+ + J−. Apparently the Hadamard walk is
translation invariant, such that we may transform the recursion
relation into Fourier space, viz.,

| �̃ψk (t )〉 =
∑

x

| �ψx(t )〉 eikx. (A4)

This yields the recursion relation in Fourier space

| �̃ψk (t + 1)〉 = Jk | �̃ψk (t )〉 . (A5)

Thus, Jk ≡ J+eik + J−e−ik generates the discrete time evo-
lution of the corresponding Fourier component such that

| �̃ψk (t )〉 = J t
k | �̃ψk (0)〉. In order to fully determine the dynam-

ics of the Fourier modes it suffices to diagonalize the 2 × 2
matrix Jk . The eigenvalues are readily found, viz.,

λ± = 1√
2

(±
√

1 + cos2(k) − i sin(k)). (A6)

Since Jk is unitary, λ± lay on the unit circle in the complex
plane and we further observe λ+ = −λ∗

−. Hence, we may
write λ+ = e−iωk and λ− = ei(π+ωk ) with sin ωk = sin(k)/

√
2.

The corresponding eigenvectors |±〉 can be found from a
straightforward but lengthy calculation, viz.,

|±〉 =
√

1

2
± cos k

2
√

1 + cos2 k

(
e−ik

±√
2e∓iω − e−ik

)
. (A7)

Hence, we may write Jk = ∑
σ=± λσ |σ 〉 〈σ | and the time

evolution can be explicitly recovered as

| �̃ψk (t )〉 = λt
+ |+〉 〈+| �̃ψk (0)〉 + λt

− |−〉 〈−| �̃ψk (0)〉 . (A8)

For an arbitrary initial coin state | �̃	k (0)〉 = (a, b) we may then
write the time evolved state explicitly in Fourier space as

ψ̃
↓
k (t ) = a

2

[(
1 + cos k√

1 + cos2 k

)
e−iωkt + (−1)t

(
1 − cos k√

1 + cos2 k

)
eiωkt

]
+ b

2
e−ik e−iωkt − (−1)t eiωkt√

1 + cos2 k
, (A9a)

ψ̃
↑
k (t ) = a

2
eik e−iωkt − (−1)t eiωkt√

1 + cos2 k
+ b

2

[(
1 − cos k√

1 + cos2 k

)
e−iωkt + (−1)t

(
1 + cos k√

1 + cos2 k

)
eiωkt

]
. (A9b)

These Fourier expressions can be readily translated into real space in order to obtain the walker probability distribution and
deduce related quantities such as the mixing ratio. We find

ψ↓
x = (

1 + (−1)t+x
)[a

2

∫ π

−π

dk

2π

(
1 + cos k√

1 + cos2 k

)
e−i(kx+ωkt ) + b

2

∫ π

−π

dk

2π

e−ik√
1 + cos2 k

e−i(kx+ωkt )

]
, (A10a)

ψ↑
x = (

1 + (−1)t+x
)[a

2

∫ π

−π

dk

2π

eik√
1 + cos2 k

e−i(kx+ωkt ) + b

2

∫ π

−π

dk

2π

(
1 − cos k√

1 + cos2 k

)
e−i(kx+ωkt )

]
. (A10b)

In Fig. 9 we compare the occupation probability of the walker
obtained from the analytical solution to that of the numerical

solution for different time steps and we observe perfect agree-
ment.
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FIG. 10. Periodic boundary conditions. We consider the CQW
with quenched coin disorder and periodic boundary conditions. To
this end we consider a circle with a total of 61 sites and average over
1000 independent disorder realizations.

APPENDIX B: ALTERNATIVE BOUNDARY CONDITIONS

For late times, the linear spreading of the light cone
makes computational advances increasingly challenging since
the Hilbert space dimension increases rapidly. Alternative
boundary conditions, such as periodic or reflective boundary
conditions, naturally limit the Hilbert space dimension and
allow more straightforward computational approaches. Here
we complement our analysis by considering some properties
of the CQW with coin disorder for periodic and reflective
boundary conditions.

Periodic boundary conditions. In Fig. 10 we show the
mixing ratio as well as the mean squared displacement for a
system of 61 sites (30 sites in positive and negative direction
respectively). First, we note that the definition of the flat
distribution must be altered to evaluate meaningful mixing
ratios. This is because the periodic boundary conditions break
the even-odd parity of the CQW due to the boundary hop-
ping which corresponds to an even-even transition. Hence,
we compare the walker probability distribution with p(r)

flat (x) =
1/L, where L is the total number of sites. For the Hadamard
walk (W = 0), the initial state [see Eq. (5)] is far away from
p(r)

flat and mixing occurs rather fast. Around t ≈ 100 = O(L)

FIG. 11. Reflective boundary conditions. We consider the CQW
with coin disorder and reflective boundary conditions. To this end
we consider a line with a total of 61 sites and average over 1000
independent disorder realizations.

the mixing ratio peaks since the two ballistic peaks meet
and interfere constructively. The spreading of the peaks with
time eventually yields rather constant oscillations and a rather
strong mixing. For small disorder strengths (e.g., W = 0.2),
we see that the CQW mixes better and oscillations are notably
absent again hinting at a localized state. Upon increasing W ,
we observe that states become less mixed, as we would expect,
since a single, prominent peak is forming. This is supported by
the results for the mean squared displacement. For this finite
system, there is a natural upper bound and for each disorder
strength W > 0, 〈x2〉 saturates at a level below that of the
Hadamard walk.

Reflective boundary conditions. In Fig. 11 we show the
analogous results to Fig. 10 but with reflective boundary
conditions. Importantly, reflective boundary conditions again
preserve the even-odd parity of the CQW but, as for the
periodic boundary conditions, we do not rely on a light
cone distribution since the system is finite. Qualitatively,
the results for reflective boundary conditions coincide with
those of periodic boundary conditions although the abso-
lute values of mixing and mean squared displacement vary
slightly.
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I. Jex, and C. Silberhorn, Phys. Rev. Lett. 106, 180403
(2011).

[54] M. Zeng and E. H. Yong, Sci. Rep. 7, 12024 (2017).
[55] Y. Yin, D. E. Katsanos, and S. N. Evangelou, Phys. Rev. A 77,

022302 (2008).
[56] T. Rakovszky and J. K. Asboth, Phys. Rev. A 92, 052311

(2015).

024139-10

https://doi.org/10.1137/090745854
https://doi.org/10.1109/TETCI.2019.2952908
https://doi.org/10.1126/sciadv.abb8375
https://doi.org/10.1007/s11128-020-02938-5
https://doi.org/10.1137/20M1385998
https://doi.org/10.1103/PhysRevLett.102.180501
http://arxiv.org/abs/arXiv:quant-ph/0012090
http://arxiv.org/abs/arXiv:quant-ph/0104137
https://doi.org/10.1007/s00440-004-0423-2
https://doi.org/10.1007/s11128-018-1840-y
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevLett.129.160502
https://doi.org/10.1103/PRXQuantum.1.020101
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1038/nature24654
http://arxiv.org/abs/arXiv:quant-ph/9605043
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nature07071
https://doi.org/10.1103/PhysRevLett.81.4907
https://doi.org/10.1103/PhysRevLett.77.3831
https://doi.org/10.1038/nature05623
https://doi.org/10.1103/PhysRevLett.100.013906
https://doi.org/10.1038/37757
https://doi.org/10.1103/PhysRevLett.96.063904
https://doi.org/10.1103/PhysRevA.69.052323
https://doi.org/10.1103/PhysRevLett.101.175702
https://doi.org/10.1103/PhysRevLett.111.180503
https://doi.org/10.1103/PhysRevA.89.042307
https://doi.org/10.1103/PhysRevE.103.012207
https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1016/j.physleta.2019.04.060
http://arxiv.org/abs/arXiv:1801.05417
https://doi.org/10.1007/s41109-019-0188-2
https://doi.org/10.4036/iis.2004.11
http://arxiv.org/abs/arXiv:quant-ph/0010117
https://doi.org/10.1103/PhysRevB.92.045424
https://doi.org/10.1088/1367-2630/5/1/383
https://doi.org/10.1088/1367-2630/7/1/156
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1038/s41598-017-12077-0
https://doi.org/10.1103/PhysRevA.77.022302
https://doi.org/10.1103/PhysRevA.92.052311


COINED QUANTUM WALKS ON THE LINE: DISORDER, … PHYSICAL REVIEW E 108, 024139 (2023)

[57] S. R. Jackson, T. J. Khoo, and F. W. Strauch, Phys. Rev. A 86,
022335 (2012).

[58] R. Duda, M. N. Ivaki, I. Sahlberg, K. Pöyhönen, and T. Ojanen,
Phys. Rev. Res. 5, 023150 (2023).

[59] S. Chakraborty, K. Luh, and J. Roland, Phys. Rev. Lett. 124,
050501 (2020).

[60] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).

[61] O. Maloyer and V. Kendon, New J. Phys. 9, 87 (2007).
[62] D. C. Rose, H. Touchette, I. Lesanovsky, and J. P. Garrahan,

Phys. Rev. E 98, 022129 (2018).
[63] S. Wald and L. Böttcher, Phys. Rev. E 103, 012122 (2021).
[64] J. T. Chalker and P. D. Coddington, J. Phys. C 21, 2665 (1988).
[65] P. Cain and R. A. Römer, Int. J. Mod. Phys. B 19, 2085

(2005).

024139-11

https://doi.org/10.1103/PhysRevA.86.022335
https://doi.org/10.1103/PhysRevResearch.5.023150
https://doi.org/10.1103/PhysRevLett.124.050501
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1088/1367-2630/9/4/087
https://doi.org/10.1103/PhysRevE.98.022129
https://doi.org/10.1103/PhysRevE.103.012122
https://doi.org/10.1088/0022-3719/21/14/008
https://doi.org/10.1142/S0217979205029742

